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ABSTRACT 

 

 

 

 

The objectives of this thesis are to propose a new linear uncertain model with 

bounded uncertainties for an Unmanned Aerial Vehicle (UAV) helicopter system and 

to propose two new advanced nonlinear kernel controls for the UAV helicopter flight 

control system using the newly obtained linear uncertain model. The two new control 

algorithms are based on the Model Following Variable Structure Control (MFVSC) 

and the deterministic control. They are able to cope with system parameters 

variations due to the different flight conditions. The first proposed controller is the 

deterministic control approach augmented MFVSC. The second proposed controller 

is the deterministic control approach augmented MFVSC with nonlinear state 

feedback control. Two theorems have been derived based on the two newly 

developed control algorithms. The two theorems are stable in terms of the second 

method of Lyapunov provided that the assumptions for the proposed theorems are 

satisfied. Extensive simulations with different flight conditions and various controller 

design parameters have been carried out in this study to evaluate the performance 

and the robustness of the two new control techniques. The simulation results show 

that the two proposed control algorithms are capable of rendering the system state to 

track the desired state motion. 
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ABSTRAK 

 

 

 

 

Tesis ini bertujuan untuk mencadangkan satu model linear baru yang tidak 

menentu bagi sistem helikopter Kenderaan Udara Tanpa Pemandu (UAV) dan 

mencadangkan dua kawalan kernel baru tak linear termaju bagi UAV helikopter 

tersebut dengan menggunakan model yang baru diperolehi. Kedua-dua algoritma 

bagi kawalan baru itu adalah berdasarkan kepada teori kawalan ikutan model struktur 

boleh ubah (MFVSC) dan teori kawalan berketentuan. Algoritma kawalan baru 

tersebut  mampu untuk menampung variasi parameter sistem yang disebabkan oleh 

keadaan penerbangan yang berbeza. Pengawal pertama yang dicadangkan ialah 

kawalan pendekatan berketentuan kukuhan MFVSC. Pengawal kedua pula ialah 

kawalan pendekatan berketentuan kukuhan MFVSC dengan tambahan kawalan suap 

balik tak linear. Dua teorem diterbitkan berdasarkan dua algoritma kawalan yang 

baru dikemukakan. Kedua-dua teorem tersebut adalah stabil berdasarkan kaedah 

kedua Lyapunov dengan syarat andaian bagi teorem yang dicadangkan itu dipenuhi. 

Simulasi yang menyeluruh telah dibuat dengan keadaan penerbangan yang berbeza 

dan pelbagai parameter rekabentuk kawalan juga telah dilakukan dalam pengajian ini 

untuk menilai prestasi dan kemantapan kedua-dua teknik kawalan baru ini. 

Keputusan simulasi menunjukkan bahawa kedua-dua algoritma kawalan yang 

dicadangkan itu mampu untuk mengawal kedudukan sistem helikopter tersebut untuk 

menjejaki pergerakan yang dikehendaki dengan memuaskan. 
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CHAPTER 1 

 

 

 

 

1 INTRODUCTION 

 

 

 

 

1.1 Unmanned Aerial Vehicle Helicopter System 

 

Helicopters have a number of unique capabilities that other vehicles do not 

have, such as the ability to hover over one point on the ground, spin on its axis, to fly 

backwards and sideways, performing a pirouette and others. Similarly, an 

autonomous model helicopter potentially can accomplish the same flying capabilities 

to perform tasks which would not be possible with other vehicles. Thus, one can use 

the autonomous helicopter to survey, inspect or monitor difficult or hazardous areas, 

to perform the search-and-rescue operations and many others.  

 

The technology of model helicopters has evolved significantly. Besides being 

a sophisticated piece of equipment for the hobbyists, it has become popular among 

the academic research communities as well, especially for the advanced nonlinear 

control theory and aerial robotics groups. The autonomous model helicopter is a kind 

of Unmanned Aerial Vehicle (UAV) system besides the usual fixed-wing aircraft 

system. In this thesis, it is also known as an UAV helicopter system for short.  
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1.2 Research on UAV Helicopter System: An Overview 

 

Over the years, a lot of researchers have shown interests in model helicopter 

research, and they have had various degrees of successes (Cai et al., 2005; Bortoff, 

1999, Zhu and Nieuwstadt, 1996).  

 

The BErkeley AeRobot (BEAR) project at UC Berkeley is a collective, 

interdisciplinary research effort that encompasses the disciplines of hybrid systems 

theory, navigation, control, computer vision, communication, and multi-agent 

coordination, since 1996. Currently, the team operates six fully instrumented 

helicopters. The research group has demonstrated a number of milestone 

achievements in the development of advanced autonomy for UAVs and UAV/UGV 

(Unmanned Ground Vehicle) platforms, such as the obstacle avoidance in urban 

environment, autonomous exploration in unknown urban environments (Shim et al., 

2005), perch-and-move of fully autonomous mission from take-off to land without 

any human assist, collision avoidance and others. 

 

During the 1996 International Aerial Robotics Competition, MIT, Boston 

University and Draper Lab team was successful in building an autonomous model 

helicopter designed to hover, fly around, and recognize randomly placed drums 

(Johnson, 1996). The annual Aerial Robotics Competition, sponsored by the AUVS, 

has also generated a great deal of interest in autonomous robotics from many 

university teams. Thirteen out of the twenty officially-registered university teams 

from the United States and Canada has attended the past competition held on July 

21
st
 2005 at the U.S. Army Soldier Battle Lab’s Mckenna Urban Operations Site at 

Georgia. However, the competition has often depended more on the image 

recognition and sensing than on the helicopter control algorithms.  

 

Sugeno (1994) has developed a control system based on the fuzzy control 

theory and had a considerable amount of success in flying a model helicopter for 

commercial purposes. The integrated control system can manage the low level basic 
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flight modes to high level supervisory control and capable of taking a human voice 

as its input. 

 

Other than the fuzzy logic control system, Russell Enns and Jennie Si (2000), 

from Arizona State University introduced a new neural learning control mechanism 

for helicopter flight control design, the neural dynamic programming (NDP). Their 

designs were tested using FLYRT, a sophisticated industry-scale nonlinear validated 

model of the Apache helicopter.  

 

A group of researchers at Caltech performed an experiment consists of an 

electric model helicopter interfaced to and controlled by a personal computer (Zhu 

and Nieuwstadt, 1996). A state-space model for the angular position is identified 

from experimental data near hover, using the prediction error method. A Linear 

Quadratic Regulator (LQR) controller with integrators for set point tracking is 

designed for the system. The primary objective for the project is not to get a 

completely autonomous aerial vehicle but rather study the control issues and acts a 

testbed for advanced linear and nonlinear control methodologies. 

 

At the University of Toronto, a Radio Control (RC) helicopter system is 

being built as part of the research into applied nonlinear control and visual servoing 

(Bortoff, 1999). The current research is working on the dynamic models and 

identification, however, the final goal towards stabilization of the helicopter in hover 

to autonomous execution of high-performance maneuvers such as inverted flight. 

 

Helble and Cameron (2007) have commissioned the Oxford Aerial Tracking 

System (OATS), which consists of a commercial airframe and low-level flight 

controller, and assists with a camera on two-axis gimbal that enabling the system to 

visually track the ground targets. The system uses a commercial Automatic Flight 

Control System (AFCS) to achieve a steady flight and focuses the research on vision 

processing and high-level mission objectives. 
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Among the research communities as mentioned above, some are focusing on 

the control theory of the UAV helicopter system, some are focusing on developing 

an accurate model for the control purposes; while others are providing more 

autonomous capability for specific applications with additional of specific equipment 

or sensors. 

 

A lot of the research focuses on adding extra autonomy to the helicopter, such 

as incorporating the imaging or visual sensing to perform a navigation task, 

especially in the aerial robotic fields (Tisse et al., 2007; Hamel and Mahony, 2007; 

Courbon et al., 2010). However, not many are focusing in improving the 

maneuvering ability of the helicopter. Furthermore, most of the controllers are still 

based on the conventional linear control laws. Although there are some focusing on 

Artificial Intelligence (AI) techniques, such as the Fuzzy Logic or Neural Network 

controllers (Enns and Si, 2000), only a few are using more advanced nonlinear 

controllers, such as the multivariable adaptive control design (Krupadanam et al., 

2002), the LQR design (Zhu and Nieuwstadt, 1996), the H-infinity control (Cai et al., 

2011) and the Composite Nonlinear Control (Peng et al., 2009). 

 

This thesis is not focusing on providing extra autonomy to an existing system 

but rather on developing two advanced nonlinear control techniques for the UAV 

helicopter system. The new control techniques improve the system maneuvering 

ability and ensure that the UAV helicopter system closely follows the desired flight 

trajectory.   

 

 

1.3 Problem Statement 

 

A model helicopter is a dynamically fast and unstable system that requires a 

good autonomous flight control system in order to perform the prescribed tasks. The 

system parameters vary when the helicopter is hovering and when it is flying. Hence, 

most researchers design two or more controllers that switch back and forth to cover 
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the different flight conditions. Cai et al. (2011) adopt a simple gain scheduling 

scheme to realize the full envelope flight. Besides, a linear interpolation is used to 

calculate the corresponding feedback gains for any intermediate status between any 

two adjacent flight conditions. 

 

For this study, the UAV helicopter system under different flight conditions is 

described by a newly proposed linear uncertain model with bounded uncertainties. 

By combining the corresponding linearized models of different flight conditions 

together gives rise to a linear uncertain model with bounded uncertainties where a 

single robust nonlinear controller will be developed, proposed. In this thesis, two 

new nonlinear control algorithms are developed based on the variable structure 

control (VSC) theory. 

 

 

1.4 Research Objectives 

 

The objectives of the research are as follows: 

I. To propose and formulate a linear uncertain model with bounded 

uncertainties for an UAV helicopter system from two linearized models 

corresponding to two different flight conditions; the hovering condition 

and the condition with forward flight speed of 6m/s.  

II. To propose a new advanced nonlinear control technique for the kernel 

control of the UAV helicopter system based on the newly proposed linear 

uncertain model with bounded uncertainties. 

III. To propose a second advanced nonlinear control technique for the kernel 

control of the UAV helicopter system with the consideration of the 

system input saturation.  

IV. To simulate the UAV helicopter system using a few different flight 

conditions with the corresponding linearized models to evaluate the 

performance of the two newly proposed controllers. 
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1.5 Research Contributions 

 

In this research, a new linear uncertain model with bounded uncertainties of 

an UAV helicopter system is proposed and derived. The new linear uncertain model 

is obtained from two linearized models identified using two different flight 

conditions; the hovering condition and a forward flight condition with a flight speed 

of 6m/s.  

 

Two new control techniques/algorithms for the kernel control of the UAV 

helicopter system are proposed. The two newly proposed control algorithms are 

shown capable of controlling the UAV helicopter system under different flight 

conditions. The derivation of the two new control algorithms is detailed in the study. 

Besides, two theorems associated with each new control algorithm are proposed and 

the proof of stability using the Second method of Lyapunov is given.  

 

Extensive simulations with different flight conditions are carried out with 

Simulink library of Matlab program. Linearized model corresponds to the flight 

condition will be used in the simulations to evaluate the controller performance 

under different flight conditions. Besides, various controller design parameters are 

also tested in the simulations. Performance analysis and conclusions of the 

simulation results are given. 

 

 

1.6 Structure and Layout of the Thesis 

 

Chapter 2 discusses the modeling of the UAV helicopter system. An 

uncertain model with bounded uncertainties is proposed to represent the nonlinear 

UAV helicopter system. The derivation of the uncertain model with bounded 

uncertainties is shown. It is derived from two linearized models with different flight 

conditions, namely the hovering and the slow forward flight conditions.  
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Chapter 3 discusses the design of the autonomous flight control system in 

detail. The flight control system is a hierarchical design consists of three control 

layers. This chapter also discusses the design of a reduced-order observer that is used 

to estimate the un-measurable state variables of the UAV helicopter system to enable 

a full state feedback controller design. 

 

Chapter 4 gives a general review of the variable structure control. Some of 

the techniques revised in this chapter are being used for the synthesis of the new 

controllers. The chapter also discusses the switching surface design using the 

quadratic minimization technique, the equivalent control concept, the invariant 

property of the variable structure controller during the sliding motion, the regular 

form design, and the various discontinuous control design approaches. The chattering 

problem associated with the discontinuous control of the sliding mode control and 

techniques to reduce and eliminate it are also briefly discussed. 

 

Chapter 5 presents the design of the unit vector approach model following 

sliding mode control (MFSMC). At the end of the chapter, a unit vector approach 

MFSMC controller is synthesized for the UAV helicopter system and it is being used 

throughout the thesis as a comparison controller to the two new proposed control 

techniques. 

 

Chapter 6 presents a new control technique based on the variable structure 

control for the kernel control of the UAV helicopter system in detail. The system 

descriptions and assumptions of the new control algorithm are given. The new 

control algorithm uses the deterministic control approach for the design of the 

discontinuous control. Thus, a pseudo sliding mode is achieved instead of the ideal 

sliding mode. Auxiliary integrators of the controlled output states of the system are 

being augmented to the original system in the new control algorithm to reduce the 

steady state error. The augmented system also enables extra design flexibility to 

distribute the feedback control from the errors of the integrators of the controlled 

output states and the system states. A theorem and the mathematical proof of stability 

based on the second method of Lyapunov are provided. A kernel controller for the 
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UAV helicopter system based on the newly proposed control algorithm is developed 

at the end of the chapter and it is being used in the simulations in Chapter 8.  

 

Chapter 7 presents another new control technique based on the technique 

described in the previous Chapter 6 by introducing an additional nonlinear state 

feedback control to the control law. System descriptions and assumptions of the new 

control algorithm are given. A theorem and mathematical proof of stability based on 

the second method of Lyapunov are provided as well. The nonlinear state feedback 

control depends on the error feedback from the integrators of the controlled output 

states of the system. The additional nonlinear state feedback control improves the 

response of the reaching mode of a variable structure controller. At the end of the 

chapter, a kernel controller for the UAV helicopter system based on the new control 

algorithm is developed and it is being used in the simulations in Chapter 8. 

 

Chapter 8 shows the results of the extensive simulations of the three 

controllers developed on the previous chapters under different controller design 

parameter settings, system parameters and flight conditions. The three controllers are 

the unit-vector approach model-reference sliding mode control, the deterministic 

control approach augmented model-reference variable structure control, one without 

and another with the addition of the nonlinear state feedback control. The simulations 

are carried out extensively. Analysis, discussion and conclusions are also given based 

on the simulation results obtained. 

 

Lastly, conclusion and suggestions for future research are given in Chapter 9. 
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