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ABSTRACT 

Extraneous factors are unwanted parameters in the resulting polynomial which is 

extracted, in the process of eliminating variables in a symbolic polynomial system. The 

main aim of this research is to reduce the number extraneous factors via optimising the 

size of Dixon matrices and its modified version, Dixon Dialytic matrices. This enhances 

the process of computing the resultant which is a tool for solving polynomial equations. 

An optimisation algorithm has been designed based on the sensitivity of the size of the 

Dixon matrix to the support set of the associated polynomial system. Some new 

polynomials introduced in this research are used to replace the original polynomials in 

the system to suppress the effects of the supports of the polynomials on each other. 

Moreover, in order to find the best position of the support hulls, in relation to each other, 

appropriate monomial multipliers were constructed and used to multiply each of the 

polynomials. The Dixon matrix for a generic mixed polynomial system can be optimised 

using these multipliers. Furthermore, the optimisation of the size of Dixon Dialytic 

matrix calls for the computation of an optimal arbitrary parameter   in the construction 

of the matrix and the support set   of monomial multipliers so that all the Dixon Dialytic 

sub-matrices are minimised by considering the relationship between the sizes of the 

corresponding Dixon matrices. Thus, the monomial multipliers that are obtained during 

the optimization process of the Dixon matrix are used for minimising of the Dixon 

Dialytic matrix as well; then the search for optimal monomial   is initiated in the 

intersection region of the associated convex hulls of the polynomial system. Appropriate 

choices of   enables further reduction in the size of the matrix. The constructed 

optimisation algorithms have been analysed in terms of complexity and found to be at 

least comparable with the existing competing methods of Chtcherba. The results of the 

implementation of these methods on standard examples reveal the superiority of the new 

methods and demonstrate no failure in optimising the size of the Dixon matrices 

compared to Chtcherba’s.  
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ABSTRAK 

Faktor berlebihan merupakan parameter yang tidak dikehendaki dalam polinomial 

yang terhasil daripada proses menghapuskan pembolehubah bagi sistem polinomial 

berbentuk simbolik. Matlamat utama tesis ini ialah mengurangkan faktor berlebihan ini 

dengan cara mengotimumkan saiz matriks Dixon dan versi matrix Dixon yang terubahsuai, 

matriks Dixon dialitik. Langkah ini akan meningkatkan proses pengiraan resultant, suatu alat 

untuk menyelesaikan sistem persamaan polinomial. Satu alkhwarizmi pengotimuman telah 

dihasilkan berdasarkan kepekaan saiz matriks Dixon terhadap set sokongan bagi sistem 

polinomial yang berkaitan. Beberapa polinomial baru yang diperkenalkan dalam 

penyelidikan ini telah digunakan untuk menggantikan polinomial asal dalam sistem bagi 

mengurangkan kesan set-set sokongan ke atas satu sama lain.  Tambahan pula, untuk 

menentukan kedudukan yang terbaik bagi hul-hul sokongan, secara relatif antara satu sama 

lain, pendarab monomial yang sesuai telah dibina dan digunakan untuk mendarab setiap 

polinomial. Matriks Dixon bagi sistem polinomial bercampur dalam bentuk generik boleh 

dioptimumkan menggunakan pendarb-pendarab tersebut. Untuk mengoptimumkan saiz 

matriks Dixon dialitik pula, pengiraan perlu dilakukan untuk mengira parameter sebarangan 

  yang optimal untuk pembinaan matriks yang berkenaan, serta set sokongan   bagi 

pendarab-pendarab monomial, supaya semua submatriks Dixon dialitik dapat diminimumkan 

dengan mempertimbangkan hubungan antara saiz bagi matriks-matriks Dixon yang 

berpadanan. Oleh itu, pendarab-pendarab monomial yang dihasilkan dalam proses 

pemngotimuman saiz matriks Dixon juga digunakan untuk mengotimumkan saiz matriks 

Dixon dialitik; kemudian, penggelitaran bagi parameter optimal   dimulakan di rantau 

persilangan hul-hul cembung yang berkaitan bagi sistem polinomial itu.  Pilihan yang sesuai 

bagi   memungkinkan pengurangan tambahan dalam saiz matriks. Alkhwarizmi 

pengotimuman yang dihasilkan dalam kerja penyelidikan ini telah dianalisis dari segi 

kerencaman dan didapati sekurang-kurangnya setanding dengan kaedah mutakhir yang telah 

dihasilkan Chtcherba. Hasil pelaksanaan alkhwarizmi-alkhwarizmi yang dihasilkan untuk 

contoh-contoh piawai menunjukkan keunggulan alkhwarizmi-alkwarizmi baru ini serta tidak 

pernah gagal mengotimumkan saiz matriks Dixon, berbanding kaedah Chtcherba. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of study 

In recent years, the search for finding efficient algorithms for solving systems 

of polynomials has received renewed attention due to their importance in both 

practical and theoretical interests including robotics, kinematics, computational 

number theory, solid modeling, quantifier elimination and geometric reasoning 

problems. One possible theory, which is commonly used to solve such a systems, is 

elimination of the variables. Evidence to this is recent breakthroughs in elimination 

theory such as development of fast algorithms for solving  polynomial systems with 

finitely many solutions (Faug'ere et al., 1992), variations of classical constructive 

techniques for eliminating the variables (Boole, 2003; Canny, 1990), development of 

elimination methods, which exploit the structure of polynomial systems to solve 

them efficiently (Canny and Pedersen, 1993; Canny and Emiris, 2000; Emiris, 1994; 

Sturmfels, 1991) and development of efficient techniques for numerically solving 

nonlinear systems (Morgan, 2009; Verschelde et al., 1994). 

The currently known elimination techniques for solving a polynomial system 

are classified into symbolic, numeric and geometric techniques. Matrix methods, 

characteristic set construction and Gr  bner basis construction are three methods 

which are applied in symbolic technique (Chtcherba, 2003).  
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Let  

 

             

             
                               
             

 (1.1)

be a system of   polynomials in   variables with the real coefficients. Solving such 

a system means to determine a set of  -dimensional points          , which satisfy 

all of the polynomials in the system. If a system of polynomials is a symbolic or 

parametric form, it means that some of the coefficients or all of them are arbitrary 

parameters, which are chosen from specified number set. The problem of solving 

such a polynomial system is to find conditions on the coefficients under which the 

system has a set of solutions called resultant.  

The Gr  bner basis algorithm and the characteristic set method are not 

streamlined for finding resultant (Kapur and Saxena, 1995). They can rewrite a given 

polynomial system in such a way that the resultant can be easily extracted. Even 

though these methods compute resultants, they are not suitable in general for that 

purpose, because even on simple examples, these methods take an unpredictable time 

to compute, often running out of memory (Kapur et al., 1995). Example 1.1.1 from 

(Chtcherba, 2003) highlights this disadvantage in case of Gr  bner basis algorithm. 

 Example 1.1.1 (Li et al., 1989) The Gr  bner basis computation of the following 

polynomial system, presented in 

   

             
                  

      
                                  

                                                 

 , 

where  ,   are variables and   ,   ,   ,   ,   ,   ,    and    are parameters, quickly 

runs out of memory before computation finishes. This computation is done using a 
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system with 2GB memory. Yet the 12×12 resultant matrix can be set up in around 10 

seconds using other methods by same system. 

On the other hand, the effectiveness of matrix-based methods has been 

demonstrated in a variety of applications (Chionh, 1990; Emiris, 1994; Kapur et al., 

1995; Kapur et al., 1994; Manocha, 1992; Michel et al., August 1996; Sederberg and 

Goldman, 1986), and the methods involving resultants offer an acceptable real-time 

solution (Manocha, 1992). Therefore, in case of symbolic polynomial systems, the 

matrix based methods are preferred. 

There are two major classes of Matrix-based constructions to compute 

univariate or multivariate resultants called Sylvester type and Bezout-Cayley type 

constructions (Chtcherba and Kapur, 2003). Dixon method (Dixon, 1908), that is the 

subject of this thesis, is of Bezout-Cayley type, while its modified method, Dixon 

Dialytic (Chtcherba, 2003), is a combination of two above major types. All of these 

formulations try to eliminate   variables from     polynomials by constructing 

resultant matrices.  

Dixon method can be considered as one of the best matrix-based methods for 

finding the polynomial including the resultant of a polynomial system (Chtcherba, 

2003) which is called projection operator. This capability is due to certain 

properties such as producing a dense resultant matrix implied as not existence of a 

great number of zeros in rows and columns of the matrix and also producing small 

resultant matrix considered as lower dimension of created matrix. Besides, the Dixon 

method's being uniform implied as computing the projection operator directly 

without considering a particular order of variables, and also the method's being 

automatic referred as eliminating all the variables at the same time (Chtcherba, 2003; 

Kapur et al., 1994) can be taken into consideration. 

All multivariate resultant methods, except in some special cases (Faug'ere et 

al., 1992), compute a non-negligible multiple of the resultant which does not provide 

any information about the solutions of the polynomial system in hand (Saxena, 



4 

1997). In particular, they just compute the multiplicative product of the resultant with 

some extraneous factors. These extraneous factors are undesirable and they create 

problems in certain applications (Chtcherba, 2003; Saxena, 1997). Dixon method has 

also suffered by this disadvantage (Chtcherba and Kapur, 2004b; Chtcherba and 

Kapur, 2003). 

A useful property of Dixon method is the sensitivity of Dixon matrix size to 

exponents of the variables in the polynomials of a polynomial system. In other 

words, if we change the power of the variables in the polynomials of a system, the 

Dixon matrix size changes. Another remarkable property of Dixon formulation is 

that, the computational complexity of Dixon formulation is not governed by the total 

degree of polynomials, unlike the Macaulay resultants (Kapur and Saxena, 1996). 

See Example 1.1.2. 

Example1.1.2 In the following polynomial system, 

   

                       

      
     

     
  

               
     

 

the size of Dixon matrix is      and Dixon polynomial has 50 terms (monomials). 

By multiplying      to    ,     to    and   to   , we have a converted system of 

polynomials as 

    

           
       

        
   

          
       

      
    

            
       

      

 

and the Dixon matrix size increase to       with Dixon polynomial, which 

includes 72 terms. While by choosing multipliers      ,     and     for    ,    

and    , respectively, the size of Dixon matrix decreases again to     with 39 

monomials in Dixon polynomial. 



5 

As illustrated in Example 1.1.2 above, the Dixon matrix responds to any 

conversion of the exponents of the polynomials in the polynomial system. As long as 

the Dixon matrix has this property, it is possible to optimize (minimize) the size of 

the Dixon matrix. As future illustrations, the size of Dixon matrix has direct 

dependency on the number of extraneous factors, which implies that the fewer 

dimension of the Dixon matrix results in fewer extraneous factors and vice versa. 

Using this property, this thesis is intended to optimize the size of Dixon 

matrix in order to decrease the solving process and getting more accurate in process 

of finding results.” 

1.2 Preliminary concept 

This section introduces some basic concepts, which are needed to develop a 

resultant and its formulation. 

Consider a multivariate polynomial in the expanded form 

                     
     

  

             

               

(1.2)

with      
     

   as a monomial, which can be written in the simplified form as 

                    

   

               

The set     , which is a finite set of exponents, is called the support of 

the polynomial. The coefficients    for     are polynomials over   in the 
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parameters so that we can write        , where   is the vector of parameters. 

Hence we write          or          . 

The total degree of a multivariate polynomial   is the maximum degree of 

any monomial in   , where the degree of a particular monomial is the sum of the 

variable exponents. 

Example 1.2.1 The polynomial 

                                   

has support                                   with coefficients over         , 

hence                . The terms        ,                    and   are 

called monomials of the polynomial and the total degree of   is             . 

To link algebra and geometry, we will study polynomials over a field. The 

basic intuition is that a field is a set where one can define addition, subtraction, 

multiplication, and division with the usual properties. Standard examples are the real 

numbers   and the complex numbers  , whereas the set integers   is not a field since 

division fails (3 and 2 are integers, but their quotient 3/2 is not). A formal definition 

of field can be found in (Baez et al., 1992; Cox et al., 2006).  

We now introduce affine space and projective space. 

Definition 1.2.1 (Chtcherba, 2003) Consider a field   and a positive integer  , 

define the  -dimensional affine space over   to be the set 

                         . 
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For an example of an affine space, consider the case    . A coordinate 

system for the  -dimensional affine space     is determined by any basis of   

vectors, which are not necessarily orthogonal. Therefore, the resulting axes are not 

necessarily mutually perpendicular or have the same unit measure. In this sense, 

affine space is a generalization of Cartesian or Euclidean space. In general, we call 

     the affine line and    the affine plane. 

Definition 1.2.2 (Chtcherba, 2003) Consider a field   , and         be polynomials 

in               

                                                        

is called the affine variety of        . 

An affine variety is the set of all solutions of the system of polynomials in an 

affine space. We will use the letters  ,  , etc, to denote affine varieties. In case 

of    , the conic sections studied in analytic geometry (circles, ellipses, 

parabolas, and hyperbolas) are affine varieties. Likewise, graphs of polynomial 

functions are affine varieties (the graph of           is            ). More 

examples of affine variety can be found in (Cox et al., 2006).  

Definition 1.2.3 (Saxena, 1997) The projective plane over   , denoted       , is the 

set 

                                                                        

where an equivalence class      of a line    consists of all lines parallel to the line 

 . 

http://mathworld.wolfram.com/CoordinateSystem.html
http://mathworld.wolfram.com/CoordinateSystem.html
http://mathworld.wolfram.com/AffineSpace.html
http://mathworld.wolfram.com/Cartesian.html
http://mathworld.wolfram.com/Euclidean.html
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We let      denote the common point at   of all lines parallel to  . Then we 

call the set                   the projective line corresponding to  . Note that 

two projective lines always meet at exactly one point: if they are not parallel, they 

meet at a point in   ; if they are parallel, they meet at their common point at  .  

Thus far, our discussion of the projective plane has introduced some nice 

ideas, but it is not entirely satisfactory. For example, it is not really clear why the line 

at   should be called a projective line. A more serious objection is that we have no 

unified way of naming points in      . Points in    are specified by coordinates, 

but points at   are specified by lines. To avoid this asymmetry, we will introduce 

homogeneous coordinates on      . 

To get homogeneous coordinates, we will need a new definition of projective 

space. The first step is to define an equivalence relation on nonzero points of    by 

setting 

                     , 

if there is a nonzero real number   such that                       . One can 

easily check that   is an equivalence relation on        (where  , refers to the 

origin         in   ). Then we can redefine projective plane as follows. 

Definition 1.2.4 (Chtcherba, 2003)        is the set of equivalence classes of   

on        . Thus, we can write 

                  

If a triple                corresponds to a point           , we say that 

        is a homogeneous coordinate of   . 
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A clarification on the equivalence of  above two definitions of projective 

plane is presented in (Cox et al., 2006).  

Homogeneous coordinates are different from the affine coordinates in that the 

former are not unique. Indeed the distinction between affine and projective spaces 

arises especially when comparing coordinates. For example, the triples          and 

          are the affine coordinates of two distinct points of the affine space   , 

but are the projective coordinates of the same point of the projective plane       , 

since projective coordinates are determined up to proportionality. 

The construction of the real projective plane given above can be generalized 

to yield projective spaces of any dimension   over any field   . We define an 

equivalence relation   on the nonzero points of      by setting 

                     , 

if there is a nonzero element   such that                       . If we let   

denote the origin         in     , then the projective space is defined as follows. 

Definition 1.2.5 (Kapur et al., 1994) An  -dimensional projective space over the 

field   , denoted       , is the set of equivalence classes of   on         . 

Thus, 

                   

Each nonzero      -tuple                defines a point   in      , 

and we say that           are homogeneous coordinates of  . 
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Like      , each point          has many sets of homogeneous 

coordinates. For example, in      , the homogeneous coordinates            and 

             describe the same point since                           . In 

general, we will write             to denote that           are homogeneous 

coordinates of         . We can think of        geometrically as the set of lines 

through the origin in     . 

Definition 1.2.6 (Chtcherba, 2003) A polynomial              of a certain total 

degree   is homogeneous if every monomial term in   is of degree  . 

Definition 1.2.7 (Chtcherba, 2003) Let   be a field, and let         be 

homogeneous polynomials in           . Then  

                                                            

 is called the projective variety defined by        . 

For example, in      , any nonzero homogeneous polynomial of degree  , 

                      , 

defines a projective variety      called a hyperplane. 

Now consider a system of     polynomials in   variables, which we shall 

called a "over-constrained", following the nomenclature of Chtcherba(Chtcherba, 

2003). (Clearly,   polynomials in   variables, as a well-constrained polynomial 

system, always have a solution, so the corresponding parameters are unconstrained. 

Therefore,      polynomials are considered. No generality is achieved if more 

polynomials are considered, in which case only a subset of     polynomials at a 

time, or a linear combination of the polynomials, has to be considered.)   
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The polynomial system can be written as 

                      ,                                    (1.3) 

where 

        
 

    
                   

 
    

                        
    

  . 

 (1.4) 

The first polynomial is indexed at  , so that the last index is equal to the 

number of variables, i.e. the dimension of the problem. 

Let    be the support of the polynomial      . We consider the 

collection                 to be the support of a polynomial system   

            . Generally, we will classify polynomial systems according to the 

properties of their supports. 

Definition 1.2.8 (Kapur et al., 1995) A polynomial system                with 

support                is called unmixed if             , and 

mixed otherwise. 

Definition 1.2.9 (Saxena, 1997) A set of polynomials               are algebraically 

independent if and only if there does not exist a non-zero polynomial 

                            such that                 . 

In this entire thesis, we consider the polynomials in a generic form, by which 

we mean all the coefficients of the polynomials are algebraically independent. For 

example consider the system of polynomials 
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 , 

where     are variables and       are parameters. This system is not generic 

because the coefficient of    in    is not independent, and also the coefficient of   in 

   depends on coefficients in    . 

Definition 1.2.10 (Emiris, 1994) The objective of eliminating the variables for 

solving a polynomial system   is obtaining a polynomial purely in the coefficients of 

 . The vanishing of such polynomials is a necessary condition for the existence of 

solutions for  . We will call any such polynomial a projection operator. 

One of the simplest cases of a polynomial system     is when all polynomials 

are of total degree  , which corresponds to following linear system 

  

 
 

 
                                

                                

                                                                                              
                                

 ,                        (1.5) 

where each      is a real coefficient or parameter.  Note that if the set of variables be 

considered as               , we can rewrite the above system in the 

matrix form with coefficient matrix of size      as follows. 

   

    

    

 
    

    

    

 
    

 
 
 
 

      

      

 
      

   

  

  

 
 

   . 

From linear algebra, we know that the solution of   exists in affine space     

if and only if the following determinant vanishes 
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 . 

The determinant    will be called the projection operator and as we shall see 

later, is the resultant. The vanishing of    provides a necessary and sufficient 

condition for the above linear polynomial system to have a nontrivial solution. 

A resultant for a polynomial system may be reducible under certain 

conditions relating to its coefficients. A simple example is the resultant of        

  and         which with respect to   is            . A point arises then as 

to the irreducibility of the resultant for a generic polynomial system. 

The presence of extraneous factors is closely related to the projection 

operator. As matter of fact the extraneous factors are all of the factors in a projection 

operator apart from the resultant. In other words, in a projection operator of a 

polynomial system, the extraneous factors are all of the factors in the ratio of the 

projection operator and the resultant. Example 1.2.2, which follows, illustrates the 

case. 

Example 1.2.2 Consider the strophoid, a curve widely studied by mathematicians of 

17th and 18th century, which can be written in a parametric form as follows. 

                             

where   is a constant. The graph is shown in Figure 1.1. 
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Figure 1.1 Strophoid for Ex 1.2.2.

To find an implicit equation for the strophoid using resultant, we have to 

restate the equations in terms of polynomials instead of trigonometric functions, as 

follows. 

Letting                        , the trigonometric equations of the 

strophoid can be written as 

 
 

 
                
                       
                       

              

 .                                    (1.6) 

We wish to eliminate     and   to get a single equation in terms of     

and   . We can treat the monomials              and    as separate variables to 

make the above equations linear so that we can employ the tools of Linear Algebra. 

Unfortunately, in this case, the number of variables is six and the number of 

equations is only four that is the system is not well-constrained. To get more 

equations, we can pre-multiply some of the polynomials by some monomials; for 

example,       will still have all solutions of      ; hence we can add it to the 

set of equations (Such method of adding more equations to polynomial systems is 

usually referred as the Dialytic method which was first used by James Joseph 

Sylvester in (Auzinger and Stetter, 1988; Sylvester, 1853)). As it can be seen in the 



15 

    

next chapter, there is lower bound on the size of the presented resultant matrix in any 

Dialytic resultant formulation which for above polynomial system it is   (computed 

in (Chtcherba, 2003) in page 220). It means that for this example, any Dialytic 

formulation does not admit resultant matrix smaller than     . To  be sure, for 

some of the most important ones, presented in the ensuing chapters, such as Dixon 

Dialytic method, Macaulay method, Subdivision method and Incremental method, 

the size of resultant matrix for this particular example is      ,        , 

        and        respectively. As a sample, if we multiply    by   ,    

by    and   ,    by           and   , and     by   and   (which can be obtained 

using Dixon Dialytic method presented in chapter 5) we get the following system of 

   polynomials 

   

 
 
 
 
 
 

 
 
 
 
 
                

             
             
             

              
             
             
             
                  
                 

 , 

which contains exactly    monomials. If we treat each monomial as independent 

variable, we obtain the following         linear system (in matrix form): 
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If we consider the above linear system as        , we have    linear 

equations in    variables. Linear algebra states that a non-trivial solution exists 

for     if and only if the determinant of the matrix   is zero. Since the solutions of 

the original polynomial system    are also solutions of      , it follows that the 

vanishing of the determinant of   can present a condition for the original polynomial 

system   to have a solution. In general, not every solution of     is a solution of the 

original polynomial system, hence the condition of vanishing of the determinant is 

only necessary but not sufficient for the original polynomial system to have a 

solution. The factors, which account for these extra solutions are called extraneous 

factors. Hence, the determinant of the above matrix must be a multiple of the 

resultant. The determinant of the coefficient matrix, denoted by matrix      for the 

above linear system, is 

                               . 

Note that although the         linear system has a solution whenever     

or      or when                 , the original polynomial system will 

only have a solution when                 . The solutions     and    

  , are already accounted for in                 . Then the factors     

and      are extraneous factors. Thus equations 

                             . 

are solvable for  , whenever                  , and therefore it is an implicit 

equation of the strophoid. 

As illustrated in Example 1.2.2 above, there are three steps in computing the 

resultant through a resultant matrix: 

 Construction of a resultant matrix. 

 Computation of the symbolic determinant. 
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 Identification of the resultant in the projection operator. 

These three steps are common for all matrix-based method for finding 

resultant.  

1.3 Problem formulation 

Dixon (Auzinger and Stetter, 1988) defined his method for eliminating a 

large number of variables for a vast class of polynomial systems and computing a 

polynomial which includes all solutions of the polynomial system.  A modified 

formulation of Dixon method is presented by Chtcherba (Chtcherba, 2003) which is 

called Dixon Dialytic. Some research found, Dixon methods show the superiority of 

this method in performance on a wide variety of problems(Chtcherba, 2003). 

As shown in previous section since the presented resultant contains all 

information about the solutions of a polynomial system, the extraneous factors in a 

projection operator do not offer any additional information. Moreover, they make it 

harder for the resultant in a projection operator to be identified. Each factor in a 

projection operator must be checked as to whether it is an extraneous factor or is part 

of the resultant. This checking can be time-consuming. This issue is encountered for 

both Dixon and Dixon Dialytic (Chtcherba and Kapur, 2002). 

The projection operator of the Dixon matrix related to Example 1.2.2 is as the 

following 
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where   is the Dixon matrix and           is a sub-matrix of Dixon matrix. Note 

that the resultant is a factor in the determinant of a maximal minor of Dixon matrix 

that contains         as extraneous factor (see Example 1.2.2 and Example 4.3.1). 

Therefore, developing or constructing techniques that can eliminate, or at 

least reduce, the number of extraneous factors is an important problem of research, 

which when solved adequately will yield handsome dividends. 

1.4 Objectives of study 

From the formulated problem, which is addressed in the past section, the 

objective of this research work could be stated as follows

1) To determine how the information about the sensitivity of the size of 

Dixon/ Dixon Dialytic matrix with respect to the variables’ power in the 

polynomials of the original system can be used to produce a smaller 

resultant matrix. 

2) To propose a method for managing these variables’ power so as to produce 

smaller Dixon matrix and to construct an algorithm to implement the 

method. 

3) To propose an algorithm based on managing the power of the parameters 

existing in the Dixon Dialytic structure so as to further reduce the size of 

the resulting matrix. 
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1.5 Scope of study 

The focus of this thesis is on the application of algebraic geometry, which is 

related to the study of geometric objects defined by polynomial equations using the 

tools of algebra. Although one can choose coefficients of polynomial systems from 

any arbitrary field of numbers, in this work, real coefficients has been considered. In 

order to achieve the objectives of thesis the following scope of work has been carried 

out: 

 Identifying the applications of polynomial systems and the needs for 

solving them.  

 Using Bezout-Cayley type construction which is taken from matrix-

based method, on generic-mixed polynomial systems. 

 Studying the Dixon and Dixon Dialytic formulation and their 

advantages and properties. 

 Considering the determinant of the produced Dixon/Dixon Dialytic 

matrix and finding a polynomial that includes the resultant (projection 

operator) and its properties. 

 Identifying a method to manage the total degree of the polynomials in 

the system in order to reduce the extraneous factors in the projection 

operator, which exist besides the resultant. 

 Producing algorithms to eliminate or at least decrease the extraneous 

factors from the projection operators, implementation and analysis of 

the results.  

1.6 Significance of study 

None of the matrix-based elimination methods, in particular the Dixon 

formulation, produces the exact resultant of arbitrary non-generic, non-homogeneous 

polynomial systems. Instead, these elimination methods compute various 
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polynomials known as projection operators, which may contain extraneous factors 

besides the resultant. Since the information about the solutions of a polynomial 

system is completely characterized by its resultant, the extraneous factors have no 

additional information in a projection operator. The Dixon formulation, being the 

major subject of this thesis, is no exception from rule of extraneous factors.  The 

contribution of this study is minimizing the number of extraneous factors for the 

Dixon based resultant formulation.   

1.7 Related works 

For generic polynomial systems, Macaulay devised a technique which, he 

determined a sub-matrix of the resultant matrix and computed its determinant to 

identify the extraneous factor exactly, but his method does not work in the non-

generic case and for other formulations (Kapur and Saxena, 1996). 

Chtcherba and Kapur presented a hypothesis for optimizing the size of Dixon 

matrix that is based on Corner Cutting method (Chtcherba and Kapur, 2002). They 

devised a heuristic for presenting the best variable order for the construction of the 

Dixon resultant matrix, but it stays in heuristic realm due to some limitations. 

Besides, in the unlikely case which is explained in their paper, the method might not 

present the best variable order (Chtcherba and Kapur, 2004a). 

Saxena in (Kapur and Saxena, 1996) suggested a general method for reducing 

total degree of polynomials in the given polynomial system. His suggestion is 

computing the projection operator of a polynomial system with polynomials of less 

total degree than original polynomial system. Given a polynomial system   , first 

one should compute   , the greatest common divisor (GCD) of all powers of 

variables    occurring in the non-zero terms of  . Then, for all       , divide 

each monomial in   which contains   
   , for some      , by   

       . Finally, 

compute the projection operator of the resulting smaller system. This technique 
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basically finds the smallest system that   can scale down to, and then, works with 

that smaller system. Since such a procedure reduces the total degree of the input 

polynomials, it requires less computational resources than directly computing the 

projection operator of the larger system. But, this technique works when the GCD of 

powers are not equal to one. 

Chtcherba in (Chtcherba and Kapur, 2004a) presented another heuristic for 

minimizing the size of Dixon matrix. He introduced some polynomial multipliers for 

the polynomials in a system to get smaller Dixon matrix, but his method does not 

work properly for general polynomial systems. Besides, in the course of 

implementing his method, only the number of columns of the resultant matrix is 

considered as a character to get a smaller Dixon matrix size. In fact, a method, which 

is based solely on the number of columns as the only condition contributing to the 

recognition of smaller matrix, is likely to be misleading. 

1.8 Thesis overview 

The central point of the present thesis is the notion of the resultant of a 

polynomial system.  This thesis has been built on the success of optimizing the 

Dixon resultant formulation by recent researchers such as Chtcherba and Saxena. 

This research presents a new method for finding smaller Dixon matrix to get smaller 

total degree of the projection operator, which signifies less extraneous factors in the 

decomposed form. 

In Chapter 2, the formal definitions of some matrix-based resultant 

formulations needed for developing the basis of this thesis are given in the univariate 

and multivariate cases. Dixon Dialytic formulation stems from Sylvester and Bezout-

Cayley which are the most prominent formulations presented in this chapter, while 

Dixon method is derived from Bezout-Cayley construction.  
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Research methodology is presented in Chapter 3 where, the formulation 

procedure for algorithms of optimization of Dixon matrix and Dixon Dialytic matrix 

is illustrated via flowcharts. The information about research assumption, research 

framework, procedures, and simulation tools are covered in this chapter. Moreover, a 

list of problems which are applied to test the presented algorithms and compare the 

achieved results of optimization methods for Dixon and Dixon Dialytic matrices is 

presented. 

The major objective of this research is built on the definition of Dixon 

formulation. Therefore, chapter 4 is assigned to illustrate the properties of this 

formulation by definitions and theorems. Besides, fundamental issues are raised 

which include the relationships between degrees of projection operator and size of 

Dixon matrix and effects of supports conversion on the size of Dixon matrix. 

Chapter 5 is devoted to explaining the modified method of the Dixon 

formulation called Dixon Dialytic. Useful details which are used for optimizing 

Dixon Dialytic formulation are presented in this chapter, which include the 

relationships between degrees of projection operator and size of Dixon Dialytic 

matrix and relation between the size of Dixon matrix and the size of Dixon Dialytic 

matrix.   

Chapters 6 and 7 present the main algorithms of the present research for 

optimizing the size of Dixon matrix and Dixon Dialytic matrix. Furthermore, some 

examples are presented in order to check if the algorithms work properly. Each 

chapter ends with a complexity analysis of the optimization algorithms.  

Chapter 8 presents some examples solved by both optimizing methods and 

existing methods, with which the merits of the new methods in this thesis are 

established. In this chapter, empirical evidence of the applicability of the proposed 

optimization algorithms as well as comparison with the existing algorithms is 

presented. The results implemented in the tables have made easier the comparison of 

the achieved results from the new methods and the existing methods and bounds. 
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Finally, summary and conclusions of the thesis, some future directions and 

open problems are presented in Chapter 9. 

.
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