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ABSTRACT 

 

Electroencephalograph is one of the useful and favoured instruments in 

diagnosing various brain disorders especially in epilepsy due to its non-invasive 

characteristic and ability in providing wealthy information about brain functions. At 

present, a large amount of quantitative methods for extracting “hidden” information 

which cannot be seen by “naked” eye from an electroencephalogram has been 

invented by scientist around the world. Among those, Flat Electroencephalography 

(Flat EEG) is one of the novel methods developed by Fuzzy Research Group (FRG), 

UTM which has been intended to localize epileptic foci of epilepsy patients. The 

emergence of this invention has led to the development of several Flat EEG based 

research (e.g., Non Polar CEEG and Fuzzy Neighborhood Clustering on Flat EEG). 

The verification of the method has been made via comparison with some substantial 

clinical results. However, in this thesis, theoretical foundation of the method is 

justified via the construction of a dynamic mathematical transformation called 

topological conjugacy whereby isomorphism between dynamics of epileptic seizure 

and Flat EEG is established. Firstly, these two dynamic events are composed into 

sets of points. Then, they are forced to be strictly linearly ordered and composed into 

topological spaces. Subsequently, an isomorphism is constructed between 

corresponding mathematical structures to show that their properties are preserved 

and conjugate topologically. The constructed topological conjugacy is generalized 

into a class of dynamical systems. Within this class of dynamical system, Flat EEG’s 

flow is shown to be structurally stable. Additionally, topological properties on the 

event of epileptic seizure and Flat EEG have also been established. 
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ABSTRAK 

 

Elektroensifalograf adalah salah satu instrumen yang berguna dan digemari 

dalam mendiagnosis pelbagai masalah gangguan otak terutamanya epilepsi 

disebabkan oleh sifat semulajadinya yang tidak invasif dan keupayaannya dalam 

memberi maklumat yang banyak mengenai fungsi otak. Pada masa kini, sejumlah 

besar kaedah kuantitatif untuk mengekstrakan maklumat “tersembunyi” yang tidak 

dapat dilihat dengan mata kasar dari elektroensifalogram telah dicipta oleh saintis di 

seluruh dunia. Antaranya, Elektroensifalografi Rata (Flat EEG) merupakan salah satu 

kaedah baru yang berjaya dibangunkan oleh Kumpulan Penyelidikan Kabur (FRG), 

UTM atas tujuan menentukan lokasi fokus sawan pesakit epilepsi. Kemunculan 

ciptaan ini telah mendorong kepada beberapa pembangunan penyelidikan yang 

berasaskan Flat EEG (contohnya, CEEG Tidak Berkutub
 

dan Pengelompokan 

Kejiranan Kabur pada Flat EEG). Penentusahkan bagi kaedah ini sudah pun dibuat 

melalui perbandingan dengan keputusan-keputusan klinikal. Walau bagaimanapun, 

dalam tesis ini, teori asas bagi kaedah tersebut akan dijustifikasikan menerusi suatu 

pembinaan transformasi dinamik yang dipanggil topologikal konjugasi dimana 

isomorfisma diantara dinamik ketika serangan sawan dan Flat EEG akan dibina. 

Pertama sekali, dinamik ketika serangan sawan akan digubah kepada set. Kemudian, 

ia akan dijadikan set linear tegas dan digubah kepada ruang topologi. Seterusnya, 

suatu isomorfisma akan dibina diantara struktur matematik yang sepadan untuk 

menunjukkan sifat-sifat mereka dikekalkan dan konjugat dari segi topologi. Topologi 

konjugasi yang dibina tersebut juga diitlakan ke dalam suatu kelas system dinamik. 

Dalam kelas sistem dinamik ini, aliran Flat EEG telah ditunjukkan stabil dari segi 

strukturnya. Di samping itu, sifat topologi semasa serangan sawan dan Flat EEG juga 

dipaparkan.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

 

Disease is an anomalous condition whereby the ordinary functions of any 

parts of the body of an organism are interrupted.  Usually, they are associated with 

symptoms and signs.  One of the various formal ways of defining the term disease 

would be “any impairment that interferes or modifies the performance of normal 

functions, including responses to environmental factors such as nutrition, toxicants, 

and climate; infectious agents; inherent or congenital defects; or combinations of 

these factors” as defined by Wobeser (1997).  Seizure is a type of condition that 

arises from disease.  It is the physiology alteration which usually occurs 

unexpectedly due to the malfunction or synchronous abnormal discharges of 

electrical activity inside the brain.  Such condition can happen to anyone at any age 

regardless of gender, but are more likely to strike on elderly.  Statistically, it affects 

approximately 4% of the world populations of age 80 or lesser (Susan, 2004). 

  

Seizure was defined by Perkin et al. (2007) as the sudden disturbance of 

electrical function inside the brain associated with changes of neurologic function.  

Generally, seizures can be classified into two major groups depending upon how they 

begin.  At present, two of the most widely accepted and universally employed seizure 

classifications are the 1981 and 1989 International Classifications of Epilepsies, 

Epileptic Syndromes and Related Seizures Disorders, proposed by International 

League Against Epilepsy (ILAE) (Jerome, 2006).  ILAE is a physician’s association 
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which seeks to create a better life to people with seizures and is the most preeminent 

in world.  Through this classification, epileptologists are able to communicate 

between each other using a standard reference. Basically, the two major groups of 

seizure classified by 1981 and 1989 ILAE are partial (also called local or focal) 

seizures and generalized seizures (Shorvon, 2010).  Partial seizure involved only 

specific and small part of the brain cortex, usually in one hemisphere, whereas 

generalized seizure involves large area of cortex in both hemispheres of the brain. 

 

Causes of seizure can be of drug overdose, imbalance of chemical substances 

in the body, withdrawal of alcohol or drug, high fever, kidney or liver failure, 

infection in the brain, brain tumor, or abrupt reduction of blood or oxygen flow to the 

brain (Bricker et al., 1994; Peacock, 2000; Williams and Wilkins, 2007; Atamon, 

2008).  On the other hand, condition that may be experienced during seizure includes 

sudden unintentional or uncontrolled muscle movements, sensory disturbances, loss 

or alteration in consciousness (one of the typical condition for generalized seizure), 

short-term anomalous sensation, visual disturbances and etc. (Pitkanen et al., 2006).  

Some seizures are accompanied by symptom (also called as aura) in which may serve 

as an initial warning for sufferer to take precaution or safety measure.  Examples of 

symptoms are irregular smell, sounds or taste, strange feelings, headache, feeling 

dizzy or numb (Sadock et al., 2007).  However, not every seizure comes with such 

clue.  Consequently, it would be life threatening if the person is driving, swimming 

alone, crossing a busy road and etc. 

 

Most of the time seizure last for only 3 to 5 minutes (American Academy of 

Orthopedic Surgeons, 2010).  It rarely last longer than 15 minutes.  Nonetheless, a 

seizure can be recurrent i.e., occur more than once.  If a seizure is recurrent and 

unprovoked, it is potentially due to epilepsy (Engel et al., 2008).  This implies that 

epilepsy is a type of seizure and that not all seizures are due to epilepsy (Appleton 

and Marson, 2009).  The general term for people with epileptic seizure is epilepsy. 

Similar as seizure, in epilepsy there is also a miniature brainstorm of certain groups 

of brain cells.  The source or origin of the current sources, that is, the location which 

generate the corresponding tiny electric current, is known as epileptic foci. 
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Electroencephalography (EEG) is the recording of the electrical activity 

originating from the brain.  It is non-invasive in nature and thus harmless and 

painless, as recordings are done on the surface of scalp where multiple of electrodes 

are placed.  One of the major advantages of EEG is that abnormal electrical activity 

inside the brain can be recorded and portrayed on an electroencephalogram for 

further analysis.  EEG is used extensively to diagnose epilepsies, classify the type 

and locate the source of electrical activity (Sanei and Chambers, 2007).  This device 

is according to Popp and Deshaies (2007), Yudofsky and Hales (2008) and Gilhus et 

al. (2011) to be one of the most important laboratory tests in identifying epilepsies.  

Perhaps the best reason for its wide acceptance is that EEG allows neurologists to 

analyze and locate damaged brain tissue and also to make planning prior to surgery 

to avoid or lessen the risk of injury on important parts of the brain.  Recently, 

obtaining the graphic electrical activity inside the brain has in general become a 

necessary part of surgical (Miller and Cole, 2011). 

 

Hans Berger, a German psychiatrist, was the principal inventor of 

electroencephalography and the first recording of human brain electrical activity was 

conducted by him in the year of 1924 (Ramon, 2010).  Thereafter, it was discovered 

by him the existence of rhythmic alpha brain waves in the year of 1929 (Tong and 

Thakor, 2009).  Since then, Hans Berger became popular and managed to achieve 

international recognition and fame.  This powerful invention which is capable of 

explaining how the brain works in terms of electrical activity, has gained him the 

name father of human electroencephalography.  Other stuffs that Hans Berger has 

also research on in the early years, was measuring electrical waves in the cortices of 

dogs and also measuring temperature oscillations using mercurial thermometer 

(Verplaetse, 2009). 

 

1.2 Research Background 

 

Lately, numerous research using various concepts and techniques to identify 

epileptic foci has been established in the interest of creating better life for epileptic 
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patients.  For instances, via multimodality approach (Desco et al., 2001), by using 

large-area magnetometer and functional brain anatomy (Tiihonen et al., 2004), 

examining correlations among electrodes captured by linear, nonlinear and multi 

linear data analysis technique (Evim et al., 2006), 3-D source localization of epileptic 

foci by integrating EEG and MRI data (Natasa et al., 2003) and even approaches that 

are based on statistical tools such as Bayesian method (Toni et al., 2005) and 

maximum likelihood estimation approach by Jan et al. (2004).  Each of the methods 

has their own advantages and weaknesses. 

 

Liau (2001) under Fuzzy Research Group (FRG) in UTM has also developed 

a novel mathematical model to solve neuromagnetic inverse problem.  This model is 

termed as Fuzzy Topographic Topological Mapping (FTTM) and is a topological 

structured-based model.  The main advantage of FTTM model is it requires only 

instantaneous data.  Thus, the computing time is lower compared to statistical-based 

models.  Generally, FTTM enables recorded signals (on flat surface) be portrayed 3-

dimensionally.  Since the introduction of FTTM, majority of the research by FRG 

has been on visualizing and extracting “hidden” information from EEG signals.  All 

these studies were conducted to gain deeper understanding on how brain works from 

mathematical viewpoint. 

 

Flat EEG signal (Flat EEG, in short) is a way of viewing EEG signals on the 

first component of FTTM.  Hence, theoretically, EEG signals can be portrayed in 3-

dimension space by FTTM model.  Since the introduction of Flat EEG, most FRG 

research has been on extracting quantitative information within EEG via Flat EEG.  

Constructions of Flat EEG embark from the modeling of epileptic seizure as a 

dynamical system with potential difference as the feature space.  Then by exploiting 

the dynamic temporal ordering properties on the state space trajectory of seizure, it 

was showed that a whole Flat EEG data can be analyze piece by piece (Fauziah, 

2008).  This signifies that dynamics is embedded within Flat EEG.  Hence, Flat EEG 

is a dynamical system. 

 

A large amount of advancement and outstanding achievement has been 

gained by FRG since the introduction of Flat EEG.  For instance, Amidora (2012) 
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has developed a clustering method using Non-Polar CEEG, which is an extension and 

improvement of Flat EEG in terms of portraying cluster centers of electrical activity.  

The results obtained from this method have been compared and validated (with 

significant agreement) with the results obtained via functional magnetic resonance 

imaging (fMRI) in one of the leading brain institute in Japan, Riken (Amidora, 

2012).  Furthermore, Faisal (2011) had also successfully proved that Flat EEG at any 

time can be written as matrix form and further be decomposed uniquely into simple 

groups analogous to how every integer has unique prime factorization.  His discovery 

has received good compliments from some experts (Faisal, 2011). 

 

1.3 Problem Statement 

 

At present, several Flat EEG based research has been introduced and 

conducted with some still in progress.  Most of this research intends to improve and 

enhance Flat EEG in terms of portraying the origin of electrical activity inside the 

brain.  Although those developed method is reliable, it still lack of a comprehensive 

mathematical justification.  Primarily, none mathematical formulation has been 

offered for transformation of dynamicity of epileptic seizure to Flat EEG.  Owing to 

the fact that Flat EEG rely greatly upon the concept of dynamical system, this “gap” 

must therefore be “patched” in order to obtained verification on Flat EEG and also 

findings which stems from Flat EEG.  Besides, transformation of EEG to Flat EEG 

which preserves the magnitudes renders Flat EEG to contain unwanted signals 

captured during recording from the surroundings.  Consequently, its accuracy in 

representing actual electrical activity inside the brain is often affected.  Hence, issue 

pertaining to persistence of Flat EEG to perturbations is imperative.  Apart from that, 

there has been lack of mathematical interpretation on the event of epileptic seizure.  

Thusly, establishing topological properties on this event would be appealing. 
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1.4 Research Objectives 

 

The objectives of this research are: 

1. to construct a mathematical model which can describes the dynamicity of 

Flat EEG in relation to epileptic seizure; 

2. to generalized the topological conjugacy between the dynamical system 

of epileptic seizure and dynamical system of Flat EEG into a class of 

dynamical systems; 

3. to investigate the persistence of the dynamical system of Flat EEG to 

perturbations; 

4. to describe the event of epileptic seizure and Flat EEG topologically. 

 

1.5 Scope of Research 

 

In this research, the dynamic justification of Flat EEG, Flat EEG’s reliability 

in the presence of artifacts and the mathematical description on the event of epileptic 

seizure and Flat EEG will be carry out using notion of topology. 

 

1.6 Significance of Findings 

 

Contributions of the findings in this study are: 

1. a mathematical model which can describes the dynamicity of Flat EEG in 

relation to epileptic seizure; 

2. the development of a topological conjugacy which serves as an 

equivalence relation in a class of dynamical systems; 

3. the development of a neighborhood of perturbations where the dynamical 

system of Flat EEG is structurally stable. 

4. the development of topological properties on the event of epileptic 

seizure. 
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1.7 Thesis Outline 

 

 This thesis contains nine chapters.  Its framework is depicted in Figure 1.1. 

Chapter 1 provides the general information of the research which includes the 

research background, problem statement, research objectives, scope of research and 

the significance of the findings.  It enables readers to grasp the whole idea of the 

thesis. 

 

Chapter 2 presents the literature reviews of relevant research.  Basically, 

origin of electrical currents inside the brain and instrument (EEG) used to measure 

the electrical currents is explained.  Subsequently, available methods used to locate 

the source of electric currents developed by FRG i.e., Flat EEG and Non-Polar CEEG 

are presented. 

 

 Mathematical concepts will be presented in Chapter 3.  In Chapter 4, the 

notion of modelling will be discussed and assumptions imposed in this work along 

with their justifications will be presented. 

 

Chapter 5 presents the dynamic model construction for Flat EEG.  Basically, 

a geometrical representation for Flat EEG is introduced in prior to modeling Flat 

EEG as dynamical system.  Besides, epileptic seizure was also re-modeled as 

dynamical system using the notion of flow. 

 

 In Chapter 6, various mathematical structures will be established on the 

trajectories of dynamical systems of epileptic seizure and Flat EEG.  Then a 

topological conjugacy will be constructed from epileptic seizure to Flat EEG.  

Additionally, the topological conjugacy is shown to form an equivalence relation in a 

class of dynamical systems. 

 

 In Chapter 7, the reliability of Flat EEG in the presence of artifacts will be 

investigated by means of structural stability. 
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 Chapter 8 describes the event of epileptic seizure and Flat EEG 

mathematically.  Particularly, notion of topology will be used to describe the events. 

  

Finally, Chapter 9 concludes this thesis by giving the summary of every 

chapter, highlighting the significance of the research and providing some suggestions 

for future research. 
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Figure 1.1: Research framework 
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