
 

 

FUZZY NEURAL NETWORKS WITH GENETIC 

ALGORITHM-BASED LEARNING METHOD 

 

 

 

 

 

 

 

 

M. REZA MASHINCHI 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA  



 

 

 

FUZZY NEURAL NETWORKS WITH GENETIC ALGORITHM-BASED 

LEARNING METHOD 

 

 

 

 

 

 

 

 

M. REZA MASHINCHI 

 

 

 

 

 

 

 

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Doctor of Philosophy (Computer Science) 

 

 

 

 

 

 

Faculty of Computing  

Universiti Teknologi Malaysia 

 

 

MARCH 2013 



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my father, and family members 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

 

 

 

 

 

 

ACKNOWLEDGEMENT 

 

 

 

I am deeply grateful to my supervisor, Prof. Dr. Ali Selamat, for his detailed 

and constructive comments and for his understanding and important support 

throughout this work. Also, my sincere thanks are due to the official examiners 

Assoc. Prof. Dr. Muhammad Suzuri Hitam, and, Prof. Dr. Siti Mariyam Shamsuddin 

for their detailed review, constructive criticism and excellent advice during the 

preparation of this thesis. I would also like to thank my father and brother for their 

constructive academic sharing.    

 

 

 

 

 

 

 

 

 

 



v 

 

 

 

ABSTRACT 

 

 

 

This thesis is on the reasoning of artificial neural networks based on granules 

for both crisp and uncertain data. However, understanding the data in this way is 

difficult when the data is so complex. Reducing the complexity of the problems that 

these networks are attempting to learn as well as decreasing the cost of the learning 

processes are desired for a better prediction. A suitable prediction in artificial neural 

networks depends on an in-depth understanding of data and fine tracking of relations 

between data points. Inaccuracies of the prediction are caused by complexity of data 

set and the complexity is caused by uncertainty and quantity of data. Uncertainties 

can be represented in granules, and the reasoning based on granules is known as 

granular computing. This thesis proposed an improvement of granular neural 

networks to reach an outcome from uncertain and crisp data. Two methods based on 

genetic algorithms (GAs) are proposed. Firstly, GA-based fuzzy granular neural 

networks are improved by GA-based fuzzy artificial neural networks. They consist of 

two parts: granulation using fuzzy c-mean clustering (FCM), and reasoning by GA-

based fuzzy artificial neural networks. In order to extract granular rules, a 

granulation method is proposed. The method has three stages: construction of all 

possible granular rules, pruning the repetition, and crossing out granular rules. 

Secondly, the two-phase GA-based fuzzy artificial neural networks are improved by 

GA-based fuzzy artificial neural networks.  They are designed in two phases. In this 

case, the improvement is based on alpha cuts of fuzzy weight in the network 

connections. In the first phase, the optimal values of alpha cuts zero and one are 

obtained to define the place of a fuzzy weight for a network connection. Then, in the 

second phase, the optimal values of middle alpha cuts are obtained to define the 

shape of a fuzzy weight. The experiments for the two improved networks are 

performed in terms of generated error and execution time. The results tested were 

based on available rule/data sets in University of California Irvine (UCI) machine 

learning repository. Data sets were used for GA-based fuzzy granular neural 

networks, and rule sets were used for GA-based fuzzy artificial neural networks. The 

rule sets used were customer satisfaction, uranium, and the datasets used were wine, 

iris, servo, concrete compressive strength, and uranium. The results for the two-phase 

networks revealed the improvements of these methods over the conventional one-

phase networks. The two-phase GA-based fuzzy artificial neural networks improved 

35% and 98% for execution time, and 27% and 26% for the generated error. The 

results for GA-based granular neural networks were revealed in comparison with 

GA-based crisp artificial neural networks. The comparison with other related 

granular computing methods were done using the iris benchmark data set. The results 

for these networks showed an average performance of 82.1%. The results from the 

proposed methods were analyzed in terms of statistical measurements for rule 

strengths and classifier performance using benchmark medical datasets. Therefore, 

this thesis has shown GA-based fuzzy granular neural networks, and GA-based fuzzy 

artificial neural networks are capable of reasoning based on granules for both crisp 

and uncertain data in artificial neural networks. 
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ABSTRAK 

 

 

 

Tesis ini menyelidik taakulan bagi rangkaian neural buatan berdasarkan granul 

untuk kedua-dua data jelas dan tidak jelas.  Kaedah pemahaman data melalui cara ini 

adalah sukar apabila kandungan data adalah kompleks.Untuk mengurangkan 

kekompleksan masalah yang cuba dipelajari oleh rangkaian ini dan juga mengurangkan 

kos proses pembelajarannya, teknik ramalan yang lebih baik adalah diperlukan. Ramalan 

yang sesuai dalam rangkaian neural buatan bergantung kepada kebolehan untuk 

memahami isi kandungan data dengan mendalam dan juga kebolehan untuk mengenal 

pasti hubungan antara data. Ketakpastian dan kepelbagaian jenis data juga akan 

menjadikan hasil ramalan yang tidak tepat. Ketakpastian terhadap jenis data  disebabkan 

oleh kekompleksan jenis data tersebut dan juga set data yang mengandungi tahap 

ketakpastian yang kompleks. Ketakpastian boleh diwakili dengan granul dan taakulan 

yang dikenali sebagai pengkomputeran granular. Tesis ini menggunakan rangkaian 

neural granular untuk mencapai hasil daripada data yang tidak pasti dan jelas. Dua 

kaedah telah diperkembangkan berdasarkan algoritma genetik. Rangkaian granular kabur 

berasaskan algoritma genetik (GA) telah diperkembangkan menggunakan rangkaian 

neural buatan kabur berasaskan GA. Rangkaian neural granular kabur berasaskan GA 

mengandungi dua bahagian: granulasi menggunakan pengelompokan min-c kabur, dan 

taakulan oleh rangkaian neural buatan kabur berasaskan GA. Untuk mengekstrak 

peraturan granular kaedah granulasi yang diterokai mengandungi tiga peringkat, iaitu 

pembinaan semua peraturan granular yang mungkin, pemangkasan data yang berulang 

dalam set data dan pengurangan peraturan granular yang telah digunakan. Rangkaian 

neural buatan kabur berasaskan GA berfasa dua telah direka bentuk dalam dua fasa.  

Dalam keadaan ini peningkatannya berdasarkan kepada nilai alfa-cut dalam rangkaian 

neural. Dalam fasa pertama nilai optimum alfa-cut adalah sifar dan boleh diperoleh bagi 

menentukan pemberat set kabur kepada rangkaian neural. Dalam fasa kedua nilai 

optimum untuk alfa-cut tengah diperoleh untuk menentukan bentuk set kabur. Uji kaji 

untuk dua rangkaian neural yang telah dipertingkatkan telah dijalankan berdasarkan 

kepada jumlah ralat yang dihasilkan dan masa yang diambil bagi melaksanakan uji kaji 

tersebut. Hasil uji kaji berdasarkan set data mesin pembelajaran repositori di University 

of California Irvine (UCI). Set data yang digunakan untuk rangkaian neural granular 

kabur berasaskan GA dan set peraturan digunakan untuk rangkaian neural buatan kabur. 

Set peraturan yang digunakan adalah kepuasan pelanggan dan uranium manakala set data 

yang digunakan ialah arak, iris, servo, kekuatan mampat konkrit dan uranium. Hasil 

untuk rangkaian dua fasa mendedahkan keunggulan kaedah ini berbanding dengan 

rangkaian konvensional satu fasa. Rangkaian dua fasa telah meningkat sebanyak 35% 

dan 98% untuk masa pelaksanaan dan 27% dan 26% untuk ralat umum. Hasil untuk 

rangkaian neural berasaskan GA didedahkan berbanding dengan rangkaian neural buatan 

jelas berasaskan GA. Sementara itu perbandingan dengan kaedah pengkomputeran 

granular yang lain yang berkaitan dijalankan menggunakan set data penanda aras iris. 

Hasil untuk rangkaian ini menunjukkan prestasi purata sebanyak 82.1%. Hasil daripada 

kaedah yang disarankan telah dianalisis dari segi statistik, kekuatan aturan dan 

pengkelasan tenaga menggunakan penanda aras set data perubatan. Oleh itu tesis ini 

menunjukkan bahawa rangkaian neural granular kabur berasaskan GA dan rangkaian 

neural buatan kabur berasaskan GA mampu sebagai taakulan bagi rangkaian neural 

buatan berdasarkan granul untuk kedua-dua data jelas dan tidak jelas.   



vii 

 

    

 

TABLE OF CONTENTS 

 

 

 

CHAPTER TITLE                                         PAGE 

  

  DECLARATION   ii 

  DEDICATION   iii 

  ACKNOWLEDGEMENT  iv 

  ABSTRACT  v 

  ABSTRAK  vi 

  TABLE OF CONTENTS  vii 

  LIST OF TABLES  xi 

  LIST OF FIGURES  xvi 

  LIST OF ABBREVIATION  xxiv 

  LIST OF APPENDICES  xxv 

 

1 INTRODUCTION   1 

1.1 Introduction  1 

1.2 Problem background 3 

1.3 Problem statement  12 

1.4 Thesis aim  13 

1.5 Thesis objectives  14 

1.6 Thesis scope  14 

1.7 Significance of thesis 15 

1.8 Contribution of thesis 15 

1.9 Thesis plan  16 

1.10 Organization of thesis 16 

1.11 Summary  18 

 

2 LITERATURE REVIEW   19 

2.1 Introduction  19 



viii 

 

2.2 Soft computing techniques 21 

 2.2.1 Fuzzy sets theory 21 

 2.2.2 Genetic algorithms (GAs) 30 

2.3 Granular computing  37 

 2.3.1 Structure of granular computing 38 

 2.3.2 Fuzzy information granulation (FIG) 44 

 2.3.3 Granular neural networks (GNNs) 48 

2.4 Hybrid approaches  61 

 2.4.1 GA-based fuzzy artificial neural networks 

(GA-FANNs) 61 

 2.4.2 GA-based fuzzy granular neural networks 

(GA-FGNNs) 65 

2.5 Data sets   69 

 2.5.1 Liu rule set (Liu, et al., 2005) 71 

 2.5.2 Aliev rule set (Aliev, et al., 2001) 72 

 2.5.3 Customer satisfactory rule set (Fasanghari, et 

al., 2008)  73 

 2.5.4 Uranium data set (Staudenrausch, et al., 2005) 74 

 2.5.5 Uranium data set (Houston, et al., 1987) 75 

 2.5.6 Wine data set 75 

 2.5.7 Servo data set 76 

 2.5.8 Iris data set 76 

 2.5.9 Concrete compressive strength data set 77 

 2.5.10 Hepatitis data set 77 

 2.5.11 Pima Indian diabetes data set 77 

 2.5.12 Liver disorder data set 78 

2.6 Summary  78 

 

3 METHODOLOGY   80 

3.1 Introduction  81 

3.2 General research framework 81 

3.3 Data preparation  82 

3.4 Data division  83 

3.5 Proposed GA-based fuzzy granular neural networks 83 

 3.5.1 Proposed granulation 85 

 3.5.2 Integration and reasoning 96 

3.6 GA-based fuzzy artificial neural networks 98 



ix 

 

 3.6.1 One-phase GA-based fuzzy artificial neural 

networks  102 

 3.6.2 Proposed two-phase GA-based fuzzy artificial 

neural networks 103 

3.7 Validation and measurements 106 

 3.7.1 K-fold validation 106 

 3.7.2 Error and time 107 

 3.7.3 Rule strength measurements 107 

 3.7.4 Goodness-of-fit measurements 108 

  3.7.4.1 Lilliefors test 108 

  3.7.4.2 Pearson test 109 

 3.7.5 Classifier performance measurements 109 

3.8 Summary  112 

 

4 RESULTS OF THE PROPOSED METHODS  114 

4.1 Introduction  115 

 4.1.1 General framework 115 

4.2 Proposed GA-based fuzzy granular neural networks 116 

 4.2.1 Granulation 119 

 4.2.2 Integration and reasoning 121 

4.3 Improved two-phase GA-based fuzzy artificial neural 

networks   124 

 4.3.1 Testing on Aliev and Liu data sets 125 

  4.3.1.1  Phase definitions 126 

  4.3.1.2  Superiority of the improved method 127 

  4.3.1.3  Accuracy of the improved method 130 

  4.3.1.4  Testing and prediction 133 

  4.3.1.5  Comparison with earlier works 135 

4.4 Testing on a uranium data set 137 

4.5 Testing on e-commerce data set 140 

 4.5.1 Testing the designed evaluator systems 143 

 4.5.2 Accuracy of designed evaluator systems 147 

4.6 Discussion  150 

4.7 Summary  153 

 

5 TATISTICAL ANALYSIS OF THE PROPOSED METHODS 155 

5.1 General framework  155 

5.2 Phase I: distribution analysis 156 



x 

 

 5.2.1 Statistical results of one-phase method 158 

 5.2.2 Statistical results of proposed two-phase method 166 

5.3 Phase II: Rule strength analysis 179 

5.4 Phase III: Classifier performance analysis 185 

5.5 Discussion  189 

5.6 Summary  190 

 

6 CONCLUSION   191 

6.1 Introduction  191 

6.2 Summary of work  193 

6.3 Research findings and contributions 194 

6.4 Limitations of work  195 

6.5 Conclusion  196 

6.6 Future works  196 

 

REFERENCES    198 

Appendices A-D     205-212 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

 

 

 

 

 

 

 

 

LIST OF TABLES 

 

 

 

TABLE NO   TITLE PAGE 

 

1.1  Related researches on granular computing and descriptions 

of each from the soft computing perspective. 4 

 1.2  List of a few proposed learning methods for fuzzy artificial 

neural networks. 10 

1.3  Learning convergences of the methods in Table 1.2. 11 

1.4  Speed of convergences of the methods in Table 1.2. 12 

 2.1  Major studies on granular computing streaming to granular 

neural networks. 42 

2.2  Different studies using the notion of information 

granulation. 47 

 2.3  Some studies on granular classification models. 48 

2.4 List of proposed learning methods for fuzzy artificial neural 

networks (FANNs). 59 

2.5  The major studies for GA-based fuzzy artificial neural 

networks (FANNs). 64 

2.6 The data sets are used here based on their nature; inexact 

data sets are used for fuzzy artificial neural networks and 

exact data sets are used for granular neural networks. 70 

2.7  Liu data set (Liu, et al., 2005) with inputs    and    and 

outcome         . 71 

3.1  Calculating the weights for the G-rules and eliminating 

repeated G-rules. 94 



xii 

 

3.2  Pruning the multi-out G-rules based on the example of 

Table  3.1. 96 

3.3  Eight possible granular rule bases that can be obtained 

based on Table  3.2. 96 

 4.1  Data sets used in this chapter. 116 

4.2  Obtained fuzzy clusters for each data set. 120 

4.3  Number of all constructed granular rules before pruning for 

each data set. 121 

4.4  Number of final granular rules after pruning for each data 

set. 121 

4.5  Final granular rules, abbreviated as G-rules, for each data 

set after pruning; they are given in linguistic forms of low 

and high, abbreviated as L and H. 121 

 4.6  The results of GA-based fuzzy granular neural networks 

compared to GA-based crisp artificial neural networks, 

where error and time are listed based on improvement 

obtained from GA-based fuzzy granular neural networks. 122 

4.7  Comparison of one- and two-phase GA-based methods 

using the fitness function PF  given in equation (10). 129 

 4.8  Comparison results for two-phase GA-based methods using 

four methods of fitness functions   ,   . 130 

4.9  Comparison results of training for one and two-phase GA-

based methods using the data set of Table A1 in Appendix 

A. 131 

 4.10  Comparison results of training for one- and two-phase GA-

based methods using the data set of Table A2 in Appendix 

A. 131 

4.11  Inputs to the trained network based on a two-phase method 

using data set Table A1 from Appendix A. 134 

4.12  Predicted outcomes from the trained network based on a 

two-phase GA-based method for input values of Table 

 4.11. 134 



xiii 

 

4.13  Explanations on comparing the proposed method with the 

earlier work (Mashinchi, 2007). 137 

4.14 Summary of comparisons between proposed method and 

other methods. 137 

4.15  Estimation of GA-based fuzzy artificial neural networks 

based on C1 of Appendix C. 140 

 4.16  Estimation of GA-based fuzzy artificial neural networks 

based on C4 in Appendix C. 140 

 4.17  The data to validate the use of GA-based fuzzy artificial 

neural networks for a customer satisfactory evaluator 

system. 143 

4.18  The training result of one-phase and two-phase evaluator 

systems based on data set Table  4.17. 144 

4.19  Two new customers’ opinions to test the trained evaluator 

systems. 144 

 4.20  The results of training based on Table B1 of Appendix B. 148 

4.21  The testing results of trained one- and two-phase evaluator 

systems based on three new customers. 148 

4.22 The performance of GA-based fuzzy granular neural 

networks on iris data set compared to other methods 

addressed in a work (Daniel, et al., 2009). 151 

4.23 The comparison results of one- and two-phase GA-based 

methods, where the error and time are given in percentages 

based on the two-phase method. 152 

5.1 Statistical values of Figures 5.3 and 5.4. 160 

5.2  Lilliefors test, at 5% significance level, for one-phase 

method based on Liu rule set. 160 

 5.3  Pearson test (Nakagawa, et al., 2012) for one-phase method 

based on Liu rule set (Li, et al., 2005). 161 

5.4  Statistical values of Figure  5.5 and Figure 5.6. 163 

5.5  Lilliefors test (Liu, et al., 2005) for one-phase method 

based on Aliev rule set (Aliev, et al., 2001). 163 

5.6  Pearson test (Nakagawa, et al., 2012) for one-phase method 

based on Aliev rule set. 164 



xiv 

 

5.7  Overall testing results of one-phase method. 165 

5.8  Overall testing results of statistical test for one-phase 

method ( indicates for normal distribution). 165 

 5.9  Statistical values of training and testing results from first 

and second phases shown in Figure 5.7, 5.8, 5.9 and 5.10. 168 

5.10  Lilliefors test (Lilliefors, 1967) on training results of first 

and second phases on Liu rule set (Liu, et al., 2005). 169 

5.11  Pearson test (Nakagawa, et al., 2012) on training results of 

first and second phase on Liu rule set (Liu, et al., 2005). 169 

 5.12  Statistical values of Figures 5.11, 512, 5.13 and 5.14. 174 

5.13  Lilliefors test (Lilliefors, 1967)for two-phase method based 

on Aliev rule set (Aliev, et al., 2001). 175 

5.14 Pearson test (Nakagawa, et al., 2012) for two-phase method 

based on Aliev rule set (Aliev, et al., 2001). 176 

5.15  Overall testing results of statistical test for two-phase 

method ( indicates for normal distribution). 177 

5.16  Overall testing results of two-phase method. 178 

5.17  The strengths of extracted granular rules from wine data 

set. 181 

5.18  The strengths of extracted granular rules from servo data 

set. 182 

5.19  The strengths of extracted granular rules from iris data set. 182 

5.20  Comparison of results based on the mean of values for 

extracted granular rules. 183 

 5.21  Fuzzy clustering on data sets variables into high and low. 186 

 5.22  Extracting the granular rules from based on clusters in 

Table  5.21. 187 

5.23  Classification rates on each benchmark data set. 187 

5.24 Overall results of distribution analysis. 189 

 5.25  Overall classification rates. 190 

 A 1 Liu dataset (Li, et al., 2005). 205 

A 2 Aliev dataset (Aliev, et al., 2001).  206 

B 1 The dataset to validate the using GA-based fuzzy artificial 

neural networks for the evaluator systems.  207 



xv 

 

B 2 The dataset to find the capability of using GA-based fuzzy 

artificial neural networks for the evaluator systems.  208 

C 1 Unsure dataset (Staudenrausch, et al., 2005) modeled in the 

form of fuzzy values.  209 

C 2 Crisp dataset before granulation (Houston, et al., 1987).  210 

C 3 Clusters definition into low and high for each chemical 

element of dataset of (Houston, et al., 1987) in the form of 

fuzzy numbers           .  210 

C  4  Linguistic rules correspondent with dataset of (Houston, et 

al., 1987), which is obtained after granulations and rule 

pruning.  211 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvi 

 

 

 

 

 

 

LIST OF FIGURES 

 

 

 

FIGURE NO   TITLE PAGE 

 
1.1 Granular neural networks and fuzzy neural networks in 

conjunction with soft computing and granular computing 

areas. 4 

1.2 An example of crisp modeling in dealing with a function. 5 

1.3 An example of fuzzy modeling in dealing with a function. 6 

 1.4 Different optimum explorations for fitness landscape (Weise, 

2007). 7 

1.5 A well-shaped fuzzy value represented with eleven α-cuts. 8 

1.6 A triangular fuzzy value with two α-cuts. 8 

1.7 Different types of fuzzy numbers, triangular and trapezoidal 

in symmetrical and asymmetrical representation. 9 

2.1 An overall view of the involved approaches to derive the 

combined approaches. 19 

2.2 An overall view of the basic and combined models used in 

this thesis. The symbol   indicates the combination of two 

models (note: FIG-CANN is denoted for fuzzy information 

granulation based crisp artificial neural networks, and, CIG-

FANN is denoted for crisp information granulation based 

fuzzy artificial neural networks).   20 

 2.3 The role of fuzzy sets with respect to the future and past in 

collaboration with genetic algorithms (GAs) and granular 

neural networks (GNNs). 24 

2.4 Simple fuzzy numbers in respect to the normality and 

convexity, where   and   are triangular fuzzy numbers. 26 



xvii 

 

2.5 Well-shaped fuzzy numbers in respect to the normality and 

convexity. 26 

2.6 Nested intervals in a normal and convex fuzzy number. 27 

 2.7 Computation of      , based on equation (2.5). 28 

 2.8 Computation of      , based on equation (2.9). 29 

2.9 General schema of genetic algorithms. 33 

2.10 An example of a roulette wheel selection operator in genetic 

algorithms. 34 

2.11 A typical crossover. 35 

2.12 A uniform crossover. 35 

2.13 An example of the mutation function. 36 

2.14 An example of the idea of granular computing by drawing 

different approaches under one computational unit, which is 

given by this thesis based on the studies in the literature. 39 

2.15 The procedures of emerging an approach under the model of 

granular computing, which is modified by this thesis based 

on studies in the literature. 40 

2.16 A general model of information granulation. 45 

2.17 Crisp artificial neural networks as the conventional class, 

which is able to process crisp numerical values. 50 

 2.18 Granular neural networks as a new class for artificial neural 

networks, which is able to process the non-numeric values 

formed in granules. 50 

2.19 An example of a descriptive neural network in three-layer 

feed-forward architecture. 52 

2.20 An example of a higher-level of granular neural networks 

under the model of granular computing. 52 

2.21 Conventional artificial neural networks contrast to the 

corresponding ones in the hybrid with the fuzzy model. 54 

 2.22 Classification of neuro-fuzzy systems (Liu, et al., 2004). 54 

2.23 Regular fuzzy neuron (Liu, et al., 2004). 55 

 2.24 Topological structure of fuzzy artificial neural network (Liu, 

et al., 2004). 57 



xviii 

 

2.25 General scheme of GA-based fuzzy artificial neural 

networks. 62 

2.26 A three-layer, feed-forward fuzzy artificial neural network, 

where each fuzzy value can be obtained by genetic 

algorithms. 62 

2.27 Involved techniques to improve the granular neural networks 

based on genetic algorithms. 66 

 2.28 Structure of GA-based fuzzy granular neural networks. 67 

 2.29 The structure of granulation, in Figure  2.25, for a granular 

neural network. 68 

2.30 Linguistic variables of the Liu rule set (Li, et al., 2005) 

represented in alpha cuts. 72 

 2.31 Customer evaluation system. 73 

2.32 Customer service satisfaction index (Fasanghari, et al., 2008). 74 

3.1 General research framework for methodology. 82 

3.2 General methodology of GA-based crisp artificial neural 

networks. 83 

3.3 General methodology of GA-based fuzzy granular neural 

networks. 84 

3.4 Granulation of crisp data to extract the granular rule base. 85 

3.5 Extraction of the granular rules. 86 

 3.6 The steps of extracting the granular-rules. 87 

 3.7 The steps of granulation to extract the granular rules from a 

crisp data set. 88 

3.8 Detail of step 2 of Figure 3.7 to find the intersected parts of 

two clusters. 89 

3.9 An example for intersecting parts of two granules in a data 

set. 90 

3.10 Detail of Step 3 of Figure 3.7 to find all possible granular 

rules. 91 

 3.11 Finding all possible rules based on Figure  3.10, following the 

example in Figure  3.9. 92 

3.12 Detail of Step 4 of Figure  3.7, to prune the repeated granular 

rules. 93 



xix 

 

3.13 Details of Step 5 in Figure  3.7, to prune multi-output granular 

rules. 95 

3.14 The methodology of integration and reasoning in GA-based 

fuzzy granular neural networks. 97 

3.15 Different types of fuzzy neural networks vary based on the 

values of biases and weights. 99 

3.16 Three-layer fuzzy neural network architecture. 100 

3.17 The steps of one-phase GA-based fuzzy artificial neural 

networks 102 

3.18 Algorithm of one-phase GA-based fuzzy artificial neural 

networks. 103 

3.19 Schema of two-phase GA-based learning method. 104 

 3.20 Flowchart of two-phase GA-based learning method. 105 

3.21 K-fold cross validation. 106 

3.22 Framework to study GA-based granular neural networks. 112 

3.23 Framework to study GA-based fuzzy artificial neural 

networks. 113 

4.1 General framework to conduct the results. 115 

4.2 Preparation of the test data for GA-based fuzzy granular 

neural networks. 116 

4.3 Steps used in implementing GA-based artificial neural 

networks and GA-based fuzzy granular neural networks. 118 

4.4 The steps of granulation to extract the granular rules from a 

crisp data set. 119 

4.5 The flowchart of defuzzifier. 122 

4.6 Results of phase definitions (shown in the form of first 

phase% - second phase%) using the data set of Table A(1), 

where the overall error is computed based on errors from the 

first and second phases. 126 

 4.7 Results of phase definitions (shown in the form of: first 

phase% - second phase%) using the data set of Table A2, 

where the overall error is computed based on errors from the 

first and second phases. 127 



xx 

 

4.8 Membership functions for Small, Medium and Large, where 

vector X indicates real numbers and    indicates the 

membership function. 128 

 4.9 Training results of one- and two-phase GA-based methods 

using the data sets of Table A1 of Appendix A. 128 

4.10 Training results of one- and two-phase GA-based methods 

using the data sets of Table A2 of Appendix A. 129 

4.11 Training convergence of the two-phase GA-based method 

using the data set of Table A1 in Appendix A. 132 

4.12 Training convergence of the two-phase GA-based method 

using the data set of Table A2 in Appendix A. 132 

4.13 The outcomes from a trained network based on data set of 

Tables A1 in Appendix A. 133 

4.14 An example of a multimodal error function (Weise, 2007). 136 

4.15 Learning behavior of designed GA-based fuzzy artificial 

neural networks in terms of generated error by increasing the 

training data. 138 

4.16 Learning time behavior of designed GA-based fuzzy artificial 

neural networks by increasing the training data. 138 

 4.17 Learning behavior of designed GA-based fuzzy artificial 

neural networks in terms of generated error using different 

populations. 139 

4.18 General structure of the one-phase evaluator system. 141 

 4.19 General structure of the two-phase evaluator system. 141 

4.20 The steps of the one-phase evaluator system. 142 

 4.21 The steps of the two-phase evaluator system. 142 

 4.22 Two customers’ opinions depicted equivalent to Table  4.19. 143 

 4.23 Predicted gap for the first test customer using the trained one-

phase evaluator system. 145 

4.24 Predicted gap for the second test customer using the trained 

one-phase GA-based evaluator system. 145 

4.25 Different assignments to the first and second phases of the 

two-phase evaluator system using the data set of Table B1 in 

Appendix B. 146 



xxi 

 

4.26 Predicted gap for the first test customer using the trained 

two-phase GA-based evaluator system. 146 

4.27 Predicted gap for the second test customer using the trained 

two-phase GA-based evaluator system. 147 

4.28 The variation of generated error in different populations 

using the one-phase GA-based evaluator system. 148 

4.29 Different cases of allotments for the first and second phases 

of the two-phase GA-based evaluator system using the Table 

B1 data set. 149 

4.30 The variation of generated error using the two-phase GA-

based evaluator system. 150 

5.1 General framework to conduct the analysis results. 156 

5.2 The framework for distribution analysis (phase I). 157 

5.3 Results of one-leave-out training for one-phase GA-based 

method using Liu rule set. 158 

5.4 Results of one-leave-out testing for one-phase GA-based 

method using Liu rule set using. 159 

 5.5 Results of one-leave-out training for one-phase GA-based 

method base on Aliev rule set (Aliev, et al., 2001). 161 

5.6 Results of one-leave-out testing for one-phase method based 

on Aliev rule set (Aliev, et al., 2001). 162 

5.7 Results of one-leave-out training for first phase of two-phase 

GA-based method using Liu rule set (Liu, et al., 2005). 166 

5.8 Results of one-leave-out training for second phase of two-

phase GA-based method using Liu rule set (Liu, et al., 2005). 167 

 5.9 Results of one-leave-out testing for first phase of two-phase 

GA-based method using Liu rule set (Li, et al., 2005). 167 

5.10 Results of one-leave-out testing for second phase of two-

phase GA-based method using Liu rule set (Li, et al., 2005). 168 

5.11 Results of one-leave-out training for first phase of two-phase 

GA-based method using Aliev rule set (Aliev, et al., 2001). 170 

5.12 Results of one-leave-out training for second phase of two-

phase GA-based method using Aliev rule set (Aliev, et al., 

2001). 171 



xxii 

 

5.13 Results of one-leave-out testing for first phase of two-phase 

GA-based method using Aliev rule set (Aliev, et al., 2001). 172 

5.14 Results of one-leave-out testing for second phase of two-

phase GA-based method using Aliev rule set (Aliev, et al., 

2001). 173 

 5.15 Comparison of results of normality and β-distribution for 

one-phase and two-phase methods. 178 

5.16 Overall test results of normality and β-distribution for one-

phase and two-phase methods. 178 

5.17 The framework for rule strength analysis (Phase II). 180 

5.18 Comparison of results based on Table  5.20.  184 

5.19 Comparison of results for confidence constraint referred in 

Table 4. 184 

 5.20 Framework to obtain the results for imbalanced analysis. 185 

5.21 Obtained classification rates in comparison. 188 

5.22 Obtained positive predictive values in comparison. 188 

5.23 Obtained negative predictive values in comparison. 188 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



xxiii 

 

 

 

 

 LIST OF SYMBOLS 

 

 

 

   - Fuzzy weights of fuzzy artificial neural 

networks 

   
    - Union  , where          

   
    - Summation  , where          

  
  - Left boundary of  -cut at level l   

  
  - Right boundary of  -cut at level l   

   - Fuzzy valued bias 

    - Fuzzy valued input 

    -     fuzzy outcome  

       - Intersection of edges in FANNs 

     - Aggregation of edges in FANNs 

   - Proposed fitness function 

   - Aliev fitness function 

  
  - Left boundaries of  -cuts target values 

  
  - Left boundaries of  -cuts for target 

values  

  
  - Left boundaries of  -cuts outcome 

values 

  
  - Left boundaries of  -cuts outcome 

values  

              - Actual outcome from input    ,     

 

 

 

 

 

 

 

 



xxiv 

 

 

 

 

 

 

LIST OF ABBREVIATION 

 

 

 

ANN - Artificial Neural Network 

CANN - Crisp Artificial Neural Network 

PR - Probabilistic Reasoning 

EC - Evolutionary Computing 

NC - Neuro Computing 

FL - Fuzzy Logic 

FANN - Fuzzy Artificial Neural Network 

FIG - Fuzzy Information Granulation 

GC - Genetic Computing 

GA - Genetic Algorithm 

GrC - Granular Computing  

CGNN - Crisp Granular Neural Network 

FGNN - Fuzzy Granular Neural Network 

GNN - Granular Neural Network 

GBLM - Genetic Based Learning Method 

2P-GBLM - 2 Phase Genetic Based Learning 

Method 

H -  High 

L - Low 

TFIG - Theory of Fuzzy Information 

Granulation 

TIG - Theory of Information Granulation 

MSE - Mean of Squared Error 

SE - Squared Error 

SC - Soft Computing 

 

 



xxv 

 

 

 

 

LIST OF APPENDICES 

 

 

 

APPENDIX TITLE                                        PAGE 

 

A Standard fuzzy rule sets Liu (Liu, et al., 2005) and 

Aliev (Aliev, et al., 2001)  205 

B Customer satisfactory dataset (Fasanghari, et al., 

2008) 207 

C Uranium datasets (Staudenrausch, et al., 

2005)(Houston, et al., 1987) 209 

D List of Publication and Recognition 212 

 

 

 



 

 

 

CHAPTER 1  

 

 

 

INTRODUCTION 

 

 

 
1.1 Introduction 

 

This chapter presents a brief introduction to the notions that are used to 

achieve the aim of this thesis. The aim is to use granular computing for problems 

solving. The introduced notions are granular computing, granular neural networks, 

fuzzy artificial neural networks, fuzzy information granulation, generic algorithms 

and fuzzy sets theory. The reason for this study is to investigate the aim of artificial 

computations that is to solve a problem with the least amount of cost and the best 

accuracy. Problems become more difficult to be solved when their corresponding 

data sets are large or contain uncertain information. In the literature of artificial 

computations, there are many nature inspired computations such as evolutionary 

computations, artificial neural networks, artificial immune systems, swarm 

intelligence, etc. (Zomaya, 2006) (Kari, et al., 2008). However, there are two issues 

behind the proposed algorithms; which are the ability of each algorithm to solve only 

a particular type of problem; and their performance in solving the problem. To 

overcome these two issues, this thesis uses granular computing with the aid of 

learning and optimization mechanisms for an optimal learning from granular rules. 

Therefore, granular neural networks have been used for learning mechanism; meanwhile 

fuzzy artificial neural networks are centered in the granular neural networks. Also, the 

genetic algorithms (GA) are used to increase the performance of fuzzy artificial 

neural networks. Therefore, GA-based fuzzy artificial neural networks are used in the 

main part for granular neural networks. 

 

In order to have better performance and wide applicability of computational 

methods, different individual models need to be unified. This has emerged in 

granular computing as an inspiration from the human mind. Among natural 
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computations as the source of inspiration for artificial computations, the human mind 

is known to be superior in problem solving, for example processing large and also 

uncertain information. The superiority of mind is spotted when an attempt is made to 

solve a complex problem. A problem is called complex when its components or their 

relations are difficult to understand. Since uncertainties are considered complexity, a 

problem consisting of uncertainties becomes complex. Solving complex problems is 

promised by the granular computing model, which has been inspired from the way 

that the human mind solves such problems. A major key in granular computing is 

granulation, which is similar to abstraction in the human mind (Zadeh, 1997). 

Granulation and granular computing are two similar meanings to information 

granulations. Historically, the notion of granular computing emerged from the theory 

of information granulation, which initially was proposed based on fuzziness. Similar 

to granular computing, the theory of fuzzy information granulation is inspired from 

how the human mind reacts to solve problems (Zadeh, 1997). It is known as a key in 

the mind-processing mechanism; a system must consider it in solving a complex 

problem (Zadeh, 1997).  

 

Therefore, in this thesis, fuzzy modeling has been used for granular 

computation to solve complex problems. Fuzzy artificial neural networks, which are 

used in the center of improved granular neural networks, are the combination of 

fuzzy modeling and artificial neural networks. Fuzzy artificial neural networks are 

able to predict based on learned instances (Liu, et al., 2004) (Arotaritei, 2011). Their 

accuracy is highly dependent on tuned weights of network connections, and thus, the 

connection weights need to be optimally adjusted. This has been done in GA-based 

fuzzy artificial neural networks, where a genetic algorithm is used to adjust the 

weights (Aliev, et al., 2001). The genetic algorithms are combined with fuzzy 

artificial neural networks due to their strong appeal as an optimization technique 

(Liu, et al., 2004). The optimizations in genetic algorithms are based on the 

evolutionary process of generations. From an overall view, genetic algorithms are 

used to identify the best outcome of the results based on the optimization of the fuzzy 

artificial neural networks.  
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1.2 Problem background 

 

 

Artificial neural networks have already been positioned as an important class 

of non-linear systems. They are highly adaptable systems that have been used for 

many areas of applications. Crisp artificial neural networks are primarily geared 

toward the intensive processing of numerical data. However, as the dimensionality of 

the problems increases, the computational complexity becomes visible because the 

sizes of the data sets grow up rapidly (Pedrycz, et al., 2001). Therefore, the weak 

points of crisp artificial neural networks are identified as follows: 

 

(i) Inability to tackle large-scale data, which causes inefficient learning 

within these networks, and thus predicts unsuitable outcomes. 

(ii) Inability to process non-numeric data, such as uncertainties and 

linguistic variables. 

 

Regarding issue (i), there are a few ways to solve the problem. One solution 

is modular architectures of neural networks, which helps to break down the problem 

into a series of simpler subtasks and each of the subtasks is handled independently. 

The modularization of problems is a viable way of exploring neural architectures in 

the long run. Breaking down the problem for modulation is a method of 

simplification, which is similar to the granulation of data. Therefore, granulation is 

another way to solve issue (i) instead of using the concept of modularization. The 

granulation in the computation process can be used to solve also issue (ii). There are 

few granulation approaches; however, fuzzy modeling is the most appealing. The use 

of fuzzy models in conjunction with artificial neural networks creates granular neural 

networks, which can solve either issue (i) or (ii). See Figure  1.1 for the location of 

granular neural networks. 
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Figure  1.1: Granular neural networks and fuzzy neural networks in conjunction with 

soft computing and granular computing areas. 

 

A potential solution for solving complex problems is granular computing. 

Since 1997, the proposal by L.A Zadeh that described granular computing, this 

method has become an attractive research area. However, most of the studies in this 

field are theoretic which needs to be studied in actual applications. Table  1.1 presents 

a few studies on granular computing, and the remaining issues. 

 

Table  1.1: Related researches on granular computing and descriptions of each from 

the soft computing perspective. 

The problems remained 

unsolved 
Proposed method Study 

The research remained as an 

idea. 

Proposing the idea of 

generalizing the information 

(Zadeh, 1979). 

Information 

granulation 

The research does not present 

implementation of 

information granulation 

concept. 

Formalization of information 

granulation (Zadeh, 1997). 

 

Reconstruction of 

information 

granulation 

concept 

The research does not present 

implementation of granular 

computing. 

Formalization of information 

granulation (Lin, 1997).  

Labeling granular 

computing 

Remained as an idea. Joint the concepts of 

information granulation and 

neural networks (Lin, 1997). 

Foundation of 

granular neural 

networks 

Decreasing the complexity of 

granulation when dataset is 

very huge.  

Improves the idea of granular 

neural networks proposed in 

(Pedrycz, et al., 2001) by this 

study. 

GA-based fuzzy 

granular neural 

networks (this 

study)  

Granular 

computing 

Soft 

computing 

ANN 

Fuzzy  

Granular neural networks 

 

Fuzzy artificial neural networks 
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Based on Table 1.1, this study improves the granular neural based on GA-

based fuzzy artificial neural networks. Furthermore, an information granulation has 

been investigated to extract the fuzzy granules from the crisp data sets. Therefore, in 

this thesis, fuzzy sets theory has been used for granular neural networks due to the 

following reasons: 

 

(i) Fuzzy sets support the modeling of the concepts that exhibit continuous 

boundaries (Pedrycz, et al., 2001) (Hans-Jurgen, et al., 2012). Continuous 

boundaries are used to represent fuzzy values on real numbers. Fuzzy values are 

used to tune fuzzy artificial neural networks by genetic algorithms. 

(ii) Fuzzy sets exhibit well-defined semantics and fully meaningful conceptual 

entities from building modules that are identified in problem solving (Pedrycz, et 

al., 2001) (Hans-Jurgen, et al., 2012). The originality of the source problem is 

preserved after modeling it in the fuzzy concept. Meanwhile, it is possible to 

simplify the fuzzy modeled problem using the concept of granulation. This has 

been illustrated by two examples in Figure  1.2 and Figure  1.3, respectively with 

the illustrated modeling of a function in crisp and fuzzy representations. An 

advantage to fuzzy modeling, as shown in Figure 1.3, is that it does not have the 

crispness when moving from one segment as a concept to another. This can 

benefit a rule-based system to decrease the effects from a noisy data. 

 

 
 

Figure  1.2: An example of crisp modeling in dealing with a function. 
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Figure  1.3: An example of fuzzy modeling in dealing with a function. 

 

Due to the above advantages, (i) and (ii), fuzzy modeling has been combined 

with artificial neural networks to improve the learning mechanism (Zomaya, 2006). 

This is called as fuzzy artificial neural networks, which are used in this thesis as the 

main part of granular neural networks. As the fuzzy artificial neural networks are 

successfully used in learning and approximate reasoning, improvements are still 

required to increase their performance. There are some issues that need to be 

considered as follows: 

 

(i) Finding the global solution: The existing methods are usually being trapped 

into local minima when searching for the optimal network as shown in Figure 

 1.4. An accurate learning method is needed to avoid local minima and to find 

an optimal network similar to what is ideal (Arotaritei, 2011). This becomes 

more notable when the number of alpha cuts is increased to shape the fuzzy 

numbers. Having more alpha cuts increases the possibility of trapping in the 

local minima. 
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Figure  1.4: Different optimum explorations for fitness landscape (Weise, 2007). 

 

(ii) Increasing the convergence speed: The execution time in finding the optimal 

network needs to be considered in two cases. First, when learning and 

reasoning the outcome for an online application. Second, when a well-shaped 

fuzzy number is needed for a better outcome. Figures 1.5 and 1.6 shows well-

shaped fuzzy value with several alpha-cuts and a triangular fuzzy value in two 

alpha cuts (Lee, 2005) (Hans-Jurgen, et al., 2012). The processing of a well-

shaped fuzzy value is more time consuming due to two consequent reasons. 

First, numerous alpha cuts need to be optimized. Then, they must be optimized 

within an unconstrained searching space; because the optimal value for each 

boundary of each alpha-cut can be any real number.     

 

Global optimum 

Global optimum 
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Figure  1.5: A well-shaped fuzzy value represented with eleven α-cuts. 

 

 

 
 

Figure  1.6: A triangular fuzzy value with two α-cuts. 

 

(iv) Dealing with all types of fuzzy values: Most of the existing learning methods 

for fuzzy artificial neural networks are unable to deal with all kinds of fuzzy 

numbers (Arotaritei, 2011). This would result in a lack of these networks 

being applicable to different applications. Therefore, a suitable fuzzy artificial 

neural network is required to deal with all types of fuzzy numbers as shown 

in Figure 1.7 (Lee, 2005). 
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Figure  1.7: Different types of fuzzy numbers, triangular and trapezoidal in 

symmetrical and asymmetrical representation. 

 

Based on the above-mentioned issues for fuzzy artificial neural networks, 

there are some major methods that have been proposed in the literatures. First, the 

direct fuzzification is proposed that fuzzifies the delta rule from the feed-forward 

artificial neural networks (Buckley, et al., 1992, 1995), (Hayashi, et al., 1993). This 

method has been rejected from a theoretical point of view (Liu, et al., 2004). Later, 

some learning approaches for triangular symmetric fuzzy values were proposed 

(Ishibuchi, et al., 1995, 2001). However, they are not able to deal with other bounded 

convex types of fuzzy values. Consequently, an approach based on the derivation of 

the min-max function has been proposed (Zhang, et al., 1996, 1999), (Liu, et al., 

2004, 2005) to deal with all types of bounded convex fuzzy values. In all of the 

above-mentioned methods, avoiding trapping in local minima is not promised. This 

is due to using the back propagation algorithm, which is a local optimizer. 

 

Another method used in studying fuzzy artificial neural networks is based on 

genetic algorithms. Buckley et al (Buckley, et al., 1994) introduced the use of genetic 

algorithms for the first time, and then Aliev et al. (Aliev, et al., 2001) reintroduced it. 

The reason of these two studies was using the ability of genetic algorithms to 

improve the fuzzy artificial neural networks. A recent works has been done for these 

networks by (Arotaritei, 2011). This method has the ability to deal with all types of 

fuzzy values that are bounded and convexed. However, the speed of learning 

convergence still needs to be improved. The summary of mentioned methods is given 
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in Table 1.2; also, a description for each method is given in Table  1.3 and Table 1.4 

in terms of learning and the speed of convergences.  

 

 Table  1.2: List of a few proposed learning methods for fuzzy artificial neural 

networks. 

 

 

 

 

 

 

 

Researcher 
Learning method 

Name Advantages Disadvantages 

Buckley and 

Hayashi 

(1993) 

Direct 

fuzzification 

It proposes fuzzy artificial 

neural networks for the first 

time, which fuzzifies delta 

rule form feed-forward 

artificial neural networks. 

It has been rejected from 

mathematical aspect. 

Zhang, et al. 

(1996) 

Derivation of 

min-max 

function 

It improves fuzzy artificial 

neural networks to deal 

with all types of fuzzy 

values. 

It does not have an 

adequate learning ability. 

Aliev et al. 

(2001) 

GA-based 

FANNs 

It applies the idea of using 

genetic algorithms for 

fuzzy artificial neural 

networks, which were 

firstly sparked in 1994. It 

could successfully deal 

with all types of fuzzy 

values. 

It does not have an 

adequate speed of 

learning convergence to 

be applicable for real 

applications. 

Mashinchi 

(2007) 

Two-phase 

FANNs based 

on BP 

Proposing FANNs that 

learn fuzzy rule set in two 

phases. 

Low learning 

convergence due to using 

local optimizer in the first 

stage. 

Mashinchi, 

et al. (2009) 

Three-term 

fuzzy back-

propagation 

The proposed method 

enhances the speed of back-

propagation based FANNs 

by adding a fuzzy 

proportional factor. 

High possibility of 

trapping into local 

minima for learning 

convergence process.  

Arotaritei 

(2011) 

Local crossover 

GA-based 

FANNs 

Improves according to 

feed-forward (FFNR) and 

fuzzy recurrent networks 

(FRNN). 

Needs to be compared 

with other methods. 

This study 

Two-phase 

GA-based 

FANNs 

It improves the 

conventional GA-based 

method by Aliev in terms 

of generated error and 

execution time. 

It does not have the 

ability of learning from 

well-shaped fuzzy values 

in less time. 
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Table  1.3: Learning convergences of the methods in Table 1.2. 

 

 

 

Method Learning convergence 

Buckley and 

Hayashi (1993) 
It is remained as an idea without implementation.  

Derivation of  

min-max function 

(Zhang, et al., 

1996) 

It has an acceptable convergence for triangular fuzzy values; 

however, it is less promising since it is based on back propagation 

as a local optimizer. Main studies on this method are done by: 

(Zhang, et al., 1996, 1999), (Liu, et al., 2004, 2005). The remain 

issues to be done are as follows: 

 To guarantee the convergence 

 To keep the accuracy for well-shaped fuzzy values 

GA-based FANNs  

(Aliev, et al., 2001) 

It has acceptable convergence for triangular fuzzy values with more 

promising since it is based on GA as a global optimizer. Main 

studies on this method are done by:  (Buckley, et al., 1994), (Aliev, 

et al., 2001). The remain issue to be done is as follows: 

 To keep the accuracy for well-shaped fuzzy values 

Two-phase FANNs 

based on  back-

propagation   

(Mashinchi, 2007) 

It has acceptable convergence in compared with its based method, 

BP; however, it is less promising since it is based on back 

propagation as a local optimizer. 

The remain issue to be done is as follows: 

 To guarantee the convergence 

 To keep the accuracy for well-shaped fuzzy values 

Three-term fuzzy 

back-propagation 

(Mashinchi, et al., 

2009) 

It has acceptable convergence in compared with its based method, 

BP; however, there is more possibility of trapping into local minima 

for learning process as BP is a local optimizer. 

The remain issue to be done is as follows: 

 To guarantee the convergence 

To keep the accuracy for well-shaped fuzzy values 

Local crossover 

GA-based FANNs 

(Arotaritei, 2011) 

It has acceptable convergence for triangular fuzzy values with more 

promising since it is based on GA as a global optimizer. 

The remain issue to be done is as follows: 

 To keep the accuracy for well-shaped fuzzy values 

Two-phase GA-

based  

FANNs  

(this study) 

It has better convergence with promising results, since it benefits 

from the optimization features of genetic algorithms. In addition, it 

keeps the convergence accuracy for well-shaped fuzzy values. 
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Table  1.4: Speed of convergences of the methods in Table 1.2. 

 

 

 

In order to improve the performance of fuzzy artificial neural networks, this 

thesis proposes an improved GA-based fuzzy artificial neural network to overcome 

the speed and the learning convergence when dealing with well-shaped fuzzy values.  

 

 

 

1.3 Problem statement 

 

 

Complex problems are known to be difficult to solve since understanding 

them is not easy. An example of complex problems is the unsteadiness of things such 

as linguistic variables. Involving uncertainties and enlargement of the problems to be 

Method Speed of convergence   

Buckley and Hayashi 

(1993) 
It is remained as an idea without implementation. 

Derivation of  

min-max function (Zhang, 

et al., 1996) 

It has acceptable speed of convergence in learning triangular 

fuzzy values, however, there is a remained issue to be done as 

follows: 

 To keep the speed of convergence for well-shaped fuzzy 

values 

GA-based FANNs  

(Aliev, et al., 2001) 

It has acceptable convergence for triangular fuzzy values, 

however, there is a remained to be done as follows: 

 To keep the accuracy for well-shaped fuzzy values 

Two-phase FANNs based 

on back-propagation  

(Mashinchi, 2007) 

It has better speed of convergence in learning well-shaped 

fuzzy values in compared with its base method back-

propagation.  The remained to be done as follows: 

 To keep the accuracy for well-shaped fuzzy values 

Three-term fuzzy back-

propagation (Mashinchi and 

Shamsuddin, 2009) 

It has better speed of convergence in compared with its base 

method back-propagation due to adding a fuzzy proportional 

factor. The remained to be done is as follows: 

 To keep the accuracy for well-shaped fuzzy values 

Local crossover GA-based 

FANNs (Arotaritei, 2011) 

It has acceptable convergence for triangular fuzzy values, 

however, there is a remained to be done as follows: 

 To keep the accuracy for well-shaped fuzzy values 

Two-phase GA-based  

FANNs  

(this study) 

It has better speed of convergence in learning well-shaped 

fuzzy values. 
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tackled cause the problems to be complex. To solve complex problems, 

simplification of the problems and learning mechanisms can be taken. Respectively, 

fuzzy granulation and fuzzy artificial neural networks can be used. The combination 

of these two has emerged in granular neural networks, where fuzzy artificial neural 

networks can play an important role. If the performance of fuzzy artificial neural 

networks is increased, therefore, the performance of granular neural networks can be 

improved. Meanwhile, the complex problem needs to be simplified in the form of a 

fuzzy rule base to be fed to fuzzy artificial neural networks.  

 

Therefore, the hypothesis of this thesis is stated as follows: 

 

“How a complex problem can be solved by granular neural networks 

and how fuzzy artificial neural networks can collaborate to increase 

the performance of granular neural networks in solving complex 

problems.” 

 

 

1.4 Thesis aim 

 

 

 The aim of this thesis is to solve the complexity and uncertainty of data sets 

using GA-based fuzzy artificial neural networks, where reasoning based on crisp data 

sets is considered in granularity. In this regard, granular neural networks aim to be 

improved by GA-based fuzzy artificial neural networks. In addition, a rule extraction 

is used to transform the crisp data set into a fuzzy granular rules base. Due to the 

impact of GA-based fuzzy artificial neural network in learning from the granules, the 

efficiency of these networks on GA-based fuzzy granular neural networks are 

investigated. Consequently, enhancing GA-based fuzzy artificial neural networks is 

considered to improve the performance of granular neural networks. The 

improvement of GA-based fuzzy artificial neural networks is due to two reasons: the 

low accuracy of these networks and their centrality in GA-based fuzzy granular 

neural networks.  
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1.5 Thesis objectives 

 

 

The objectives of the thesis are defined as follows: 

 

(i) To propose the reasoning on crisp data sets in fuzzy artificial neural networks 

using genetic algorithms. 

(ii) To propose the transformation of crisp data sets into fuzzy granular rule bases 

to train fuzzy artificial neural networks.  

(iii) To evaluate the performance of proposed fuzzy artificial neural networks based 

on genetic algorithms with their conventional method and crisp artificial neural 

networks. 

 

  

 

1.6 Thesis scope 

 

 

The scope of this thesis is defined as follows: 

 

(i) Three standard fuzzy rule sets and six crisp data sets are used to test the 

improved methods. The rule sets, and also uncertain data sets, are used to test 

the two-phase GA-based fuzzy artificial neural networks, and the data sets are 

used to test the fuzzy granular neural networks.  

(ii) The rules/data sets are available in University of California Irvine (UCI) 

machine learning repository, and literatures. Aliev (Aliev, et al., 2001), Liu 

(Liu, et al., 2005) and customer satisfaction fuzzy rule sets (Fasanghari, et al., 

2008), and also a uranium data set with uncertain values (Staudenrausch, et al., 

2005), are used to test two-phase GA-based fuzzy artificial neural networks. 

Meanwhile, the crisp data sets to test GA-based fuzzy granular neural networks 

are chosen based on size. Wine, servo and iris data sets from UCI repository as 

well as a uranium data set (Houston, et al., 1987) from the literature are used as 

small sizes, and concrete compressive strength data set from UCI repository is 

used as medium size.  
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(iii) Comparisons for the improved methods are done in terms of generated errorr, 

execution time, and distribution. To this end, improved two-phase GA-based 

fuzzy artificial neural networks are compared with corresponding conventional 

method, and improved GA-based fuzzy granular neural networks are compared 

with GA-based crisp artificial neural networks. 

(iv) Implementations for GA-based fuzzy artificial neural networks are done using 

Matlab, and the implementations for GA-based fuzzy granular neural networks 

and GA-based artificial neural networks are done using Microsoft C++. 

 

 

 

1.7 Significance of thesis 

 

 

The significance of this thesis is as follows: 

 

(i) Fuzzy artificial neural networks based on genetic algorithms have been studied 

and improved using the notion of granular neural networks. 

(ii) Fuzzy artificial neural networks can be studied using available data sets for 

application, and they have been improved in terms of generated error and 

execution time. 

(iii) A granular rule extraction is proposed to simplify a crisp data set and represent 

it in fuzzy form.  

 

  

 

1.8 Contribution of thesis 

 

 

This thesis contributes to problem solving via soft computing by granulation. 

A granular rule extraction is given to simplify the problems, and granular learning 

approaches are improved for reasoning based on these granules.  More specifically, 

three methods have been proposed in this thesis as follows: 

 

(i) Fuzzy artificial neural networks are able to learn from crisp data sets, and 

conversely, crisp data sets can be processed by fuzzy artificial neural networks. 
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(ii) GA-based fuzzy artificial neural networks are improved in terms of generated 

error and execution time. The improved method can learn well-shaped fuzzy 

values represented in alpha-cuts.  

(iii) A granulation method is improved to extract fuzzy granular rules from a crisp 

data set. It prepares the collaboration of crisp data sets with fuzzy artificial 

neural networks. 

 

 

 

1.9 Thesis plan 

 

 

The direction of the thesis is taken from research background of the author on 

solving complex problems by human cognition. Here, granular computing and soft 

computing are chosen due to their similarities with human cognition. Reasoning 

based on granules is considered for a crisp data set, and thus a granulation method 

has been presented. The granulation method uses fuzzy representation, and reasoning 

is based on fuzzy granules. Respectively, fuzzy granulation and fuzzy artificial 

neural networks are used, and genetic algorithms aid in improving the learning 

performance. Drawing these three methods under the model of granular computing 

constructs GA-based granular neural networks as the main idea. The constructed 

method is presented to achieve the aim and objectives of this thesis. In addition, GA-

based fuzzy artificial neural networks are improved due to their impact on enhancing 

the GA-based fuzzy granular neural networks. Eventually, contribution of this thesis 

is carried out for improved methods by comparison.  

 

 

 

1.10 Organization of thesis 

 

 

This chapter presents the framework of this thesis. It introduces the research 

field and explains the reasons for the study by reviewing the problem background. 

Five chapters are organized to meet the scopes and objectives. These are the 

introduction, a literature review, methodology, the results of the proposed fuzzy 

artificial neural networks, an analysis of the proposed fuzzy granular neural networks 

and a conclusion. 
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The organization of individual chapters is as follows: 

 

 

(i) Chapter 1 presents an overview of the thesis. The problem under study is 

introduced and the reasons for such study are described. The reasoning process 

by using granules for crisp data sets is highlighted. The background to the 

problem is given, and previously utilized approaches published in available 

literature are reviewed. The objectives and scope of the study are defined along 

with the aim of thesis. Finally, a synopsis of the likely contribution of the study 

is given according to the defined aims and objectives.  

(ii) Chapter 2 introduces the data sets that are used for the experiments. It also 

provides a review of soft computing, granular computing and the hybrid 

techniques that have arisen between them. Fuzzy sets theory and genetic 

algorithms are discussed with respect to soft computing, and fuzzy information 

granulation and granular neural networks are discussed with respect to granular 

computing. 

(iii) Chapter 3 discusses the methodology of improved methods that is used to carry 

out this study. Improved GA-based granular neural networks are presented, 

including the concepts of granulation and GA-based fuzzy artificial neural 

networks. The granulation method is presented in order to extract the fuzzy 

granular rules. The general architecture of fuzzy artificial neural networks and 

the schema of improved GA-based fuzzy artificial neural networks are also 

presented. 

(iv) Chapter 4 presents the detailed implementation and results of the improved 

granular neural networks. The constructed algorithms of granulation are 

detailed, including the fuzzy C-mean, granular rules extraction, granular rule 

contraction, pruning the granular rules and the defuzzifier.  

(iv) The improved method is tested using four standard crisp data sets, which are 

the wine, servo, iris and concrete compressive strength data sets. The results of 

improved GA-based granular neural networks are compared with those of other 

methods in the literature using the benchmarked iris data set. Using the rest of 

the data sets, they are compared with the results of corresponding GA-based 

crisp artificial neural networks to contrast granular reasoning against crisp 

reasoning. This chapter also presents the detailed implantation and results of 
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improved GA-based fuzzy artificial neural networks that are given in Chapter 

4. 

(v) Chapter 5 reveals the analysis results for distribution, rule strength, and 

classifier performance. The results are obtained from the proposed methods: 

two-phase GA-based fuzzy artificial neural networks, granulation, and GA-

based fuzzy granular neural networks. The results are carried out in compared 

with one-phase GA-based fuzzy artificial neural networks and GA-based crisp 

artificial neural networks, which are based on three data sets: Liver disorder, 

hepatitis, and diabetes. 

(vi) Chapter 6 discusses the work that has been done to complete this study. The 

proposed approaches are discussed and the work is summarized to conclude the 

results and analysis of Chapter 4. Finally, the future work is addressed in this 

chapter. 

 

 

 

1.11 Summary 

 

 

This chapter introduces the thesis by presenting the framework of the study. 

six chapters are defined to obtain the aims and objectives. Some notions are 

reviewed, such as granular computing, granular neural networks, fuzzy information 

granulation, fuzzy artificial neural networks, fuzzy sets theory and genetic 

algorithms. These notions are discussed according to their relation to the three 

improved methods of this thesis. The improved methods are two-phase GA-based 

fuzzy artificial neural networks, GA-based fuzzy granular neural networks and 

granulation. Particularly, the major studies in the literature for granular neural 

networks and GA-based fuzzy artificial neural networks are reviewed. Finally, the 

contributions of this thesis are given according to the aims and objectives, and the 

organization of the thesis has been presented.  
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