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ABSTRACT 

Harmful programs that are created to thieve user credentials have become a 

lot over the recent years, potentially leading to a loss of cash. The methods which are 

utilized by attackers to collect confidential information vary, when online banking 

systems continue to be the main goal of these attacks. Nowadays most widespread 

approach to protect against phishing attack is using blacklists in antiviruses and 

browser toolbars. Unfortunately, blacklist method fails in responding to newly 

emanating phishing attacks since registering new domain names has become easier, 

no comprehensive blacklist can ensure a perfect up-to-date database. Therefore it 

requires another approach to counter phishing attack which is more accurate and 

efficient than blacklist method. The purpose of this work is to evaluate and analyze 

the effectiveness of applying machine learning algorithms such as an Artificial 

Neural Network, Support Vector Machines and K-nearest Neighbor to website 

phishing detection. The datasets of phishing and non-phishing websites were 

gathered in order to train, test machine learning algorithm models, compare 

evaluative metrics of algorithms between each other. In addition, the final dataset 

was divided into three datasets with different ratios to see whether or not the trained 

models will show constant performance in testing results and whether these 

proportions have a good or bad influence on the ability of trained models to classify 

website. After all the analysis of the performance of each machine learning algorithm 

was made. This project suggests the Support Vector Machines algorithm as the best 

one to be used in phishing detection regardless of dataset proportion, because it 

showed almost the same performance throughout all test phases which is 98.5% on 

average.  
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ABSTRAK 

Aplikasi merbahaya yang dicipta untuk mencuri maklumat sulit pengguna 

kini semakin bertambah dan berpotensi menyebabkan kerugian tunai. Sasaran utama 

adalah sistem kewangan dalam talian dan kaedah yang digunakan untuk mengumpul 

maklumat yang sensitif adalah berbeza. Pada masa kini, pendekatan yang paling 

meluas untuk berlindung daripada serangan pemalsuan adalah dengan menggunakan 

senarai hitam dalam antivirus dan bar alat pelayar. Malangnya, kaedah menyenarai 

hitam gagal untuk bertindak balas terhadap serangan pemalsuan baru yang bermula 

sejak pendaftaran nama domain baru menjadi lebih mudah, tiada senarai hitam yang 

komprehensif yang dapat memastikan pangkalan data yang terkini dan sempurna. 

Oleh itu, pendekatan lain diperlukan untuk menangani serangan pemalsuan dengan 

lebih tepat dan berkesan daripada kaedah senarai hitam. Tujuan kajian ini adalah 

untuk menilai dan menganalisa keberkesanan penggunaan algoritma pembelajaran 

mesin seperti ‘Artificial Neural Network’, ‘Support Vector Machines’ dan ‘K-nearest 

Neighbor’ dalam mengesan pemalsuan laman web. Dataset laman pemalsuan dan 

bukan pemalsuan telah dikumpul untuk melatih, menguji model algoritma 

pembelajaran mesin, membandingkan pestasi algoritma di antara satu sama lain. Di 

samping itu, dataset terakhir telah dibahagikan kepada tiga dataset dengan nisbah 

yang berbeza untuk melihat sama ada model yang terlatih itu akan menunjukkan 

prestasi yang berterusan dalam keputusan ujian dan sama ada kadar ini mempunyai 

pengaruh yang baik atau buruk kepada keupayaan model terlatih untuk 

mengklasifikasikan laman web. Setelah itu, kesemua analisis prestasi setiap 

algoritma pembelajaran mesin itu dilaksanakan. Projek ini mencadangkan algoritma 

‘Support Vector Machines’ sebagai yang terbaik untuk digunakan dalam pengesanan 

pemalsuan tanpa  mengira kadar dataset, kerana ia menunjukkan prestasi yang 

hampir sama sepanjang semua fasa ujian iaitu 98.5% secara purata. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

The use of the Internet has grown in our usual live, a lot of services are now 

available online. This new business market offers many opportunities for service 

providers, including financial institutions. It should not surprise anyone that 

wherever money is involved, villains appear trying to steal it. The same applies to 

online financial systems. The surprising part is the recent increase in the number and 

the evolution of their techniques (Candid, 2005). 

The main divider between the methods used is the point of attack. To 

simplify matters we can therefore categorize the attacks into three main groups: 

local, remote and hybrid attacks. 

1.  Local attacks happen on the victim’s machine. 

2.  Remote attacks don’t modify the machine but try to intercept or redirect 

the traffic of a session. 

3.  And hybrid attacks combine local and remote attacks and are the most 

powerful. 
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The most common remote attack against financial online services is phishing. 

An attacker sets up a copy of the web site they want to impersonate on a server they 

control. This copy includes some code from the original site. The set of used images 

can be gathered during a previous legitimate session. This makes it hard to trace the 

imposter in the server logs as no suspicious access is made. Next, the attacker sends 

emails to a large number of email accounts. The emails contain a convincing 

message that should trick the recipient into visiting the spoofed web site and 

revealing his log on credentials. Once the user enters his personal data into the 

spoofed web form the attacker saves the information and redirects the user to a fake 

error page or to the original web site. 

Studies by the Anti-Phishing Working Group (APWG) have concluded that 

phishing attacks are likely to succeed with a chance of 5% on all message recipients. 

To lower the technical knowledge needed by users to perform these checks many 

solutions have been introduced. Most browsers nowadays will warn a user if they are 

about to visit a web site that uses an authentication string in the URL. There are 

many additional tools available. SpoofGuard for example, installs a toolbar that can 

perform the URL checks (Boneh et al., 2005). 

Phishing is an online identity theft in which an attacker uses fraudulent e-

mails and bogus website in order to trick gullible customers into disclosing 

confidential information such as bank account information, website login 

information etc. (Topkara et al., 2005). 

In general, phishing is a relatively new internet crime. The ease of cloning a 

legitimate website to convince unsuspecting users has made phishing difficult to 

curtail. Mostly, an email with a redirecting website link is being sent to the user to 

update confidential information such as credit card, website login information and 

bank account information that belongs to the licit. As explained by Aburrous et al., 

(2008), the complexity of understanding and analyzing phishing website is as a result 

of its involvement with technical problems and social. The main effect of phishing 

website is in the abuse of information through the compromise of user data which 
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may harm victims in the form of financial losses or valuables. Phishing in 

comparison to other forms of internet threat such as hacking and virus is a fast 

growing internet crime. In the broad usage of the internet as a major form of 

communication, phishing can be implemented in different ways such as follows 

(Alnajim and Munro, 2009): 

1.  Email-to-email: when someone receives an email requesting sensitive 

information to be sent to the sender. 

2.  Email-to-website: when someone receives an email embedded with a 

phishing web address. 

3.  Website-to-website: when someone clicks on phishing website through a 

search engine or an online advert. 

4.  Browser-to-website: when someone misspelled a legitimate web address 

in a browser and then referred to a phishing website that has a semantic 

similarity to the legitimate web address. 

Different types of anti-phishing measures are being used to prevent phishing, 

such as, Anti-Phishing Working Group is an industry group, which formulates 

phishing reports from different online incident resources and makes it available to its 

paying members (RSA, 2006). Meanwhile, anti-phishing measures have been 

implemented as additional extension or toolbars for browsers, as features embedded 

in browsers, and as part of website login operation. Many of this toolbars have been 

used in the detection of phishing. Garera et al., (2007) proposed Spoof Guard which 

warns users of phishing website. This tool makes use of URL, images, domain name 

and link to evaluate the spoof likelihood. 

Lucent Personalized Web Assistant (LPWA) is a tool that guards against 

identity theft to protect user’s personal information (Gabber et al., 1999; Kristol et 

al., 1998). It uses a function to define user variables such as email address, username 

and password for each server visited by the user. Ross et al., (2005) proposed a 

similar approach in PwdHash. 
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R. Dhamija and J. D. Tygar (2005) proposed Dynamic Security Skins, which 

is another type of browser-based anti-phishing technique. This solution was 

implemented based on their previous work on Human Interactive Proofs (Dhamija 

and Tygar, 2005), which employs distinguishing features between legitimate and 

spoofed web sites by human. Dynamic Security Skins ensures identity verification of 

a remote server by humans, but is hard to spoof by attackers (Dhamija and Tygar, 

2005). Furthermore, the tool uses a client-side password on the browser window 

with a Secure Remote Password protocol (SRP) for verification based authentication 

protocol. In addition, an image which is shared as a secret between the browser and 

the user ensures better security against spoofing. This secured image is either chosen 

by the user or as a result of random assignment and also, during each transaction, the 

image is being regenerated by the server and used in creating the browser skin. As a 

verification measure for the server, the user has to visually verify the authenticity of 

the image. In exceptional cases when the user login from an untrusted computer, the 

tool will not be able to guarantee security. Furthermore, it does not guard against 

malware and trusts the browser’s security during the SRP authentication. 

Herzberg and Gbara (2004) introduced TrustBar which is a third party 

certification solution against phishing. The authors proposed creating a Trusted 

Credentials Area (TCA). The TCA controls a significant area, located at the top of 

every browser window, and large enough to contain highly visible logos and other 

graphical icons for credentials identifying a legitimate page. While their solution 

does not rely on complex security factors, it does not prevent against spoofing 

attacks. Specifically, since the logos of websites do not change, they can be used by 

an attacker to create a look alike TCA in an untrusted web page. 

Due to the ever increasing phishing websites springing up by the day, it is 

becoming increasingly difficult to track and block them as attackers are coming up 

with innovative methods every day to entice unsuspecting users into divulging their 

personal information (Garera et al., 2007).  
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1.2 Problem Background 

In today’s financial world phishing is becoming the most dangerous and 

ubiquitous threat to the financial subjects, who deal with money transactions using 

their information technology systems. As a new type of cyber security threat, 

phishing websites appear frequently in recent years, which have led to great harm in 

online financial services and data security (Zhuang et al., 2012). The main targets of 

this type of threat are banks with their internet-banking systems. The development of 

the Internet for commerce and in particular the arrival of internet-banking systems 

gave birth to phishing. The technical nature of the internet has made copying a 

legitimate website a very simple exercise. Once this is done it is simple to direct 

internet-bank users to these copies of internet-banks using alert e-mails or malware, 

and convincing them to enter their internet-banking credentials. Then the same 

techniques were used in legitimate web infrastructure after capturing credentials. 

With the growth of malware in the late 1990s and early 2000s, the ease by 

which millions of computers connected to the Internet could be quickly 

compromised was understood. However, these early efforts such as “Melissa” in 

1999, “I Love You” and “Slammer” in 2001, were about announcing themselves and 

gaining credit for their writers rather than any primary profit motive. However, the 

new malware starting in 2003 would use the same types of system vulnerabilities, 

but remain hidden and capture account credentials and would ultimately become an 

even more effective phishing method.  

Globally, phishing and related cybercrime is responsible for annual losses of 

billions money. Ultimately, simple users of internet-banking systems suffer from 

successfully committing phishing attacks. Sometimes banks refund the clients loses, 

but not in all cases. Also, in many cases banks who become victims of phishing 

attacks do not desire to publish these facts and make them available to the public 

because of fear to lose customers. That is why the thought that real statistics of 

annual losses from phishing are more than we know becomes obvious. 

file:///C:/Documents%20and%20Settings/user/Local%20Settings/Combined%20from%20Tobi.docx%23_ENREF_78
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Most researchers have worked on increasing the accuracy of website 

phishing detection through multiple techniques. Several classifiers such as Linear 

Regression, K-Nearest Neighbor, C5.0, Naïve Bayes, Support Vector Machines 

(SVM), and Artificial Neural Network amongst others have been used to train 

datasets in identifying phishing websites. These classifiers can be classified into two 

techniques; either probabilistic or machine learning. Based on these algorithms, 

several problems regarding phishing website detection have been solved by different 

researchers. Some of these algorithms were evaluated using four metrics, Precision, 

Recall, F1-Score, and Accuracy. 

Some studies have applied K-Nearest Neighbor (KNN) for phishing website 

classification. KNN classifier is a non-parametric classification algorithm. One of 

the characteristic of this classifier is that it generalizes whenever it is required to 

classify an instance. This has the effect of ensuring that no information is lost a scan 

happen with the other eager learning techniques (Toolan and Carthy, 2009). In 

addition, previous researches have shown that KNN can achieve accurate results, and 

sometimes more accurate than those of the symbolic classifiers. It was shown in a 

study carried out by Kim and Huh (2011) that KNN classifier achieved 99% 

detection rate. This result was better than that which was obtained from Naïve 

Bayesian (NB), and Support Vector Machines (SVM). Also, since the performance 

of KNN is primarily determined by the choice of K, they tried to find the best K by 

varying it from 1 to 5; and found that KNN performs best when K = 1. This as well, 

helped in the high accuracy of KNN compared to other classifiers. 

Meanwhile, Artificial Neural Network (ANN) is another popular machine 

learning technique. It consists of a collection of processing elements that are highly 

interconnected and transform a set of inputs to a set of desired outputs. The major 

disadvantage is the time it takes for parameter selection and network learning. On 

the other hand, previous researches have shown that ANN can achieve very accurate 

results compared to other learning classification techniques. In a research carried out 

by Basnet et al., (2008), it was shown that Artificial Neural Network achieved an 

accuracy of 97.99%. 
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1.3 Problem Statement 

Although, a lot of techniques and approaches have been designed and are 

being deployed the offenders are still able to overcome applied countermeasures. 

Typically, phishing detection methods use human verified URL blacklists. However, 

blacklist is frail in terms of newly appearing phishing websites and cannot identify 

phishing website in case of spear-phishing, when the attacker intentionally try to 

cause harm to particular victim. Also, the blacklist-based method is inefficient in 

responding to emanating phishing attacks since registering new domain names has 

become easier, no comprehensive blacklist can ensure a perfect up-to-date database. 

Possibility of “Zero day attacks” always exists. Thus, exploiting webpage features 

via machine learning techniques is more preferable, because this method does not 

have problems of blacklist approach mentioned above and does not rely on any 

databases are made by human. In addition, the machine learning classification 

technique should perform with consistent accuracy. 

1.4 Purpose of Study 

 The purpose of this work is to evaluate and analyze the effectiveness of 

applying major machine learning algorithms to website phishing detection. In the 

future works the results of this analysis might be used to design applicable IDS. 

1.5 Project Objectives 

There are four objectives for this project. They are: 

1.  To train, test and evaluate Artificial Neural Network algorithm 

performance to detect phishing websites with the dataset. 
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2.  To train, test and evaluate K-Nearest Neighbour algorithm performance 

to detect phishing websites with the dataset. 

3.  To train, test and evaluate Support Vector Machines algorithm 

performance to detect phishing websites with the dataset. 

4.  To compare and analyze the results of machine learning approaches 

testing. 

1.6 Project Scope 

The scopes of this research are as follows: 

1.  The dataset will be obtained from phishtank (www.phishtank.com) 

2.  The dataset will be used to evaluate the performance of Artificial Neural 

Networks (ANN), K-Nearest Neighbor (KNN) and Support Vector 

Machines (SVM). 

3.  The results of precision, recall, F1-score and accuracy of the three 

algorithms will be compared. 

4.  WEKA as a popular suite of machine learning will be used to train and 

test algorithms. 

1.7 Significance of Study 

Nowadays, there is an increasing need to detect phishing websites due to the 

adverse effect they can have on their victims. Lots of work has been done on website 

phishing detection using several techniques to achieve the same goal. This study 

evaluates the performance of some algorithms: ANN, KNN and SVM algorithms as 

regards to detection accuracy and false alarms by studying each of them individually 

and investigate to show which is more suitable to be used in phishing detection. 
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1.8 Organization of Report 

The thesis is organized as follows and consists of 6 chapters. Chapter one 

describes the introduction, background of the study, the scope of the study and its 

primary objectives. The second chapter reviews available and related literature and 

current state of website phishing detection. Chapter three introduces the study 

methodology along with the appropriate framework for the study. Chapter 4 

describes data preprocessing phases and creation of usable datasets for the purposes 

of this Project. Chapter 5 deals with training, testing and evaluation of chosen 

machine learning classifiers. And finally, Chapter 6 is about conclusion and 

recommendations for future work. 
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