
A DESIGN DOCUMENT GENERATOR TO SUPPORT

A LINKAGE BETWEEN CODE AND DOCUMENT

IZZUL HIDAYAT NAISAN

A thesis submitted in fulfillment of the

requirements for the award of the degree of

Master of Science (Computer Science)

Faculty of Computing

Universiti Teknologi Malaysia

JULY 2013

iii

Dedicated to…

My beloved parents:

Naisan Yunus and Aisyah Umar

Even billions of thanks are not enough for your endless love, hope, and advice.

My sisters: Susanti, Rifqiyati, and Iin Fajrulhuda

To my brother: Ikhwanul Muslimin

Who always give the motivation to move on and growing better.

My beloved wife: Fariza Octrina

For all inspiration and encouragement, and may all things run well.

And to all friends and colleagues

Thanks for giving me spirit, support and enlightenment.

v

ABSTRACT

 In recent years, more than half of current companies are still working on old

systems. Software maintenance, testing, quality assurance, reuse, and integration are

only a few examples of software engineering activities that involve old systems. A

key aspect related to all these processes is the identification of the components of a

system and the comprehension of the existing linkage between components. One way

to identify these components of system is by analyzing its documentation. However,

in many cases, documentation is a missing or obsolete item in old software

maintenance. As the software technology advances evolve over time, there is a need

to create and maintain a relationship between source code and documentation. This

linkage needs to be maintained to ensure that software documentation remains

consistent and up-to-date with code. This consistency will assist quality and reduce

maintenance work. A new relationship model is proposed between documentation

and low level software that includes the code and its associated structures and

physical components. The significant benefits of this research can be observed at its

ability to support document viewers to manage and maintain the existing system. A

prototype was developed and an evaluation was carried out to realize the proof of

concept. The results show that the proposed model is significant and provides a

useful access between code and documentation.

vi

ABSTRAK

 Sejak beberapa tahun kebelakangan ini, lebih daripada separuh syarikat-

syarikat masih menggunakan sistem lama. Penyelenggaraan, pengujian, kepastian

kualiti, guna-semula dan integrasi perisian adalah antara contoh-contoh aktiviti

kejuruteraan perisian yang melibatkan sistem lama. Satu kunci aspek yang

mengaitkan semua proses-proses ini adalah mengenalpasti komponen-komponen dan

pemahaman terhadap jejakan yang sedia ada antara komponen-komponen. Salah satu

cara untuk mengenalpasti komponen-komponen sistem ini adalah dengan

menganalisa dokumen-dokumennya. Walau bagaimanapun, dalam banyak kes,

dokumen didapati hilang atau pupus untuk pemeliharaan perisian legasi. Dalam

kemajuan teknologi perisian selaras dengan perkembangan masa, terdapatnya suatu

keperluan untuk membina dan menyelenggara jejakan antara sumber kod dan

dokumen. Jejakan ini perlu diselenggara untuk memastikan dokumen perisian adalah

sejajar dan terbaru atau dikemaskini bersama dengan kod. Wajaran ini akan

membantu kualiti dan mengurangi kerja pemeliharaan. Model jejakan yang baru

dicadangkan, antara dokumen dan aras rendah perisian termasuklah kod itu dan

struktur berkaitan dengannya dan komponen-komponen fizikal. Kebaikan yang

signifikan daripada penyelidikan ini boleh diperhatikan pada kemampuannya untuk

menyokong pembinaan dokumen dalam menguruskan dan memelihara sistem yang

sedia ada. Satu prototaip dibina dan diujikaji bagi mengesahkan konsep penyelidikan.

Keputusan menunjukan bahawa model yang dicadangkan adalah signifikan dan

menyediakan akses yang baik antara kod dan dokumentasi.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES xi

 LIST OF FIGURES xii

 LIST OF ABBREVIATION xiv

 LIST OF APPENDICES xv

1 INTRODUCTION 1

1.1 Introduction 1

1.2 Background of the Problem 1

1.3 Statement of the Problem 3

1.4 Objectives of the Study 4

1.5 Importance of Study 4

1.6 Scope of Work 4

1.7 Thesis Organization 5

1.8 Summary 6

viii

2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Software Maintenance 7

 2.2.1 Definition of Software Maintenance 8

 2.2.2 Software Maintenance Categories 9

 2.2.3 Software Maintenance Processes 10

2.3 Software Documentation 11

 2.3.1 Software Redocumentation 14

 2.3.2 Software Redocumentation Process 15

 2.3.3 Some Existing Tools on Software Redocumentation 15

 2.3.4 Summary of Software Redocumentation Tools 18

2.4 Reverse Engineering 19

 2.4.1 Definition of Reverse Engineering 20

 2.4.2 Reverse Engineering Process 20

 2.4.3 Some Reverse Engineering Techniques 22

 2.4.4 Some Existing Tools on Reverse Engineering 27

 2.4.5 Summary of Reverse Engineering Tools 30

2.5 Software Design 32

2.6 Unified Modeling Language 33

2.7 Software Documentation and Code Linkage 34

2.8 Critical Evaluation of Existing Code and Documentation

 Linkage Approach 35

2.9 Summary 41

3 RESEARCH METHODOLOGY 42

3.1 Introduction 42

3.2 Research Design and Procedure 42

3.3 Literature Review and Preparation Phase 44

3.4 System Analysis and Design 46

3.5 Prototype Development Phase 47

3.6 Validation and Testing Phase 48

3.7 Assisting Tools 50

3.8 Summary 51

ix

4 MODELING AND DESIGN 52

 4.1 Introduction 52

 4.2 Overview of Documentation Generator System 52

 4.3 Prototype Architecture 54

 4.4 Prototype Classes 55

 4.5 Components in Documentation Generator Process 58

 4.5.1 Code Parser 58

 4.5.2 XML Reader 63

 4.5.3 Content and Diagram Manager 66

 4.5.4 Doc-Generator 67

 4.5.5 Code-Doc Connector 68

 4.5.6 Finder (Search) 69

 4.6 Documentation Generator Linkage Model 70

 4.7 Summary 72

5 IMPLEMENTATION 73

5.1 Introduction 73

5.2 sddGen Implementation and User Interfaces 73

5.3 Assisting Tools 83

 5.3.1 Code Parser 83

 5.3.2 Diagram Generator 87

5.4 Summary 90

6 FUNCTIONAL TESTING AND COMPARISON

 BETWEEN ARCHITECTURE 91

6.1 Introduction 91

6.2 Case Study 92

 6.2.1 Outlines of Case Study 92

 6.2.2 OBA Project Briefing 93

6.3 Testing Criteria 94

6.4 Testing Results 94

6.5 Comparison of Existing and Proposed Software

 Linkage Approaches 100

6.6 Summary 102

x

7 CONCLUSION AND FUTURE WORKS 103

7.1 Introduction 103

7.2 Research Summary and Achievements 103

7.3 Contribution 105

7.4 Research Limitation and Future Works 106

7.5 Summary 107

REFERENCES 108

Appendix A – B 114- 162

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1

2.2

Comparison of Software Redocumentation Tools

Comparative Study of Software Linkage Approaches

19

39

3.1 Research Questions, Objectives, Activities, and

Deliverables

44

4.1 Translation of XML Input 64

5.1 Data Manipulation Language Syntaxes 81

5.2 Some Data Definition Language Syntaxes 81

5.3 Sample Table of Methods 82

5.4 Example Result-set of SELECT LIKE Query 83

5.5 Output Formats Directly Supported by Doxygen 86

5.6 Output Formats Indirectly Supported by Doxygen 86

6.1 List of Classes from Universal Report 94

6.2 List of Classes from Doxygen 95

6.3 List of Classes from Doxys 96

6.4 List of Classes from sddGen 97

6.5

6.6

Evaluation Results based on Bellay and Gall (1998)

Criteria

Comparison of Existing and Proposed Approaches

98

101

xii

LIST OF FIGURES

FIGURE TITLE PAGE

2.1 Waterfall Software Development Life Cycle (Hung, 2009) 8

2.2 IEEE Maintenance Process 10

2.3 ISO Maintenance Process 11

2.4 Documentation Tree 12

2.5 Software Redocumentation Processes 15

2.6 Universal Report Output 16

2.7 Doxygen Interface 17

2.8 Javadoc Output 18

2.9 Reverse Engineering Process 21

2.10 CREP (Tortorella and Visaggio, 1997) 22

2.11 MDA-based Reverse Engineering 25

2.12 Search Based Reverse Engineering (Mitchell et al., 2002) 26

2.13 Rigi Output (Rigi Group, 2009) 28

2.14 Columbus Interface 28

2.15 CodeSurfer Output (Grammatech, 2009) 30

2.16 Hierarchy of UML diagrams (Wikipedia, 2009) 34

2.17 ENVISION Architecture (Zhou, 2008) 36

2.18 Traceability Tool Design (Asuncion, 2007) 37

2.19 CATIA Architecture (Ibrahim, 2006) 38

3.1 Activities in Literature Review and Preparation Phase 45

3.2 Activities in System Analysis and Design Phase 47

xii

 4.1 Overview of Documentation Generator Process Model 53

4.2 sddGen Architecture 54

4.3 Classes of sddGen 56

4.4 Phase 1: Code Parser 59

4.5 Code Parser Architecture 61

4.6 Phase 2: XML Reader 63

4.7 XML file generated by code parse 64

4.8 Phase 3: Doc Generator Process 67

4.9 Phase 3: Doc-Generator Linkage 70

5.1 sddGen Home Screen 74

5.2 Content Manager 75

5.3 Diagram Manager 75

5.4 XML Reader 76

5.5 Files 77

5.6 Classes 78

5.7 Generator 79

5.8 Find Artifacts 80

5.9 Project Settings of Doxygen 84

5.10 Operating Mode of Doxygen 85

5.11 Doxygen Output Formats 85

5.12 Running Window of Doxygen 87

5.13 StarUML 88

xv

LIST OF APPENDICES

APPENDIX TITLE PAGE

A

B

Evaluation Steps

Source Code

114

151

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter explains about the overview of the thesis. It delivers a brief

introduction to the study conducted. The topics tackled in this chapter are: problems

background, problem statement, objectives of study, importance of study, work scope, and

thesis outline.

1.2 Background of the Problem

It is clearly known that software systems have played a great role to a lot of

companies in this era. The business processes have become so much involved with

systems of a computer that a break down or interupption of the essential software system

can cause loss of huge amount (Fahmi and Choi, 2007).

Nowadays, many companies are working on old systems. . Software maintenance,

reverse engineering, quality assessment, components recycle and integration are only a

few examples of software engineering activities relating old systems. A fundamental

aspect related to all these processes is identification of artifacts used in a system and

interpretation of relationships among them (Canfora and Di Penta, 2007).

2

 One way to identify the components of system is by analyzing its documentation

and see how it is relevant and consistent to software system. The documentation is

important to interpret a system at a certain level of abstraction, in a circumscribed amount

of time. It is necessitated, for example, when a system is relocated or re-engineered. It is

able to be utilized to map functional change requests as communicated by end users onto

technical change requests, and to calculate the cost of such change. Eventually,

documentation will be needed in the process of outsourcing maintenance or when the new

members need to learn about the environment (Van Deursen and Kuipers, 1999).

However, in many cases, documentation is a missing item in the maintenance of

old software systems, many parts of documentation are obsolete and no longer up to date

(Anquetil and De Oliviera, 2006). As current technology evolves, there is an emergence

need for the corresponding documentation and source code to be synchronous each other.

Unsynchronous relationship between them can cause a company to spend more time,

money, and resource. Very often, maintainers team must work from the code to the result

of any other available source of information in reverse order i.e. re-engineer the code to

design abstract level. This work is very frustating as it is very difficult to handle, unless

some preliminary study has been done. De Souza et al. (2005) reported that from 40% to

60% of the maintenance activity is spent on learning the software to interpret it and how

the planned modification may be implemented. This is a costly operation that required

researchers to give a special attention on document and code relationships.

This thesis is looking into a possibility of moving forward to support maintenance

by addressing some problems associated to relationship between documentation and code.

It enables maintenance team get the latest associated components of the software evolves

over time. It brings easy maintenance and to documentation, which may otherwise

become obsolete. Software components that are well-documented are easier to

comprehend and consequently easier to reuse and make it maintainable. This is

particularly useful in large software systems where the dependent modules and structures

are more complicated to comprehend (Schugerl et al, 2009).

3

1.3 Statement of the Problem

Documentations which were traditionally prepared by developers in some cases

are inconsistent as some change requests, updates, or bugs fixing somehow are not well

updated with code. Developers tend to be focusing on source code rather than the

documentation. Code is considered the most reliable source of software and evolve faster

over time whereas its change is not synchronous and properly handled at documentation

level. Unless some component linkage has been established, it is not easy to update the

documentation manually. Some parts still require human interaction to complete the

relationship (Van Deursen and Kuipers, 1999).

This research posits associated source code and documentation that may provide a

better understanding of an existing system by maintenance team The connection built may

make documentation consistent with the code at all times. The hypothesis leads to the

following research questions.

The main research question is “How to create and maintain a linkage between the

source code and documentation in order to make them consistent and maintainable?”

The sub-questions of the main research question are as follows.

(i) What are the issues with old systems pertaining to maintenance?

(ii) Why the use of current documentation still cannot satisfy the demand of work

during software maintenance?

(iii) How can we develop documentation generator to support a linkage between source

code and documentation?

 (iv) How to test the functionality of the proposed prototype and compare it along with

existing tools?

4

1.4 Objectives of the Study

Based on the problem statements mentioned above, this research encompasses a

set of objectives that is associated to the milestones of research process. The research

objectives are mentioned below.

(i) To investigate the issues and ways forward to improve the current system

documentation.

(ii) To formulate and design a linking approach between code and documentation.

(iii) To develop a prototype to support the approach.

(iv) To test the functionality of proposed protoype and compare it along with existing

tools.

1.5 Importance of Study

A lot of changes may cause the current documentation becomes irrelevant that

makes maintenance team work harder to trace back the changes through the source code.

Reconstructing and effectively generating the design documentation of existing software

systems is even more difficult than initial design (Wong et al, 1995). Therefore, in order

to reduce this problem, creating a linkage between source code and documentation is

useful.

1.6 Scope of Work

In order to accomplish the objectives of this study, it is important to identify the

scope, which covers the following aspects.

(i) The research subject of a case study will focus on some code written in an object-

oriented programming language.

108

REFERENCES

Al-Kilidar, H., Cox, K., and Kitchenham, B. (2005). The use and usefulness of the

ISO/IEC 9126 quality standard. International Symposium on Empirical Software

Engineering. 17-18 November.

Anderson, P. (2004). CodeSurfer/Path Inspector. Proceedings of the 20th IEEE

International Conference on Software Maintenance. 11-14 September 2004. 508.

Anderson, P. and Zarins, M. (2005). The CodeSurfer software understanding platform.

Proceedings of the 13th International Workshop on Program Comprehension

(IWPC’05). 15-16 May 2005.

Anquetil, N., K. M. Oliveira, and Dias, M.G.B. (2006). Software Maintenance Ontology.

In Ontologies for Software Engineering and Software Technology (pp. 153-173).

Berlin: Springerlink Berlin Heidelberg.

Appleton, B. (2009). A Software Design Specification Template. Last accessed on

February 24, 2009. http://www.cmcrossroads.com/bradapp/docs/sdd.html.

Asuncion, H.U., Francois, F., Taylor, Richard N. (2007). An end-to-end industrial

software traceability tool. Proceedings of the the 6th joint meeting of the European

software engineering conference and the ACM SIGSOFT symposium on The

foundations of software engineering. Dubrovnik, Croatia: ACM.

Bellay, B. and Gall, H. (1997). A comparison of four reverse engineering tools.

Proceedings of the Fourth Working Conference on Reverse Engineering. 1997.

Bellay, B. and Gall, H. (1998). An evaluation of reverse engineering tool capabilities.

Journal of Software Maintenance 10(5), 305-331. Wiley InterScience.

109

Booch, G., Rumbaugh, J., and Jacobson, I. (1999). The Unified Modeling Language user

guide, Addison Wesley Longman Publishing Co., Inc.

Canfora, G. and Cimitile, A. (2001). Software Maintenance. In Handbook of Software

Engineering and Knowledge Engineering I. World Scientific Pub.

Canfora, G. and Di Penta, M. (2007). New Frontiers of Reverse Engineering. Future of

Software Engineering (FOSE '07). 2007. IEEE, 326-341.

Chikofsky, E. J. and Cross, J. H. II (1990). Reverse engineering and design recovery: a

taxonomy. Software. 7(1), 13-17. IEEE.

Chu, W. C., Lu, C. W., Chang, C.H., Chung, Y.C., Liu, X. Yang, H. (2002). Reverse

Engineering. In Handbook of Software Engineering and Knowledge Engineering II.

World Scientific Pub.

De Souza, S. C. B., Anquetil, N., de Oliveira, K.M. (2005). A study of the documentation

essential to software maintenance. Proceedings of the 23rd annual international

conference on Design of communication: documenting & designing for pervasive

information. 2005. Coventry, United Kingdom: ACM, 68-75.

Dennis, S. M. (2003). Project in applied software engineering. J. Comput. Small Coll.

18(6), 22-27. ACM.

Din, D. (2009). A Source Code Query to Support Structured Program Understanding.

Master of Science. Universiti Teknologi Malaysia, Skudai.

Douglas, K. (1999). API documentation from source code comments: a case study of

Javadoc. Proceedings of the 17th annual international conference on Computer

documentation. 1999. New Orleans, Louisiana, United States: ACM.

Fahmi, S. A. and Ho-Jin, C. (2007). Software Reverse Engineering to Requirements.

International Conference on Convergence Information Technology. 2007.

Favre, L. (2008). Formalizing MDA-Based Reverse Engineering Processes. Sixth

International Conference on Software Engineering Research, Management and

Applications (SERA '08). 2008.

Favre, L. and Pereira, C. (2008). Formalizing MDA-Based Refactorings. 19th Australian

Conference on Software Engineering (ASWEC 2008). 2008.

Ferenc, R., Beszedes A., Tarkiainen, M., and Gyimothy, T. (2002). Columbus - reverse

engineering tool and schema for C++. Proceedings of International Conference on

Software Maintenance. 2002. IEEE.

110

FrondEndt Art Ltd. (2009). Columbus/CAN. Last accessed on February 6, 2009.

http://frontendart.com/products_col.php.

Grammatech. (2009). CodeSurfer Screenshoots. Last accessed on February 12, 2009.

http://www.grammatech.com/products/codesurfer/screenshots.html.

Heesch, D. V. (2009). Doxygen. Last accessed on February 8, 2009. http://www.stack.nl/

~dimitri/doxygen/.

Hung, T. (2009). Software Development Process. Last accessed on February 3, 2009.

http://cnx.org/content/m14619/latest/.

Ibrahim, S. (2006). A Document-Based Software Traceability to Support Change Impact

Analysis of Object-Oriented Software. Doctor of Philosophy. Universiti Teknologi

Malaysia, Skudai.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. IEEE Std

610.12-1990. New York: IEEE.

IEEE (1998). IEEE Standard for Software Maintenance. IEEE Std 1219-1998. New York:

IEEE.

ISO/IEC (2001). Software Engineering – Product quality – Part1: Quality Model.

ISO/IEC 9126-1. Geneva, ISO/IEC.

Klump, R. (2001). Understanding object-oriented programming concepts. Power

Engineering Society Summer Meeting. 2001. IEEE.

Lavanya, K. C., Bala, K., Mohanty, H., and Shyamasundar, R.K. (2005). How Good is a

UML Diagram? A Tool to Check It. TENCON 2005. 2005. IEEE Region 10.

Lazaro, M. and Marcos, E. (2005). Research in Software Engineering: Paradigms and

Methods. Philosophical Foundations of Information Systems Engineering. 2005.

Porto, Portugal.

Lee, M. L. (1995). Change Impact Analysis of Object-Oriented Software. Master Degree.

George Mason University, Washington.

Lientz, B. P. and Swanson, E. B. (1980). Software Maintenance Management.

Reading, Massachusetts: Addison-Wesley.

Martin, R. C. (1995). Designing Object-Oriented C++ Applications Using the Booch

Method. New Jersey: Prentice Hall.

111

Microsoft (2009). Sandcastle – Documentation Compiler for Managed Class Libraries.

Last accessed on February 11, 2009. http://www.codeplex.com/Sandcastle.

Mitchell, B. S., Mancoridis, S., and Martin, T. (2002). Search based reverse engineering.

Proceedings of the 14th international conference on Software engineering and

knowledge engineering. Ischia, Italy: ACM.

Mohamad, R. N. (2009). A Program Visualization to Support Change Impact Analysis.

Master of Science. Universiti Teknologi Malaysia, Skudai.

Muller, H. A. and K. Klashinsky (1988). Rigi: a system for programming-in-the-large..,

Proceedings of the 10th International Conference on Software Engineering. 1988.

IEEE: 80-86.

NASA (1991). NASA Software Documentation Standard. NASA-STD-2100-91.

Washington: NASA.

Nosek, J. T. and Palvia, P. (1990). Software maintenance management: changes in the

last decade. Journal of Software Maintenance 2(3), 157-174. ACM.

Object Management Group. (2009). Unified Modeling Language: Superstructure, Version

2.0. OMG Specification: formal/2007-02-03 2007. Last accesed on February 16,

2009. http://www.omg.org/docs/formal/07-02-03.pdf.

Pankratius, V., Stucky, W., and Vossen, G. (2005). Aspect-oriented re-engineering of e-

learning courseware. The Learning Organization. 12(5), 457-470. Emerald

Polo, M. and Piattini, M. (1999). MANTEMA: a software maintenance methodology

based on the ISO/IEC 12207 standard. Proceedings of Fourth IEEE International

Symposium and Forum on Software Engineering Standards. 1999.

Powell, Gavin. 2006. Beginning XML Databases (Wrox Beginning Guides). Wrox Press

Ltd., Birmingham, UK, UK.

Pressman, R. S. (1992). Software Engineering: A Practitioner’s Approach. New York:

McGraw-Hill.

Ramesh, B. and Jarke, M. (2001). Toward reference models for requirements traceability.

IEEE Transactions on Software Engineering. 27(1), 58-93. IEEE.

Rostkowycz, A. J., Rajlich, V., and Marcus, A. (2004). A case study on the long-term

effects of software redocumentation. Proceedings of 20th IEEE International

Conference on Software Maintenance, 2004.

112

Schugerl, P., Rilling, J., and Charland, P. (2009). Beyond generated software

documentation: A web 2.0 perspective. IEEE International Conference on Software

Maintenance 2009 (ICSM 2009).

Sukanya, R., Susan-Elliott, S., and Derek, J.R. (2009). Cross-artifact traceability using

lightweight links. Proceedings of the 2009 ICSE Workshop on Traceability in

Emerging Forms of Software Engineering. IEEE.

Sun Microsystems (2009). Javadoc Tool Home Page. Last accessed on February 19,

2009. http://java.sun.com/j2se/javadoc/.

Tadonki, C. (2004). Universal Report: A Generic Reverse Engineering Tool. 12th IEEE

International Workshop on Program Comprehension. Bari, Italy: IEEE, 266-267.

Teitelbaum, T. (2000). CodeSurfer. SIGSOFT Softw. Eng. Notes. 25(1): 99.

Thames Corp. (2006). Automobile Onboard Autocruise. France.

Tilley, S. (2008). Three Challenges in Program Redocumentation for Distributed Systems.

IEEE International Systems Conference 2008 (SysCon 2008). Montreal, Canada:

IEEE.

Tortorella, M. and Visaggio, G. (1997). CREP-Characterizing Reverse Engineering

Process component methodology. Proceedings of International Conference

on.Software Maintenance. 1997.

Universal Software (2009). Universal Report. Last accessed on February 9, 2009.

http://www.omegacomputer.com/.

Vaclav, R. (1997). Incremental Redocumentation with Hypertext. Proceedings of the 1st

Euromicro Working Conference on Software Maintenance and Reengineering (CSMR

'97). IEEE.

Van Deursen, A. and Kuipers, T. (1999). Building documentation generators.

Proceedings of IEEE International Conference on Software Maintenance, 1999.

(ICSM '99). IEEE.

Wikipedia (2010). Software Design. Last accessed on March 25, 2010.

http://en.wikipedia.org/wiki/Software_design.

Wong, K., Tilley, S. R., Muller, H.A., and Storey, M.A.D. (1995). Structural

redocumentation: a case study. Software. 12(1), 46-54. IEEE.

113

Yuliana, O.Y.; Chittayasothorn, S.; , "A Conceptual Schema Based XML Schema with

Integrity Constraints Checking," Convergence and Hybrid Information Technology,

2008. ICHIT '08. International Conference on, vol., no., pp.19-24, 28-30 Aug. 2008

Zelkowitz, M. V. and Wallace, D. R. (1998). Experimental Models for Validating

Technology. Computer. 31(5), 23-31

Zhou, X., Huo Z., Huang, Y., and Xu, J. (2008). Facilitating Software Traceability

Understanding with ENVISION. Proceeding of 32
nd

 Annual International Conference

in Computer Software and Applications (COMPSAC ’08). Turku, Finland: IEEE, 295-

302.

