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ABSTRACT 

Power generation fuel cost, unit availability and environmental rules and 

regulations are important parameters in power generation load dispatch optimization. 

Previous optimization work has not considered the later two in their formulations. 

The objective of this work is to develop a multi-objective optimization model and 

optimization algorithm for load dispatching optimization of open cycle gas turbine 

plant that not only consider operational parameters, but also incorporates 

maintenance and environmental parameters. Gas turbine performance parameters 

with reference to ASME PTC 22-1985 were developed and validated against an 

installed performance monitoring system (PMS9000) and plant performance test 

report. A gas turbine input-output model and emission were defined mathematically 

into the optimization multi-objectives function. Maintenance parameters of 

Equivalent Operating Hours (EOH) constraints and environmental parameters of 

allowable emission (NOx, CO and SO2) limits constraints were also included. The 

Extended Priority List and Particle Swarm Optimization (EPL-PSO) method was 

successfully implemented to solve the model. Four simulation tests were conducted 

to study and test the develop optimization software. Simulation results successfully 

demonstrated that multi-objectives total production cost (TPC) objective functions, 

the proposed EOH constraint, emissions model and constraints algorithm could be 

incorporated into the EPL-PSO method which provided optimum results, without 

violating any of the constraints as defined. A cost saving of 0.685% and 0.1157% 

could be obtained based on simulations conducted on actual plant condition and 

against benchmark problem respectively. The results of this work can be used for 

actual plant application and future development work for new gas turbine model or to 

include additional operational constraints. 
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ABSTRAK 

 Kos bahan api untuk kuasa penjanaan, kesediaan mesin untuk diguna dan 

undang-undang alam sekitar adalah merupakan faktor-faktor yang penting dalam 

kajian pengagihan beban optimum untuk kuasa penjanaan. Objektif kajian ini ialah 

mencipta model optimasi pelbagai objektif dan optimasi algorithm bagi pengagihan 

beban optimum untuk tarbin gas kitar terbuka. Ini bukan saja mengambil kira operasi 

parameter, tetapi juga untuk parameter penyelenggaraan dan alam sekitar yang belum 

pernah dikaji sebelum ini. Parameter prestasi formula untuk tarbin gas yang 

berdasarkan kepada ASME PTC 22-1985 telah dihasilkan serta disahkan berbanding 

dengan sistem prestasi pemantauan (PMS9000) dan laporan ujian prestasi dari stesen. 

Model tarbin gas dan penghasilan ezkos telah dihasilkan serta dikenalpasti secara 

matematik ke dalam fungsi optimasi pelbagai objektif. Parameter penyelenggaraan 

Equivalent Operating Hours (EOH) dan parameter alam sekitar bagi had limit 

pembebasan NOx, CO dan SO2 yang dibenarkan juga diambil kira dalam kajian 

tersebut. Gabungan kedua-dua kaedah optimasi Extended Priority List dan Particle 

Swarm Optimization (EPL-PSO) telah digunakan dengan berjaya untuk 

menyelesaikan model dalam kajian ini. Sebanyak empat simulasi telah dilaksanakan 

untuk mangaji dan menguji optimasi perisian yang dicipta. Hasil simulasi dalan 

laporan ini telah berjaya menunjukan bahawa fungsi Kos Jumlah Pengeluaran (TPC) 

optimasi pelbagai objektif, EOH constraint, ekzos gas model dan constraint lain 

telah berfungsi dengan baik bersamaan kaedah optimasi EPL-PSO. Keputusan 

simulasi juga telah berjaya menunjukkan bahawa keputusan optima dapat dicapai 

tanpa melampaui sebarang constraints. Penjimatan kos sebanyak 0.685% dan 

0.1157% telah didapati jika keputusan simulasi dibandingkan dengan data dari stesen 

dan masalah benchmark dari kajian kesusteraan. Hasil usaha kerja ini boleh 

digunakan untuk applikasi sebenar oleh stesen janakuasa dan kajian masa depan bagi 

tarbin gas model yang baru, termasuk penglibatan constraints yang baru.
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CHAPTER 1 

INTRODUCTION

1.1 Introduction

The supply of natural energy resources such as natural gas, diesel and coal is 

decreasing year by year. Malaysia’s petroleum resources can only meet the national 

requirement for another 20 to 30 years (Bernama, 1998). Unless there is an 

alternative energy source which is cheaper, cost based on fossils fuel would become 

an even more important consideration. From statistics provided by Department of 

Electricity and Gas Supply Malaysia, the generation plants in Malaysia mainly 

63.4% consist of combined cycle blocks with gas turbine. Approximately 75% of 

energy generated in the country uses natural gas as fuel, making it the most important 

fuel in electricity production.

The power generation fuel cost is therefore has become a very sensitive and 

important parameter to the power generation plant as they cannot effort to waste or 

inefficiently utilize any energy resources. With reference to Ng (2001), 1% drop of 

the gas turbine thermal efficiency would lead to 0.065sen/kwh increase of power 

generation fuel cost (on the basis of the gas turbine running at 30% thermal 

efficiency). There is therefore a need to ensure the gas turbine always operate at its 

optimal performance. 

On the other hand, the contribution of the gas turbine to environmental 

pollution raises questions concerning environmental protection and methods of 
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eliminating or reducing pollution either by design or by operational strategies. 

Pollution affects not only humans, but also other life-forms (such as animals, birds, 

fish, and plants). It also causes damage to materials, reducing visibility, as well as 

causing global warming. These effects may be interpreted as costs because it affects 

life in one way or another. The damage caused by a pollutant depends on its type, 

meteorological conditions and on our exposure to it. This suggests that each pollutant 

should be treated on its own merit in assigning cost values (usually referred to as 

valuing environmental externalities). This represents the potential harm or damage 

created. The main subtances of the emmisions are Nitrogen Monoxide (NOx), 

Sulfida Dioxide (SO2) and Carbon Monoxide (CO). Environmental rules and 

regulations for power generation industries has been implemented extensively and 

has become an important considerations and even as a regulation. Such regulation are 

being implemented in developing countries and even in Malaysia that is working 

towards global environment protection and perservation. 

Gas turbine or other electric power plants are currently operating on the 

traditional basis of least fuel cost strategies (economic dispatch or optimal power 

flow) without considering the pollutants produced. In order to consider the pollution 

in the cost function, it is necessary to know the types of pollution produced from 

power plants, its effects and also requirements of the relevant laws. One of the 

method to reduce emissions is to dispatch the power generation to minimize 

emissions or as a supplement to the usual cost objective of economic dispatch. This 

method requires only minor modification of dispatching programmes to include 

emissions. Emission dispatching is an attractive short-term alternative in which the 

primary objective is to minimize the overall emissions by loading the cleaner 

generating units as much as possible while forcing those with higher emission rates 

to generate less.

Maintenance parameter such as Equivalent Operating Hours (EOH) are also 

not currently included to the load dispatch optimization to avoid two or more 

machines being sent for maintenance at the same time. Insufficient capacity to 

deliver power as demanded might happen, if wrong decision had been made in 

manual scheduling. 
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Industrial gas turbine in most plants do not always operate at their optimum 

operating conditions to achieve the objectives of minimum cost and minimum 

emissions, since dependent variables condition like atmospheric pressure, 

temperature of working fluid, production targets, equipment efficiency, etc. are 

always fluctuating. Besides, the gas turbine performance degradation may lead to 

changes of optimal operating points. From time to time, engineers are faced with 

problem of determining the optimum operating regimes or ways to run a particular 

machine quickly and accurately in order to obtain maximum benefit from the 

machine, at all times and under every set of circumstances. It can be very complex 

and time consuming to generate an accurate mathematical model that represent the 

machine which optimizes the objective function using suitable optimization 

techniques.

The primary objective of power dispatch optimization in the past has been 

concentrated on the minimization of generation cost in meeting the demand on power 

system – economic dispatch. Few proven mathematical optimization method such as, 

Extensive Enumeration, Dynamic Programming and Lagrange Relaxation had been 

used widely in solving such economic dispatch problem. However, the first two 

methods only work efficiently with small and moderate size system, while Lagrange 

method suffers from convergence problem, and always trap into a local optimum. 

Several artificial intelligence (AI) method also had been carried out to solve such 

optimization problem. Although AI method such as evolutionary computation 

techniques and genetic algorithm can provide a near-global solution but it takes a 

very long computation time. 

Research work that involves economic load dispatch optimization which 

includes environmental impact of power generation are very limited. One of the 

approaches to reduce the emission from thermal power plants is the minimum 

emission dispatch based on the efficient weight estimation technique as described in 

El-Keib et al. (1994) and Ramnathan (1994).  

This research work therefore attempted to solve the above problems of 

production scheduling which relates to the determination of the generating units to be 

service and to meet system demand, while satisfy all the operational and maintenance 
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constraints with minimum cost and minimum emissions. This optimization problem 

is also commonly known as an economic environmental unit commitment 

optimization. 

1.2 Problem Statement

A direct inference from the previous work reported in the literature review 

(Chapter 2) showed several evident shortcomings, which are summarized as follows: 

a. Maintenance parameter such as Equivalent Operating Hours (EOH) 

is not included to the load dispatch optimization in preventing two 

or more machines being sent for maintenance at a time. Insufficient 

capacity to deliver power as demand might happen if incorrect 

decision had been made in manual scheduling. 

b. Environmental parameters is not included as part of the objective 

functions in current load dispatch optimization. No load dispatching 

guidelines at present in meeting environmental regulations (if 

implemented) in Malaysia 

1.3 Objective and Scope

The objectives of this work were: 

a. to develop a model for optimizing cost-effective distribution of load 

demand across units of open cycle gas turbine, incorporating machine 

operating conditions, maintenance and environmental parameters.  

b. to develop a software to validate the developed model and optimization 

method 
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The model described in this project aims to provide a flexible framework to 

evaluate various operational planning options for emission compliance. It can be 

used to determine the optimum unit commitment and loading levels of each affected 

unit so as to meet the emission targets. Moreover, it performs multi-objective 

dispatch considering both the cost and emissions. 

This current work was confined to offline optimization. The developed 

software could honour be upgradeable or scalable for open loop real-time 

optimization or closed loop real time optimization. No experimental work was done 

in this work. This means that all experimental data employed for model validation 

and optimization studies in Chapter 6 and 8, were obtained from existing plant 

performance monitoring system.  

1.4 Methodology

This project was undertaken with an industrial partner TNB Connaught 

Bridge Power Station, where four of their open cycle ABB 13E gas turbines were 

studied in this research work. Gas turbine performance parameters in quantify gas 

turbine performance and its computation technique in accordance to ASME standard 

was identified before developing the gas turbine efficiency and emissions model. The 

model that provided a complete representation of the machine behavior could be 

obtained within the parameters of interest based on a combination of physical 

principles (thermodynamic) and performance curves. The machine model was then 

validated against the data acquired from the plant via the installed performance 

monitoring system (PMS9000), and Gas Turbine Manufacturer’s Performance Test 

Reports.

The cost-based objective functions which represents profit, operating cost 

energy, yield, etc was developed such that optimization studies could be formulated 

and make recommendations on operation and maintenance strategy that lead to 

optimal performance, with considering machine operating conditions, maintenance 
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and environmental parameters. Suitable optimization algorithm was identified to 

determine the optimal distribution of load demand across the various operating units. 

Software coding of above subroutines (both model and optimization) was 

then undertaken for further studies and validation. Four case studies were carried out 

to test the program against the benchmark problem and actual field measurement 

data. Finally, the simulation results were then studied and reported. 

1.5 Significance of Research Work

The result of this work will be an essential tool to the plant operation in order 

to make a plant operate more effectively and competitively. With the development of 

low price and high performance computer, such software can easily be implemented 

and routinely applied to improve day-by-day performance of most of the plant 

operation, typically petrochemical, power generation and water treatment plant with 

offline simulation and optimization. 

It has often been noted that processing facilities are data rich but knowledge 

poor. The plant DCS system generates an enormous amount of information about the 

process. This offers scope for such software to be utilized. It is anticipated that the 

simulation and optimization software can be upgraded to on-line or real-time 

optimization which leverages the wealth of the information into a range of other 

benefits. It could convert pure data to information, to knowledge and ultimately, to 

wisdom, providing the engineers with access to an off-line model which reflects the 

current plant condition at any point in time and equipment performance indicators. 

Recent advances in development of new technology of Advanced Process 

Control (APC) such as model-based predictive control, shows the potential of the 

need of simulation and optimization software. In future, the software will incorporate 

with APC and be implemented to a much greater extent than real-time optimization. 
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1.6 Thesis Outline

The main body of this thesis begins with a literature study in Chapter 2 that 

reviews the gas turbine performance calculations and its maintenance practices in 

general, optimization theory and application, previous work on economic load 

dispatch problem and selective optimization techniques namely particle swarm 

optimization. Thereafter, in Chapter 3, the overall methodology of this research is 

presented.

The formulation of objective function is the one of the crucial steps in the 

application of optimization to a practical problem and this is illustrated in Chapter 4. 

The incorporation of both environmental and maintenance parameters into the 

general objective function is discussed in details. With the developed objective 

function in Chapter 4, the gas turbine performance and emission model are 

formulated in Chapter 5. Subsequently, in Chapter 6, the model is validated against 

actual plant data from the performance monitoring system PMS9000 and machine 

performance test report.  

In Chapter 7, the advanced and recent artificial intelligence technique, 

namely particle swarm optimization (PSO) is enhanced and tested as the optimization 

techniques in solving the optimization problem as presented in the previous chapters. 

The reasons of implementing particle swarm optimization to this problem and 

comparisons among other techniques are reviewed.  

An optimization for load dispatch is of little value unless it is demonstrated 

that it can give accurate results for known cases. Therefore, in Chapter 8, simulation 

case studies are made. First, based on the benchmark problem from the literature, the 

behaviour of the optimization result is validated. Thereafter it is shown that a close 

agreement was obtained and with the best computation time. After the test with 

benchmark problem was completed, various studies (by removing some aspects) are 

carried out with actual plant data for further validation. Finally, the full procedure 

was implemented on the actual plant model and the resulting optimum solution is 

found to be superior to the existing solutions used by the plant. After this, general 



8

conclusions of the work are drawn in Chapter 9, where also some possible ideas for 

future work are presented. 
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