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ABSTRACT 

The appearance of a face will vary intensely when the illumination changes. The 

changes in the illumination conditions during image capturing make it difficult to obtain 

accurate face verification. Changes in illuminations results in two main problems, which 

are reflections and shadows. One of the most important aspects influencing the 

verification accuracy is illumination normalization. This thesis explored the use of fusion 

normalization methods to improve the performance of face verification under 

illumination variation. It has been shown that a single normalization technique is 

inadequate to solve the problems of illumination. In this study, several normalization 

methods such as Discrete Wavelet Transform, Discrete Cosine Transform, and Classified 

Appearance based Quotient Image were investigated for illumination normalization. A 

verification process was performed for each normalization technique and the outputs of 

the process, which were the likeness scores would be fused together to improve the final 

output. In the verification step, Principal Component Analysis was used to reduce the 

vector size of image and Linear Discriminant Analysis was used to extract discriminative 

information. In addition, un-trained fusion methods such as Max-Rule, Min-Rule, and 

Ave-Rule were used to get a unified decision with a reduced error rate. Besides that, 

fusion normalization methods were also used to solve all problems caused by 

illumination. The experiments were done on XM2VTS and Yale database B. The results 

of this research showed that the efficiency of Ave-Rule technique is better than other 

methods for XM2VTS, and the best fusion method for Yale database B is Min-Rule. To 

evaluate the techniques, the results have been compared with the outcomes of the fusion 

of each pair of the normalization methods as well as the results obtained from using 

other techniques. The comparison showed that the fusion of the three normalization 

techniques offered a better performance as compared to the fusion of two illumination 

normalization methods. Furthermore, the performance of face verification based on the 

fusion of the normalization methods was better in comparison to a single normalization 

technique. 
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ABSTRAK 

Keketaraan penampilan wajah akan berbeza apabila wujudnya perubahan 

pencahayaan. Perubahan pencahayaan dalam merakam imej menyukarkan proses 

pengesahan muka dengan ketepatan yang baik. Perubahan pencahayaan akan 

menyebabkan dua masalah utama iaitu pantulan dan bayang-bayang. Normalisasi 

pengcahayaan adalah antara aspek penting yang mempengaruhi kualiti pengesahan. 

Tesis ini meneroka penggunaan kaedah gabungan normalisasi untuk meningkatkan 

kualiti pengesahan muka. Kaedah normalisasi tunggal tidak memadai dalam 

memperbaiki masalah ini secara amnya. Dalam kajian ini, beberapa kaedah 

normalisasi seperti Pengubah Wavelet Diskret, Pengubah Kosinus Diskret, dan 

Klasifikasi Rupa – berdasarkan Kadar Imej dianalisis dan digunakan sebagai kaedah 

normalisasi. Proses pengesahan dijalankan untuk setiap kaedah normalisasi dan 

proses outputnya adalah skor bandingan yang digabung bersama untuk memperbaiki 

keseluruhan output. Dalam langkah pengesahan, digunak Analisis Komponen Utama 

an untuk mengurangkan dimensi vektor maklumat imej, dan Analisis Diskriminasi 

Linear digunakan untuk mengoptimumkan maklumat diskriminatif. Di samping itu, 

kaedah gabungan tidak-terlatih seperti Peraturan-Maksima, Peraturan-Minima, dan 

Peraturan-Purata digunakan untuk mendapatkan keputusan bersatu dengan ralat 

dikurangkan. Selain itu, kaedah gabungan normalisasi juga digunakan untuk 

menyelesaikan masalah pengcahayaan. Eksperimen telah dijalankan pada XM2VTS 

dan Pangkalan Data Yale B. Keputusan menunjukkan kaedah Peraturan-Purata 

adalah terbaik berbanding kaedah lain untuk XM2VTS, dan gabungan Peraturan-

Minima adalah terbaik untuk Pangkalan Data Yale B. Keputusan daripada kaedah 

yang dicadangkan akan dibandingkan dengan setiap kaedah gabungan normalisasi 

dan beberapa kaedah lain. Kualiti pengesahan dengan gabungan tiga kaedah 

normalisasi adalah lebih baik berbanding gabungan dua kaedah normalisasi. Di 

samping itu, pengesahan muka dengan kaedah gabungan normalisasi juga adalah 

lebih baik berbanding kaedah normalisasi tunggal.  
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CHAPTER 1 

INTRODUCTION 

In this chapter, an introduction to the current study is presented.  First, the 

background of the problem to be solved is explained. After that, the statement of 

problem, objectives, and scope of study are respectively illustrated.   

1.1 Background of the Problem 

Face recognition procedure is one of the most prosperous applications of 

image processing in which people execute adeptly and routinely in their daily lives. 

Face recognition and face verification are two categories of a face identification 

system that have acquired noticeable attention from forty years ago. Because of their 

wide usages in law enforcement, commerce, security, multimedia management and 

other areas, they have consequentially attracted various areas of research, such as 

pattern recognition, biometrics, computer vision, machine learning, and computer 

graphics. In addition, wide accessibility of powerful and low-cost desktop and 

embedded computing systems have produced a huge interest in automatic images 

processing in a number of these applications.    

A face-identification system automatically identifies faces present in images 

or videos. Face identification and face verification are two modes of this system. 

Face identification (or recognition) is a one-to-many comparing processes, which 

compares a claimed face image , called probe image, against all the template images 

in a database to specify the identity of the query face. "Face verification is used in 

order to determine whether an identity claim is false or true. Actually, face 
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verification is a one-to-one matching procedure which compares a probe image with 

a stored template face image whose identity is being claimed".    

 In many of the face verifications applications (Chellappa et al., 1995), the 

performance and accuracy in controlled environments have now reached a 

satisfactory level; however, there are still many challenges presented by uncontrolled 

environments. Some of these challenges are demonstrated by the problems caused by 

variations in face pose, illumination, and expression. In particular, the effect of 

variation in the illumination conditions which results in dramatic changes in the face 

appearance, is one of those challenging problems that a practical face verification 

faces (Zhao et al., 2003) 

Several major problems that are still being addressed by researchers are 

explained below:   

1. Facial deformation: Changing the mood, stress, and expressions 

makes human faces non-rigid and endures deformations. The 

underlying muscle and tissue structure guides these deformations. 

They are not arbitrary and it is very difficult to model or analyze these 

fluctuations from normal images.  

 

2. Aging: Appearance of human faces varies due to aging. Faces of 

various persons age differently depending on habits, stress, health, 

race, and climate that make the process of verification under aging 

very difficult. 

 

3. Cosmetic changes: In additional natural variations, makeup, surgery, 

growing or shaving facial hair can deliberately change the face 

appearance. Sometimes human face verification or recognition across 

this problem is difficult. 

   

4. Occlusion: When another object occludes a part of human face, 

occlusion will happen. 
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5. Pose variation: In this problem, the similar face seems variously 

when the viewing condition is changed. Human face recognition and 

verification under changing pose is very difficult. 

 

6. Illumination variation: In this problem, alike face appears variously 

due to vary lighting condition. More specifically, the variations by 

illumination could be bigger than the variation among persons. The 

consequences of prior researches show that important illumination 

changes cause dramatic variations in the production coefficient 

vectors, and hence can seriously decrease the performance of face 

identification. 

 

Recently, many researchers have focused on robust face recognition and 

verification under pose, expression and illumination variations. The appearance of a 

face will extremely change when the lighting condition varies. In unnatural 

illumination conditions of image capturing, the face verification process is very hard. 

Illumination problem appears where the similar face occurs variously caused by 

illumination variation. Changes in lighting conditions make face authentication an 

even more challenging and hard process. Moreover, variation in appearance due to 

change in the lighting conditions significantly influence the face identification 

performance. "In order to illustrate a variation of facial appearances produced by 

illumination, the appearances are sorted into two principal categories: reflections, 

shadows. Diffuse reflection and specular reflection are two parts of reflection, which 

have quite different characters and also cast shadow and attached shadow, are two 

subparts of shadow category" (Nishiyama and Yamaguchi, 2006). 

Image capture, face detection and location, face alignment and normalization, 

feature extraction, face matching and score generation, and decision are six modules 

of a complete face verification system (Short, 2006).  

 

1. Image capture: A claimed image is captured with a digital camera. 

This image is called probe image. The substance of the probe image 
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is decided by the position of the person relative to the camera, the 

expression, poses of the claimant and the changing lighting 

conditions of the image capture. 

 

2. Face detection and Location:  A probe image contains the face of a 

person and a potentially cluttered background scene. In the detection 

step, the position of the face in the image is detected.  

 

3. Face alignment and normalization: In this step, the position and 

size of each detected face are appraised. A normalization procedure 

includes Geometric and Photometric parts. Since the size of facial 

image within the input image varies with the distance between person 

and camera, geometrical normalization is needed. Thus, the face 

should be cropped from the image and geometrically changed to a 

pre-determined fixed size. The photometric compensation is used to 

eliminate unwanted lighting effects from the probe image. In some 

cases, the photometrical normalization process can be done before, or 

before and after the geometric normalization procedure, also it can 

occur in the past, or before and after the detection process.  

 

4. Feature extraction: The efficient information, which is applicable 

for identifying faces of different persons, is supplied in this step. 

 

5. Face matching and score generation: The feature vectors of 

compensated image are then compared with one or more claimed 

images, which are in a gallery. This comparison process generates a 

score, showing how well the probe image matches the gallery.  

 

6. Decision: In order to determine the probe is accepted or rejected, the 

score is compared with a threshold. 
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1.2 Statement of the Problem 

Several different studies on face verification under illumination variation 

tried to define proper platforms for compensation of influence for varying lighting on 

face verification and recognition. It has been shown experimentally and theoretically 

that differences in appearance caused by illumination are bigger than differences 

between individuals. Various approaches have been suggested to overcome 

illumination problem but in the majority of them, only controlled condition was 

considered. However, it is important to consider uncontrolled conditions to emulate 

the actual applications of face verifications or identification such as security.    

Various facial images of the same people may be changed due to alterations 

in photometric and geometric parameters. Geometric characteristics denote the 

geometry of the camera with respect to the face being captured containing distance 

and orientation and pose. Photometric parameters notify the illumination conditions 

such as number, size, intensity, placement, and color of light sources. It is clear that 

varying lighting conditions can create too dark or too light images, which can 

produce some problems in recognition or verification process or reduce the 

performance of them. 

 Researchers have suggested several techniques to create illumination 

invariant face images. These methods can be divided into 3 categories. In the first 

category, which is named preprocessing approach, the illumination is compensated 

by applying pre-processing methods on the pixel values utilizing information from 

the local area around that pixel. "Local Binary Patterns" (Heusch et al., 2006), 

"Histogram Equalization"(Shan et al., 2003) , and "Wavelet Transform" (Du and 

Ward, 2005) are three samples of this method. The simplicity and being in a direct 

manner are two properties of these methods. These approaches are unable to model 

the global illumination conditions. In invariant feature extraction methods, 

investigators try to extract facial features, which are changeless to illumination. Edge 

map and Gabor–like filters are two examples of this approach". (Adini et al., 

1997)."Third category is named physical face modeling. In this category, 

investigators appraise a global physical model of the illumination mechanism and its 

interaction with the facial surface". "Quotient Image"(Shashua and Riklin-Raviv, 
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2001), "Spherical Harmonics" (Basri and Jacobs, 2003), "3D morphable" (Blanz and 

Vetter, 1999), and "Discrete Cosine Transform" (Chen et al., 2006) are examples of 

this category. 

Nowadays, because of the effect of changing in the illumination conditions, 

which makes strong variations in the appearance of a face, illumination invariant face 

verification is described by various approaches (Zhao et al., 2003). To be more 

particular, the altering energy and direction distribution of the ambient illumination, 

together with the 3D structure of the human face, can cause major variations in the 

shading and shadows on the face. Such changes in the face appearance due to 

variation illumination can be much larger than the change due to personal identity.   

Most of the existing approaches attempt to normalize diffuse reflection in 

illumination variation. There are still many challenges in specular reflection, attached 

shadow and cast shadow. Diffuse reflection happens when the object scatters the 

incident. When the object clearly reflects incident light, specular reflection will 

appear. In the attached shadow, the object blocks the incident light. When the 

incident light is hindered by a different object, cast shadow appears (Nishiyama et 

al., 2008). Figure 1.1 shows various classification of facial appearance caused by 

illumination (Nishiyama et al., 2008). 

 

Figure 1.1 Classifying of facial appearance (Nishiyama et al., 2008). (a) "Diffuse 

reflection"; (b) "Specular reflection"; (c) "Attached shadow"; (d) "Cast shadow"     

"a. Diffuse reflection" "b. Specular reflection" 

"c. Attached shadow" "d. Cast shadow" 
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This research aims to provide a fusion approach to combine three 

illumination normalization methods together for increasing accuracy and 

performance of human face verification under illumination variations, including 

"diffuse reflections", "specular reflections", "attached shadow" and "cast shadows". 

Because of using three effective illumination normalization techniques and 

compensating all four mentioned problems produced by illumination, fusion of these 

methods is very impressive to improve accuracy and performance of face verification 

under illumination variation. The method of fusion is compared against existing 

methods of using single normalization techniques for face verifications under 

varying illuminations.   

1.3 Objectives of the Study 

1. To investigate state of the art in Illumination normalization 

approaches. 

 

2.  To develop a fusion illumination normalization method for face 

verification under illumination variations. 

 

3.   To evaluate the proposed technique with other current methods with 

respect to the related performance criteria. 

1.4 Scope of the Study 

In this study, only lighting variation is considered and other problems in 

human face verification are not regarded. The face images considered are in frontal 

position.  

For implementation of face verification under illumination variations, three 

processes were considered as important, which are: preprocessing normalization, 
physical face modeling, and photometric Normalization. 
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In this research, several preprocessing normalization methods such as 

Histogram Equalization (HE) (Shan et al., 2003) , Local Binary Patterns (LBP) 

(Adini et al., 1997; Heusch et al., 2006), and Discrete Wavelet Transforms (DWT) 

(Goh et al., 2009) were surveyed, and  Spherical Harmonics (SH) (Adini et al., 

1997),and Discrete Cosine Transform (DCT) (Chen et al., 2006), Quotient Image 

(QI) (Shashua and Riklin-Raviv, 2001), and "3D morphable" (Blanz and Vetter, 

1999) as physical face modeling methods were studied, and Homomorphic Filtering 

(HF) (Delac et al., 2006) ,and "Classified Appearance-based Quotient Image" 

(CAQI) (Nishiyama and Yamaguchi, 2006) as photometric normalization approaches 

were investigated. Finally, DCT, DWT, and CAQI were used to normalization 

process.     

Un-trained fusion methods such as Max-Rule, Min-Rule, and Ave-Rule were 

used in order to get a unified decision with a reduced error rate.  

The experiments were done on XM2VTS and Yale database B. 

1.5 Summary 

Over the last three decades, biometrics has been applied as an automated 

technique to identify individuals according to their behavioral or physical 

parameters. A biometric system is a pattern identification system. Various biometric 

properties such as DNA, sample of voice, and face are used in different systems. 

Face recognition and verification are categorized as natural uncomplicated biometric 

techniques. In face verification, the investigators determine whether an identity claim 

is true or false. In face recognition, in order to specify the identity of the query face, 

researchers compare a probe image against all template images in a database.   

In spite of numerous usages of face identification and the availability of 

feasible approaches after thirty-five years of research, several challenges such as 

occlusion, varying to pose, illumination variation, expression remain unsolved that 

researchers should address. One of the critical factors, which effects on face 
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identification and its performance is illumination variation. In this problem, similar 

face appears variously due to vary lighting condition.  

Nowadays, several approaches exist to overcome the illumination problem. 

Most of the existing approaches attempt to normalize "diffuse reflection" in 

illumination variation. There are still many challenges in "specular reflection", 

"attached shadow" and "cast shadow". This research attempts to supply fusion 

approach to combine three illumination normalization methods together for 

increasing performance in normalization of illumination variation.  

As mentioned in scope of the study, DWT and DCT and CAQI techniques 

were chosen to combine in order to cope with illumination variation in face 

verification. Moreover, XM2VTS and Yale database B were used for the experiment. 

In this study, in order to obtain better performance in face verification under 

illumination variation, un-trained fusion techniques that are Min-Rule, Max-rule, and 

Ave-rule were applied.     
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