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ABSTRACT

Quantum cryptography specifically called Quantum Key Distribution (QKD) 
provides acceptable levels of secure communications by utilising established laws of 
quantum mechanics. QKD protocol distributes a raw key through quantum channel 
between two cryptography users and then it removes errors occurred during 
communication from the distributed key by passing messages via public channel. 
Most popular error reconciliation protocols such as Binary, Cascade and Winnow are 
used to remove errors in a secure way. Among these three protocols, Buttler’s 
Winnow has the advantage of less communication complexity, however it is less 
effective at high error rates in a key and has the disadvantage of introducing errors 
during error reconciliation, and hence, causes reduction in reconciled key size and/or 
leave errors in the reconciled key. Winnow can handle quantum bit error rates a 
maximum up to 18 percent. However, after 13 percent error rate, Winnow becomes 
highly interactive and it may fail to reconcile the key. The deficiencies of high 
interactivity, reduction in reconciled key size, leaving errors in the reconciled key 
and failure of Winnow can be removed by enhancing the error reconciliation 
protocol by employing modified Bose, Chaudhuri, Hocquenghem (BCH) channel 
coding techniques. The enhanced BCH encoding algorithm is designed to handle a 
key at higher quantum bit error rates. BCH error detection and correction algorithms 
are enhanced to minimise the error percentage in the reconciled key. The modified 
block interleaver is introduced in the reconciliation protocol to obtain a long-size 
reconciled key with minimum iterations. The enhanced error reconciliation protocol 
can reconcile the key up to 50 percent initial bit error rate and reduces public channel 
communications. Finally, a long sized identical shared secret key with minimal error 
rate approaching zero is obtained within two iterations. The attained key can be used 
with secret key cipher to encrypt and decrypt information.



ABSTRAK

Kriptografi kuantum secara khususnya dikenali sebagai Pengagihan Kekunci 
Kuantum (QKD), menyediakan tahap komunikasi selamat yang boleh diterima 
dengan menggunakan undang-undang mekanik kuantum yang telah mantap. Protokol 
QKD mengagihkan kekunci mentah melalui saluran kuantum di antara dua pengguna 
kriptografi dan kemudian ia membuang ralat yang berlaku semasa komunikasi dari 
kekunci teragih dengan menghantar mesej melalui saluran urnum. Protokol 
penyelarasan ralat yang paling popular seperti Binary, Cascade dan Winnow 
digunakan untuk membuang ralat secara selamat. Antara ketiga-tiga protokol ini, 
Winnow Buttler mempunyai kelebihan dengan mempunyai komunikasi yang kurang 
rumit, walau bagaimanapun, ia kurang berkesan pada kekunci yang mempunyai 
kadar ralat yang tinggi dan mempunyai kelemahan dalam memperkenalkan ralat 
semasa penyelarasan ralat. Dengan itu menyebabkan pengurangan saiz kekunci 
terselaras dan/atau meninggalkan ralat dalam kekunci terselaras. Winnow boleh 
mengendalikan kadar ralat bit kuantum sehingga maksimum 18 peratus. Tetapi, 
selepas 13 kadar ralat peratus, Winnow menjadi sangat interaktif dan ia mungkin 
gagal untuk menyelaras kekunci. Kekurangan interaktiviti yang tinggi, pengurangan 
dalam saiz kekunci terselaras, meninggalkan ralat dalam kekunci terselaras dan 
kegagalan Winnow boleh dibuang dengan mempertingkatkan protokol penyelarasan 
ralat dengan menggunakan teknik pengkodan saluran Bose, Chaudhuri, 
Hocquenghem (BCH) yang diubahsuai. Algoritma pengekodan BCH yang telah 
dipertingkatkan direka untuk mengendalikan kekunci pada kadar ralat bit kuantum 
yang lebih tinggi. Algoritma pengesanan dan pembetulan ralat BCH dipertingkatkan 
untuk meminimumkan peratusan ralat dalam kekunci terselaras. Blok selang-seli 
yang diubahsuai diperkenalkan dalam protokol penyelarasan untuk mendapatkan 
kekunci terselaras yang bersaiz panjang dengan lelaran minimum. Protokol 
penyelarasan ralat yang telah dipertingkatkan boleh menyelaras kekunci sehingga 50 
peratus kadar ralat bit awalan dan mengurangkan komunikasi saluran urnum. 
Akhimya, kekunci rahsia berkongsi serupa yang bersaiz panjang dengan kadar ralat 
minimum menghampiri sifar diperolehi dalam dua lelaran. Kekunci yang diperolehi 
boleh digunakan dengan sifer kekunci rahsia untuk menyulit dan menyahsulit 
maklumat.
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CHAPTER 1

INTRODUCTION

1.1 Overview

In today’s world, where large amount of information travels through 

communication networks for commerce, strategic and military use, a secure data 

transfer is essential (Nguyen et al., 2006). Over time, various methods have been 

adopted for secure information transfer from one legitimate party to another. 

Currently, cryptography, a branch of science that deals with information security, is 

playing an important role to meet commerce, strategic and military requirements. 

One of the mechanisms to secure information in cryptography is called encryption. 

Encryption is a method of transforming information that conceals its meaning. The 

reverse process of encryption is termed as decryption and an algorithm that encrypts 

and decrypts information is called a cipher. A cryptosystem consists of information 

to be encrypted/decrypted, an algorithm and a key. A good cryptographic algorithm 

should provide confidentiality/privacy, integrity, authentication and non-repudiation. 

The concept of cryptography evolved soon after humans learned to communicate 

through writing, since then a number of cryptography techniques ranging from basic 

shifting of alphabetical letters to complex mechanical and electronic encryption 

methods have been used. Historical ciphers, which are known as paper and pen 

ciphers, used substitution and transposition methods for information encryption or 

decryption (Katz and Lindell, 2008). The conventional cryptography has three
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elements namely algorithm, message and key. In conventional ciphers, key is most 

important element of cryptography and it is nearly impossible to get back the original 

message without it. A cryptography key is exchanged secretly between two users 

through a secured communication channel. The cryptographers’ community agrees 

to keep the key secret and to publish encryption algorithms. The purpose of 

publishing encryption algorithm is to identify the flaws and to make it more robust 

against attackers. Among other factors, Kerckhoff s principle enunciates that the 

security of a cryptosystem should rely on the secrecy of the key instead, the secrecy 

of the algorithm (Van Assche, 2006). In the 1970s, IBM designed the most common 

encryption scheme, which is termed as Data Encryption Standard (DES). DES was 

adopted by the National Bureau of Standards, presently named as the National 

Institute for Standards and Technology (NIST), in 1977 (Kessler, 2003). 

Cryptography entered into a new era when Charles Bennett and Gilles Brassard 

developed a quantum key distribution protocol, named BB84 in 1984, after reading a 

“conjugate coding” paper written by Stephen Weisner in early 1970s.

Conventional ciphers are categorized, more commonly, on bases of the type 

of key used. Symmetric key ciphers, which are known as secret-key ciphers 

(Kessler, 2003), use the same key for encryption and decryption while asymmetric 

key ciphers, also known as public-key ciphers, use two different but co-related keys 

for encryption and decryption. Symmetric key encryption is required to share a 

secret key between two cryptography users in order to exchange messages secretly. 

DES and Advanced Encryption Standards (AES) are symmetric key ciphers whereas 

Ronald Rivest, Adi Shamir, and Leonard Adleman (RSA) and Elliptic curve ciphers 

are well known asymmetric key ciphers. Symmetric cryptography is more secure but 

exchange of secret key is usually inconvenient so, asymmetric cryptography provides 

an alternative. In public key cryptography (asymmetric) two keys are used, a public 

key for encryption and a private key for decryption. Public key ciphers are based on 

hard computational problems, for example RSA cipher relies on the difficulty of 

factorization. Elliptic curve cryptography offers a comparable security but with 

shorter key length. Thus, presently hybrid cryptographic system is used to exchange 

messages more efficiently and securely. In this system the key is exchanged by 

using an asymmetric-key cipher, and the message is encrypted using a symmetric- 

key cipher. Major Joseph Mauborgne and Gilbert Vemam invented a perfect secure
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cipher “one time pad” in 1917. One-time pad cipher has a strong evidence of 

security but requires a key length equal to that of a plaintext message. However, 

practically it was considered inconvenient, especially for longer messages. Secret 

key ciphers are considered more secure but the key distribution is a major problem in 

these ciphers. Quantum cryptography, more precisely called quantum key 

distribution (QKD), has solved the problem of key distribution of conventional 

cryptography by using quantum information science. In contrast with conventional 

cryptography that uses unproven mathematical techniques (Elboukhari et al., 2009; 

GUMU§, 2012); quantum cryptography employs proven secure laws of quantum 

mechanics. Thus, quantum cryptography provides acceptable levels of secure 

distribution of a key, which is used with secret-key cipher or with one-time pad.

The first quantum key distribution protocol BB84 was developed by Gilles 

Brassard and Charles Bennett in 1984 (Bennett and Brassard, 1984). BB84 

comprises of two main steps that are quantum state transmission and conventional 

post processing. In the quantum state transmission, one party generates a sequence 

of random bits (0 or 1) called raw key and transmits it to a second party through 

quantum channel by encoding quantum carriers, e.g.; photons or laser pulses, into 

polarization state using randomly selected two basis -  rectilinear and diagonal. 

Second party decodes quantum carriers and obtains a raw key. It is quite possible 

that both parties, conventionally called Alice and Bob, may have different versions 

of raw key because of errors produced in the raw key. The source of errors may be 

imperfections or malfunctioning of quantum channel devices or presence of a 

potential eavesdropper at the quantum channel. These errors in the raw key are 

removed in a post quantum transmission phase, which is known as conventional post 

processing phase. In conventional post processing phase, key sifting and key 

distillation processes are carried out by exchanging messages through unsecure 

public communication channels such as wireless, internet or telephone lines. In key 

sifting process both parties compare their basis and discard all bits from their list for 

which the basis are unequal. The key obtained in the key sifting process is known as 

sifted key. Key distillation process is further divided into two phases namely error 

reconciliation (also called key reconciliation) and privacy amplification. In error 

reconciliation phase errors are removed from the sifted key whilst privacy 

amplification is used to diminish the knowledge of eavesdropper about the key. The
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progressive steps of a QKD protocol are given in Figure 1.1, and are discussed in 

subsequent chapters. This study is focussed on error reconciliation.

Quantum cryptography is being used by some government agencies and 

banks. Previously, the longest distance over which an encrypted key could send, 

along fiber cables or through the atmosphere, was approximately 100 kilometers 

(Optical Society of America, 2010). However, optical key distribution via these 

channels is limited to distances of less than 200 km due to signal losses along the 

way (Ludwig-Maximilians-Universitaet Muenchen, 2013). In 2007, Ludwig- 

Maximilians-Universitaet Muenchen (LMU) physicist Harald Weinfurter and his 

group successfully transmitted a key over 144 km of free space between ground 

stations on the islands of Tenerife and La Palma. Georgia Tech team developed a 

new technology that arranges series of quantum devices -  arrayed like Christmas 

lights on a string — could reach distances in excess of 1,000 kilometers via glass- 

fiber cable (Optical Society of America, 2010). A team led by Weinfurter and 

Sebastian Nauerth at the Physics Faculty at LMU Munich, in collaboration with the 

German Center for Aeronautics and Space Research (DLR), has now succeeded in 

optically transmitting quantum information between a ground station and a plane in

Figure 1.1: Quantum key distribution protocol BB84
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flight. This is the first time that quantum cryptography has been used for 

communication with a mobile transmitter (Ludwig-Maximilians-Universitaet 

Muenchen, 2013).

1.2 Background of the Study

Error reconciliation is an important phase in the key distillation process 

because an identical key for secret-key ciphers or one-time pad is required. In this 

phase, protocols are used to reconcile a key by exchanging messages between two 

users e.g.; Alice and Bob, through a public channel. The popular error reconciliation 

protocols are developed for error correction in the key. In 1992 five researchers, 

Bennett, Brassard, Bessette, Salvail and Smolin, put their research together and 

developed an error reconciliation protocol and they named it Binary. Binary protocol 

uses binary search to correct discrepancies in the key. Binary search is a simple way 

to detect and correct one error per block. Alice and Bob start a binary search upon 

the blocks for mismatching parties. They bisect blocks into sub-blocks and publicly 

compare the parities of each sub-block. This process is continued until an error is 

detected in the block. Binary corrects one error in a block and uses several iterations.

Brassard and Salvail (1994) developed Cascade protocol, the second famous 

error reconciliation protocol, which is an improved version of Binary protocol. The 

choice of block size has a great significance in Cascade protocol and it depends on 

the estimated error in the key. For small block size, the parity bits are needlessly 

disclosed to an eavesdropper for the blocks containing no error and large sized block 

needs more iterations to correct all errors. After comparing parities of blocks, Binary 

is used to correct errors. Another difference between Cascade and Binary can be 

seen in second and onward iterations where block size becomes double as in the 

previous iteration. From second iteration onwards, every iteration corrects two errors 

for every erroneous bit detected. Brassard and Salvail claimed in his original paper 

that four such iterations are sufficient to correct all errors in a key for realistic initial 

error rates. Since the publication of Cascade, it has been thoroughly studied and
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many enhancements have been proposed (Calver, 2011). Sugimoto and Yamazaki 

(2000) suggested applying alternate block strategy after two iterations; since most of 

the errors have been removed after second iteration. This improves the protocol 

efficiency compared with the original one. A dynamic block size selection was 

proposed by Rass and Kollmitzer in 2009 with the use of enhanced permutation 

function between two iterations (Bellot and Dang, 2009). The rate of interactivity in 

Cascade is very high due to the necessary parity exchanges. Cascade uses random 

bit permutations after each pass to distribute errors. These permutations my 

accumulate errors in a block instead to distribute therefore, size of the reconciled key 

is unpredictable in Cascade.

Winnow, an error reconciliation protocol, was proposed by Buttler et al., 

(2003) for QKD which offers lower interactivity and better throughput. Like Binary 

and Cascade, it also partitions binary string into blocks. Alice and Bob exchange 

parities of all their blocks and thus determine the blocks that contain odd number of 

errors. For blocks of diverging parity, Alice sends Bob the syndrome of a Hamming 

code calculated over her block. A syndrome is an error indicator that is calculated by 

multiplying message vector with a parity check matrix of the code. Unlike Binary 

and Cascade, which use a bisection, the correction of a block using the Hamming 

code does not necessarily reduce the number of errors in that block. The Hamming 

code proposed in Winnow allows Alice and Bob to correct one error. If more than 

one error is present in a block, Bob’s attempt may actually increase the number of 

errors in that block, thus, block size should be chosen in such a way that it globally 

reduces the number of errors. Unlike Cascade, the iterations of Winnow are 

independent of each other and so an exhaustive search could be performed at a low 

complexity using dynamic programming. Later on error correction capability of 

Winnow protocol was analysed and estimated by (Zhao et al. 2007). They believed 

that Winnow protocol removed errors efficiently at higher initial error rates (>7%), 

for smaller block size such as k = 8 bits (Zhao et al. 2007). (Yan et al. 2009) 

analysed the efficiency of Winnow protocol and suggested the optimal block size 

theoretically and experimentally for different error rate. In Winnow protocol, error 

rate is estimated by publicly comparing a random subset of sifted key bits. Lustic 

(2011) suggested a probabilistic approach for error estimation instead of publicly 

comparing and discarding sifted key bits. He also gave an efficient block-size
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schedule at given initial error rate. Even though Winnow is a fast and efficient 

protocol, it has the following discrepancies:

i. Cascade protocol performs better than Winnow for quantum bit error rate 

(QBER) up to about 10%, while between 10% and 18%, Winnow is more 

efficient but it does not perform well above 18% error rate. From 18% to 

25% Cascade is used (Van Assche, 2006).

ii. In Winnow protocol, both legitimate parties compute syndromes of their 

respective blocks separately using a Hamming code. After exchanging 

syndromes, they calculate syndrome difference as *Sd = Sa © 5b (ffi means 

exclusive OR). The syndrome difference «Sd does not distinguish between 

single- and multiple-bit errors in a block. Therefore, an additional error is 

introduced in a block when applying Hamming error correction method if Sd 

± {O r so the block already contains more than one error.

iii. Winnow is not applied to the blocks containing an even number of errors 

because it uses parity check method for error detection. Moreover, 

Hamming algorithm always corrects any single error within a k-bit block.

iv. Interactivity of Winnow protocol increases (requires many iterations) with 

increase in QBER and/or error-bursts in the sifted key, which reduces the 

key-security and hence reduces the size of final key.

The present research addresses the aforementioned issues of Winnow 

protocol by augmenting methods of encoding, error detection and correction 

algorithms.

1.3 Statement of Problem

An error reconciliation protocol corrects errors in a sifted key, which are 

produced due to imperfection of devices used in a quantum channel and/or presence 

of an adversary during quantum communications. Cascade protocol is an improved
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version of the first reconciliation protocol that is BBBSS. Both protocols, BBBSS 

and Cascade, use binary search to single out the error in a block of bits and then flip 

the erroneous bit to correct error. Cascade is more efficient than BBBSS to correct 

errors because it keeps the record of previously investigated blocks and search back 

the investigated blocks to correct errors from those. Cascade can only correct one 

error in a block of any size. Because, Cascade protocol uses binary search to detect 

error in a block therefore, it is highly interactive protocol. Many interactions (parity 

exchanges) are required between Alice and Bob. Winnow, an error reconciliation 

protocol, performs efficiently in removing errors as compare to Cascade. Winnow 

uses Hamming error correcting method to detect and correct errors and it is 

comparatively less interactive. It detects errors in a block by using parity 

comparison of receiver and sender’s block. If a block contains an even number of 

errors, the parity comparison claims that the block has no error. In other words, 

Winnow can only detect erroneous blocks that have an odd number of errors. 

Furthermore, Winnow protocol relies on Hamming error correcting code, which can 

correct only one error in a block of any size. If a block contains an odd number of 

errors greater than one, Hamming code introduces one more error instead of 

removing the error within the block. Either this situation increases the number of 

iterations to correct errors or Winnow may fail at high quantum bit error rates. In 

addition, the performance of Winnow decreases with increases in error-bursts in the 

sifted key.

The study developed a protocol which resolves issues of secret key 

reconciliation of quantum key distribution process. The research question is:

“How to devise a fast and efficient method that provides a higher key 

generation rate so that the minimum final error probability approaches to zero in the 

secret-reconciled key at higher quantum bit error rate (QBER)."

To answer this question, the following assumptions are made:

i. Sifted key comprises of binary digits.

ii. The conventional communication channel is a binary symmetric channel 

(BSC), for example, the entropy of the channel does not exceed the 

theoretical limit of Shannon’s entropy.
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iii. The channel is an authenticated public channel.

In addition, several sub-questions are raised as follows:

i. How do the existing error reconciliation protocols e.g.; Binary, Cascade and 

Winnow compare to each other at given initial sifted key error rate? And in 

case of burst errors in the sifted key?

ii. How to modify an error correction code to enhance error correction 

capability?

iii. What is the effect of block size on effectiveness of reconciliation protocol?

iv. How does an interleaver increase length of a reconciled key?

1.4 Purpose of Study

The aim of the research is to enhance secret key reconciliation to obtain a 

long-sized shared identical secret key by enhancing error reconciliation protocol.

1.5 Objectives of Study

Quantum key distributions protocol in theory offers unconditional security for 

key exchange but in reality, there are some technical limitations. For example, 

practical systems cannot achieve flawless quantum transmission that is required in an 

ideal quantum key distribution protocol. In addition to this, interference by an 

eavesdropper cannot be ignored, which leads to produce errors in the transmitted 

key. These errors must be resolved prior to applying key for cryptography. 

Efficiently reconciling these errors is the focus of this study. Specifically, this thesis 

will first enhance the BCH codes and then use these Enhanced BCH codes for
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efficient error reconciliation. The following objectives are set to achieve the aim of 

this research:

i. To increase the initial error handling capacity of error reconciliation 

protocol by designing an enhanced BCH encoding algorithm and plugging it 

into existing Winnow protocol.

ii. To minimize the final key bit error rate by design of enhanced BCH error 

detection and error correction algorithms and replacing the Hamming 

algorithm in Winnow protocol by the enhanced BCH error detection and 

error correction algorithms. The Winnow protocol with enhanced BCH 

encoding, error detection and correction algorithms is known as enhanced 

reconciliation protocol.

iii. To increase length of the reconciled secret key by designing and 

implementing a modified block interleaver in between two passes 

(iterations) of the enhanced reconciliation protocol.

1.6 Scope of Study

This research engaged in an in-depth study of components of quantum 

cryptography used for securing information in networks. The error reconciliation 

phase of quantum cryptography is an important part of this research. The 

information and coding theory is a basic component of error reconciliation process. 

Therefore, this research also focuses on channel coding e.g.; encoding and decoding 

methods, modifying existing BCH (Bose, Chaudhuri, Hocquenghem) error correction 

codes. Modifying existing BCH codes means enhancing BCH encoding, error 

detection and error correction algorithms and their implementation in error 

reconciliation protocol. In addition, this study designs a modified block interleaver 

and implementing it in the enhanced reconciliation protocol.
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1.7 Significance of the Study

Symmetric cryptography is considered, presently, a more secure information 

communication technique. The key for symmetric cryptosystem is distributed 

between users by encrypting it with asymmetric ciphers such as RSA or with Diffie- 

Hellman key exchange algorithm. These well-known asymmetric ciphers protect 

key-data based on the computational difficulty techniques. Asymmetric ciphers 

neither provide secrecy proof nor detect eavesdropping. RSA algorithm that is 

mainly used for key distribution (Elboukhari et al., 2009) depends upon the unproven 

computational assumptions. If someone finds a faster technique for factoring large 

integers, then the amount of computation time reduces significantly to decrypt key- 

data. Another flaw in RSA cipher is that any hacker can encrypt messages by 

utilizing public key to a legitimate recipient holding the private key. Moreover, with 

the advent of quantum computers the short-key encrypted messages would be 

decrypted by applying brute-force. In the presence of higher computational power, 

the encrypted-key might be broken easily. Peter W. Shor wrote an algorithm in 

1994 that could run on a quantum computer to reverse a one-way function. Several 

developed cryptosystems, which are based on low computational power, may be 

failed in the presence of expected quantum computers.

Quantum cryptography is considered an absolute secure key distribution 

method because of employment of physics based secrecy proofs and capability of 

eavesdropping detection. Quantum cryptography is regarded as secure information 

communication technique as long as quantum mechanics laws are valid. The 

combination of quantum key distribution with conventional asymmetric 

cryptographic ciphers boosts the confidentiality of information transmissions to an 

unprecedented level. Quantum cryptography has a bright future and is getting its 

necessary attention because of its security potential. The MIT Technology Review 

and Newsweek magazine wrote in 2003 (Quantique, 2009), quantum cryptography as 

one of the “ten technologies that will change the world”. Quantum cryptography is 

an emerging technology currently used by both military and financial organizations 

(Optical Society of America, 2010). Thomas Jennewein and Brendon Higgins from 

the Institute for Quantum Computing at the University of Waterloo, Canada, say a
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quantum space race is under way to create the world’s first global quantum- 

communication network. A team led by Weinfurter and Sebastian Nauerth at the 

Physics Faculty at LMU Munich, in collaboration with the German Center for 

Aeronautics and Space Research (DLR), for the first time, successfully transmitted a 

secure quantum code through the atmosphere from an aircraft to a ground station 

(Ludwig-Maximilians-Universitaet Muenchen, 2013). This research is considered a 

beginning in quantum cryptography in Universiti Teknologi Malaysia.

1.8 Organization of the Thesis

This thesis is organized into six chapters as shown in the Figure 1.2.

Chapter 4
Enhanced Encoding and 

Decoding Algorithms

Chapter 1
Introduction

Chapter 2
Literature Review

Chapter 3
Research

Methodology

Chapter 5
Enhanced Quantum Key
Reconciliation Protocol 

V_____________ _______________/

Chapter 6
Conclusion

Figure 1.2: Organization of the thesis
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Chapter 1 is introduction to the research. It briefly explains the problem statement, 

purpose of study, objectives and significance of the project. Chapter 2 represents the 

literature review of quantum cryptography, error reconciliation protocols and error 

correcting codes that leads to the formulation of the research problem. Chapter 3 is 

research methodology. This chapter reveals the research framework of the study and 

highlights the process to obtain a common secret-key for quantum cryptography. 

Chapter 4 provides the design of enhanced encoder, enhanced error detection and 

correction algorithms. Chapter 5 describes modified block interleaver, enhanced 

quantum key reconciliation protocol and their implementation. Chapter 6 concludes 

the thesis with lists of contributions, findings and recommendations for the future 

research.
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