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ABSTRACT 

 

 

 

 

Development of biological models is essential as it represents and predicts 

complex processes within microbial cells. These models are formed by mathematical 

formulations that depend heavily on a set of parameters whose accuracy is often 

influenced by noisy and incomplete experimental data. This study is aimed to design 

and develop new optimization methods that can effectively estimate these parameters 

by iteratively fitting the model outputs to the experimental data. To achieve this goal, 

two new hybrid optimization methods based on the Firefly Algorithm (FA) method are 

proposed. Firstly, a method using evolutionary operations from Differential Evolution 

(DE) method was developed to improve the estimation accuracy of the parameters. 

Then, a second method using Chemical Reaction Optimization (CRO) method was 

proposed to surmount the convergence speed problem during parameter estimation. The 

effectiveness of the proposed methods was evaluated using synthetic transcriptional 

oscillator and extracellular protease production models. Computational experiments 

showed that these methods were able to estimate plausible parameters which produced 

model outputs that closely fitted in the experimental data. Statistical validation 

confirmed that these methods are competent at estimating the identifiable parameters. 

These findings are crucial to ensure that the estimated parameters can generate 

predictive and sensitive model outputs. In conclusion, this study has presented new 

hybrid optimization methods, capable of estimating the model parameters effectively 

whilst taking into account noisy and incomplete experimental data. 
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ABSTRAK 

 

 

 

 

Pembangunan model biologi adalah penting kerana ia mewakili dan meramalkan 

proses-proses kompleks di dalam sel-sel mikrob. Model-model ini dibentuk dengan 

ungkapan matematik yang sangat bergantung kepada satu set parameter yang 

ketepatannya sering dipengaruhi oleh data eksperimen yang hingar dan tidak lengkap. 

Kajian ini bertujuan untuk merekabentuk dan membangunkan kaedah-kaedah 

pengoptimuman yang mampu menganggarkan parameter-parameter ini dengan 

memadankan ouput model kepada data eksperimen secara berlelaran. Untuk  mencapai 

tujuan ini, dua kaedah pengoptimuman hibrid berasaskan Algorithma Kunang-Kunang 

telah dicadangkan. Pertama, kaedah yang menggunakan operasi-operasi evolusi 

daripada kaedah Evolusi Perbezaan telah dibangunkan untuk membaiki ketepatan 

padanan parameter-parameter. Kemudian, kaedah kedua menggunakan kaedah 

Pengoptimuman Tindakbalas Kimia telah dicadangkan untuk mengatasi masalah 

kepantasan penumpuan semasa menganggarkan parameter. Keberkesanan kaedah-

kaedah yang dicadangkan telah dinilai menggunakan model pengayun transkripsi 

sintetik dan model pengeluaran protease luar sel. Eksperimen-eksperimen komputeran 

menunjukkan kaedah-kaedah ini mampu menganggarkan parameter-parameter yang 

dapat menghasilkan model output yang hampir padan dengan data eksperimen. 

Pengesahsahihan statistikal mengesahkan bahawa kaedah-kaedah ini adalah 

memuaskan dalam menganggarkan parameter-parameter yang dapat dikenalpasti. 

Penemuan-penemuan ini adalah penting untuk memastikan parameter-parameter yang 

dianggarkan dapat menjana model output yang boleh diramal dan peka. 

Kesimpulannya, kajian ini telah mempersembahkan kaedah-kaedah pengoptimuman 

hibrid yang baru, yang mampu menganggarkan parameter-parameter model secara 

efektif dengan mengambilkira data eksperimen yang hingar dan tidak lengkap. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1       Problem Background 

 

 

Computational systems biology is aimed to elucidate complex behaviours 

of biochemical reactions within cells through computational approaches (Sun et al., 

2012; Lages et al., 2012). This field of research is important to acquire better 

understanding of how these reactions work as a system (Karr et al., 2012; Isalan, 

2012). In general, these reactions can be represented by using computational 

models. These models are constructed based on mathematical formulations such as 

ordinary differential equations (ODEs) to quantify the changes of specific 

biochemical concentrations over a sample of observation time. The development of 

these models commonly involves two major stages, namely network structure 

identification and parameter estimation (Tashkova et al., 2011; Chou and Voit, 

2009). On the network structure identification stage, the structures of the models 

are formed by modelling experts. This often requires prior knowledge of the 

reaction networks. On the other hand, the parameter estimation stage is performed 

to determine parameter values in the constructed models. These parameters are 

usually approximated based on the available experimental data obtained from the 

high-throughput experiments. This is a challenging task because the biochemical 

reactions in the systems are highly nonlinear and the experimental data are 

frequently noisy and incomplete (Tashkova et al., 2011; Sun et al., 2012; Lages et 

al., 2012).  

 

The purpose of the parameter estimation stage is to equip the models with a 

plausible set of parameters. These parameters are used to produce model outputs 
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that are consistent with the experimental data. Thus, these parameters are crucial to 

signify physical properties of the systems, such as kinetic constants and reaction 

rates. However, these parameters are difficult to be extracted from the high-

throughput experiments. In most cases, these parameters are estimated using 

nonlinear programming (NLP) methods (Balsa-Canto et al., 2012; Sun et al., 

2012).  

 

The parameter estimation task is considered as an optimization problem, in 

which optimal model parameters are repeatedly determined by the difference 

between the model outputs and the corresponding experimental data is minimized. 

Generally, there are two major approaches for this task: gradient and stochastic 

searching strategies (Chou and Voit, 2009). The gradient searching strategy usually 

utilizes local search algorithms to find the parameters based on the initial guesses 

of the state measurements. However, due to the complexity of the biological 

systems, it is difficult to determine these initial guesses as the values are often 

unknown. Moreover, the nonlinearity of the models may lead the searching to least 

substantial parameters (Balsa-Canto et al., 2011). To overcome this limitation, 

stochastic searching strategy is applied. This strategy employs global optimization 

methods that initiate the searching processes with a set of randomly selected model 

parameters. Nevertheless, a major drawback of this strategy is the high 

computational cost. Furthermore, the strategy sometimes has difficulty to converge 

the searching to the local optimum solutions (Sun et al., 2012). 

 

To surmount these bottlenecks, many researches have considered the use of 

hybrid optimization methods. In these methods, the convergence performance of 

the stochastic searching strategy is improved by incorporating other optimization 

algorithms (Rodriguez-Fernandez et al., 2008; Ashyraliyev et al., 2009). In recent 

years, the hybrid optimization methods have shown potential achievements in 

estimating parameters of the biological models (Lages et al., 2012; Sun et al., 

2012; Tashkova et al., 2011). Moreover, Evolutionary Algorithms (EAs) such as 

Differential Evolution (DE) (Storn and Price, 1997), Clonal Selection Algorithm 

(CSA) (De Castro and Von Zuben, 2002), and Chemical Reaction Optimization 

Algorithm (CRO) (Lam and Li, 2010) have presented promising capabilities in 

handling measurement noise and incompleteness of the experimental data (Sun et 

al., 2012; Abdullah et al., 2011). This is due to the fact that these algorithms 

employ random recombination searching approaches that utilize neighbouring 
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vectors within the population of solutions.  Therefore, incorporating EAs may 

facilitate improvements of stochastic searching strategy, especially in terms of 

robustness over noisy and incomplete experimental data during the estimation 

process (Tashkova et al., 2011). 

 

Besides handling measurement noise and incompleteness of the 

experimental data, another challenge may also arise in the parameter estimation 

task, namely parameter non-identifiability. The parameter non-identifiability 

occurred when the estimated parameters fail to produce distinctive model outputs. 

There are two types of parameter non-identifiability, namely structural and 

practical non-identifiability (Balsa-Canto and Banga, 2010). The structural non-

identifiability generally occurred due to limitations in the model structure, in which 

can be solved by modifying the models until the model outputs are consistent with 

the experimental data (Bandara et al., 2009). On the other hand, practical non-

identifiability problem is much complicated as it often occurs due to the quality 

and amount of the experimental data (Chis et al., 2011).  

 

Providing sufficient experimental data and constraints may be useful to 

solve this problem. This may allow the parameter estimation task to find unique 

parameters based on the experimental data (Balsa-Canto and Banga, 2010). 

Finding identifiable parameters is useful for model selection. Model selection is 

generally defined as the capability to choose plausible models based on the given 

experimental data. Therefore, unique parameters that are estimated by the 

optimization methods may produce distinctive model outputs, in which will 

facilitate to differentiation of models (Miao et al., 2009; Lillacci and Khammash, 

2010). The model selection permits further analyses of the model structures 

according to the available experimental data, especially for finding new pathways 

to improve certain biochemical productions. 

 

 

 

 

 

 

 

 



4 

1.2       Problem Statement  

 

 

Computational systems biology has become an increasingly important 

research area in the recent years (Sun et al., 2012; Lages et al., 2012). This field of 

research is aimed to gain better understanding of how complex biological process 

response as a system within living cells. This is often facilitated using 

computational models (Sun et al., 2012; Tashkova et al., 2011; Chou and Voit, 

2009). These models commonly contain a set of parameters that represent the 

physiological properties of the systems. Generally, obtaining these parameters is a 

challenging task. In recent years, many optimization methods have been proposed 

to estimate these parameters by fitting the model outputs with the corresponding 

experimental data. This is usually performed by minimizing the difference between 

these two data. However, the available experimental data are usually incomplete 

and has measurement noise. Thus, designing and developing robust optimization 

methods are crucial to ensure the accuracy of the estimation. Moreover, the 

estimated parameters are sometime non-identifiable, which thwart the possibility of 

finding plausible parameters that may produce informative model outputs. As the 

reliable parameters are difficult to be attained, this may lead to further difficulty in 

selecting feasible models based on the given experimental data.      

 

Currently, there is an increasing number of nonlinear optimization 

methods proposed to estimate the parameters in the biological models (Sun et al., 

2012; Balsa-Canto et al., 2012; Tashkova et al., 2011). The aim of these methods is 

to find the optimal parameter set which may produce the model outputs that closely 

fit the corresponding experimental data. Conventionally, derivative-based 

optimization methods are utilized, including maximum likelihood (Lloyd-Smith, 

2007) and gradient descent (Ashyraliyev et al., 2008) methods. More recently, a 

local optimization method, namely Extended Kalman Filter (EFK) (Costa, 1994) 

method, is employed (Sun et al., 2008). Lillacci and Khammash (2010) introduced 

an improved EFK method that incorporates the continuous model outputs and the 

experimental measurements to estimate the parameters using state space searching 

approach. Additionally, Zheng and co-workers (2012) proposed inequality 

constraints to improve the estimation by the EFK method. However, both improved 

methods commonly require the use of model refinement phases to avoid the 

searching processes from being trapped into suboptimal solutions. Furthermore, 

these methods need to consider the limitations of the EFK method that heavily rely 
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on a good set of initial values for both states and parameters in the models (Sun et 

al., 2008).  

 

In contrast, several previous works have presented prospective 

achievements by using metaheuristics methods (Balsa-Canto et al., 2012). Methods 

such as Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995) and 

Genetic Algorithm (GA) (Goldberg, 1988) were also used to estimate the 

parameters in biological systems, which showed promising results (Besozzi et al., 

2008; Tutkun, 2009). More recently, evolutionary-based metaheuristics methods 

have received the remarkable attentions (Sun et al., 2012; Tashkova et al., 2011; 

Buhry et al., 2011). Generally, these methods utilize evolutionary operations such 

as crossover, mutation, and selection operations to exploit the information of the 

solutions in the population. Tashkova and co-workers (2011) suggested that the use 

of DE method is more practical compared to the existing meta-heuristic methods. 

However, it was also presented that the method may use a substantial amount of 

computational cost to obtain the best solution (Sun et al., 2012; Abdullah et al., 

2011). Moreover, there is no guarantee that these methods will converge to the 

global optimum solutions (Balsa-Canto et al., 2012). These generally lead to the 

use of hybrid optimization methods that combine several searching techniques of 

different metaheuristics methods to overcome these limitations. 

 

Therefore, the problem of this research can be formulated as follows: 

given the noisy and incomplete experimental data, it is a challenging task to design 

and develop an effective hybrid optimization method that robustly estimate the 

model parameters within an acceptable amount of computational time. The 

proposed method also needs to consider the non-identifiability of the estimated 

parameters. 
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1.3       Research Goal and Objectives 

 

 

The goal of this research is to propose a new hybrid optimization method 

for estimating model parameters based on noisy and incomplete experimental data. 

In order to achieve this goal, the following objectives are required to be met: 

 

1. To design and develop a new hybrid optimization method that can 

handle noisy and incomplete experimental data during the parameter 

estimation; 

2. To evaluate the effectiveness of the proposed method in dealing with 

practically non-identifiable parameters; 

 

 

 

 

 

1.4       Research Scopes and Significance 

 

 

In this research, the metabolic systems of well-studied bacteria are used to 

evaluate the effectiveness of the proposed optimization methods. The systems, 

which are formed by a series of biochemical reactions, are used to observe the 

concentration changes of certain biochemical compounds in specific biological 

processes. The models used for the parameter estimation problem and non-

identifiability analysis is obtained from Biomodels database (Le Novere et al., 

2006). The models are in the form of Systems Biology Markup Language (SBML) 

file format. The file contains the information of involved metabolites, reaction 

rates, parameters and the initial concentration volume used in the high-throughput 

experiments. The model is simulated using general purpose modelling software, 

COPASI (Hoops et al., 2006). The experimental data for this model is generated in 

silico. This is performed by adding the Gaussian noise into the model outputs to 

simulate the measurement noise (Lillacci and Khammash, 2010).  

 

The significance of the research is addressed as follows. Firstly, the design 

and development of new hybrid optimization methods is valuable in term of the 

computational contribution. The methods utilize the advantages of the evolutionary 

operations employed by DE and CRO methods to enhance the searching capability 

of the Firefly Algorithm (FA) method (Yang, 2009) and reduce computational time 
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significantly. In addition, the methods are capable to handle noisy and incomplete 

experimental data during the parameter estimation process. Secondly, the outcomes 

of this research can benefit the systems biology community. This is due to the 

contribution of the new approach to parameter estimation and non-identifiability 

analysis. As the optimization methods are robust to measurement noise and 

incompleteness, this provides effective tools to implement the methods for diverse 

parameter estimation problems of other biological models.  

 

 

 

 

 

1.5       Thesis Outline 

 

 

The organization of the thesis is outlined as follows: 

 

 Chapter 1: This chapter provides the introduction of the research, which 

encompasses research background, problem statement, goal, objectives, 

scope and significance of the study.  

 Chapter 2: This chapter provides the literature review of the research. 

The chapter starts with the overview of the bacterial cell. Then, the 

biological model development is described. This leads to the use of 

optimization methods for parameter estimation and discussion of related 

issues on the problem. 

 Chapter 3: This chapter provides the research methodology. This chapter 

presents the research operational framework, description of the data used 

and an overview of the evaluation measurement. 

 Chapter 4: This chapter presents an empirical analysis of the existing 

optimization methods, ranging from three categories: local, global, and 

hybrid optimization methods. The methods used in this analysis are 

Nelder-Mead, Levenberg-Marquardt, PSO, DE, FA, CRO, and two 

recently proposed hybrid optimization methods, namely Particle Swarm 

Evolutionary Optimization (PSEO) (Abdullah et al., 2013a) and 

Differential Evolutionary Bee Colony Optimization (DEBCO) (Abdullah 

et al., 2013b) methods. The effectiveness of this method is evaluated 

using two biological models: synthetic transcriptional oscillators (Kim 

and Winfree, 2011), and an extracellular protease production (Veening et 

al., 2008) models. 
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 Chapter 5: In this chapter, a new hybrid optimization method based on 

FA and CRO methods is proposed. The method is validated for 

parameter estimation accuracy and its capability on handling non-

identifiable parameters. 

 Chapter 6: In this chapter, an improved hybrid optimization method 

based on FA and CRO methods is proposed. This method is aimed to 

overcome limitations of the method proposed in the previous chapter.   

 Chapter 7: This chapter discusses the contribution of the works and 

future plans to fulfil the research objectives.  

 

 

 

 

1.6       Summary 

 

 

In this chapter, the introduction of the research is presented. Firstly, the 

background of the research is discussed. This includes the designing of models for 

synthetic biology, current parameter estimation methods and challenges of 

parameter estimation of biological models. Then, the problem statement of the 

research is addressed. Next, the research goal and objectives are described. Later, 

the research scopes and the significance of the study are discussed. In the next 

chapter, the literature review of this research is presented. 



151 
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