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ABSTRACT 

 

 In recent years, more than half of current companies are still working on old 

systems. Software maintenance, testing, quality assurance, reuse, and integration are 

only a few examples of software engineering activities that involve old systems. A 

key aspect related to all these processes is the identification of the components of a 

system and the comprehension of the existing linkage between components. One way 

to identify these components of system is by analyzing its documentation. However, 

in many cases, documentation is a missing or obsolete item in old software 

maintenance. As the software technology advances evolve over time, there is a need 

to create and maintain a relationship between source code and documentation. This 

linkage needs to be maintained to ensure that software documentation remains 

consistent and up-to-date with code. This consistency will assist quality and reduce 

maintenance work. A new relationship model is proposed between documentation 

and low level software that includes the code and its associated structures and 

physical components.  The significant benefits of this research can be observed at its 

ability to support document viewers to manage and maintain the existing system. A 

prototype was developed and an evaluation was carried out to realize the proof of 

concept. The results show that the proposed model is significant and provides a 

useful access between code and documentation. 
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ABSTRAK 

 

 Sejak beberapa tahun kebelakangan ini, lebih daripada separuh syarikat-

syarikat masih menggunakan sistem lama. Penyelenggaraan,  pengujian, kepastian 

kualiti, guna-semula dan integrasi perisian adalah antara contoh-contoh aktiviti 

kejuruteraan perisian yang melibatkan sistem lama. Satu kunci aspek  yang 

mengaitkan semua proses-proses ini adalah mengenalpasti komponen-komponen dan 

pemahaman terhadap jejakan yang sedia ada antara komponen-komponen. Salah satu 

cara untuk mengenalpasti komponen-komponen sistem ini adalah dengan 

menganalisa dokumen-dokumennya. Walau bagaimanapun, dalam banyak kes, 

dokumen didapati hilang atau pupus untuk pemeliharaan perisian legasi. Dalam  

kemajuan teknologi perisian selaras dengan perkembangan masa, terdapatnya suatu 

keperluan untuk membina dan menyelenggara jejakan antara sumber kod dan 

dokumen. Jejakan ini perlu diselenggara untuk memastikan dokumen perisian adalah 

sejajar  dan terbaru atau dikemaskini bersama dengan kod. Wajaran ini akan 

membantu kualiti dan mengurangi kerja pemeliharaan. Model jejakan yang baru 

dicadangkan, antara dokumen dan aras rendah perisian termasuklah kod itu dan 

struktur berkaitan dengannya dan komponen-komponen fizikal. Kebaikan yang 

signifikan daripada penyelidikan ini boleh diperhatikan pada kemampuannya untuk 

menyokong pembinaan dokumen dalam menguruskan dan memelihara sistem yang 

sedia ada. Satu prototaip dibina dan diujikaji bagi mengesahkan konsep penyelidikan. 

Keputusan menunjukan bahawa model yang dicadangkan adalah signifikan dan 

menyediakan akses yang baik antara kod dan dokumentasi. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

 

This chapter explains about the overview of the thesis. It delivers a brief 

introduction to the study conducted. The topics tackled in this chapter are: problems 

background, problem statement, objectives of study, importance of study, work scope, and 

thesis outline.  

 

1.2 Background of the Problem 

 

It is clearly known that software systems have played a great role to a lot of  

companies in this era. The business processes have become so much involved with 

systems of a computer that a break down or interupption of the essential software system 

can cause loss of huge amount (Fahmi and Choi, 2007).  

 

Nowadays, many companies are working on old systems. . Software maintenance, 

reverse engineering, quality assessment, components recycle and integration are only a 

few examples of software engineering activities relating old systems. A fundamental 

aspect related to all these processes is identification of artifacts used in a system and 

interpretation of relationships among them (Canfora and Di Penta, 2007). 
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 One way to identify the components of system is by analyzing its documentation 

and see how it is relevant and consistent to software system. The documentation is 

important to interpret a system at a certain level of abstraction, in a circumscribed amount 

of time. It is necessitated, for example, when a system is relocated or re-engineered. It is 

able to be utilized to map functional change requests as communicated by end users onto 

technical change requests, and to calculate the cost of such change. Eventually, 

documentation will be needed in the process of outsourcing maintenance or when the new 

members need to learn about the environment (Van Deursen and Kuipers, 1999). 

 

However, in many cases, documentation is a missing item in the maintenance of 

old software systems, many parts of documentation are obsolete and no longer up to date 

(Anquetil and De Oliviera, 2006). As current technology evolves, there is an emergence 

need for the corresponding documentation and source code to be synchronous each other. 

Unsynchronous relationship between them can cause a company to spend more time, 

money, and resource. Very often, maintainers team must work from the code to the result 

of any other available source of information in reverse order i.e. re-engineer the code to 

design abstract level. This work is very frustating as it is very difficult to handle, unless 

some preliminary study has been done. De Souza et al. (2005) reported that  from 40% to 

60% of the maintenance activity is spent on learning the software to interpret it and how 

the planned modification may be implemented. This is a costly operation that required 

researchers to give a special attention on document and code relationships. 

 

This thesis is looking into a possibility of moving forward to support maintenance 

by addressing some problems associated to relationship between documentation and code. 

It enables maintenance team get the latest associated components of the software evolves 

over time. It  brings easy maintenance and to documentation, which may otherwise 

become obsolete. Software components that are well-documented are easier to 

comprehend and consequently easier to reuse and make it maintainable. This is 

particularly useful in large software systems where the dependent modules and structures 

are more complicated to comprehend (Schugerl et al, 2009). 
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1.3 Statement of the Problem 

 

Documentations which were traditionally prepared by developers in some cases 

are inconsistent as some change requests, updates, or bugs fixing somehow are  not well 

updated with code. Developers tend to be focusing on source code rather than the 

documentation. Code is considered the most reliable source of software and evolve faster 

over time whereas its change is not synchronous and properly handled at documentation 

level. Unless some component linkage has been established, it is not easy to update the 

documentation manually. Some parts still require human interaction to complete the 

relationship (Van Deursen and Kuipers, 1999). 

 

This research posits associated source code and documentation that may provide a 

better understanding of an existing system by maintenance team The connection built may 

make documentation consistent with the code at all times. The hypothesis leads to the 

following research questions. 

 

The main research question is “How to create and maintain a linkage between the 

source code and documentation in order to make them consistent and maintainable?” 

 

The sub-questions of the main research question are as follows. 

 

(i) What are the issues with old systems pertaining to maintenance? 

(ii) Why the use of current documentation still cannot satisfy the demand of work 

during software maintenance? 

(iii) How can we develop documentation generator to support a linkage between source 

code and documentation? 

 (iv) How to test the functionality of the proposed prototype and compare it along with 

existing tools? 
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1.4 Objectives of  the Study 

 

Based on the problem statements mentioned above, this research encompasses a 

set of objectives that is associated to  the milestones of research process. The research 

objectives are mentioned below. 

 

(i) To investigate the issues and ways forward to improve the current system 

documentation. 

(ii) To formulate and design a linking approach between code and documentation. 

(iii) To develop a prototype to support the approach. 

(iv) To test the functionality of proposed protoype and compare it along with existing 

tools. 

 

1.5 Importance of Study 

 

A lot of changes may cause the current documentation becomes irrelevant that 

makes maintenance team work harder to trace back the changes through the source code. 

Reconstructing and effectively generating the design documentation of existing software 

systems is even more difficult than initial design (Wong et al, 1995). Therefore, in order 

to reduce this problem, creating a linkage between source code and documentation is 

useful. 

 

1.6 Scope of Work 

 

In order to accomplish the objectives of this study, it is important to identify the 

scope, which covers the following aspects. 

 

(i) The research subject of a case study will focus on some code written in an object-

oriented programming language. 
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