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ABSTRACT 

 

 

 

 

Spectrum monitoring is important, not only to regulatory bodies for spectrum 

management, but also to the military for intelligence gathering. In recent years, it has 

become part of spectrum sensing process which is the key in cognitive radio system. 

Among the features of a spectrum monitoring system is to obtain spectrum usage 

characteristics and determining signal modulation parameters. All these required a 

powerful signal analysis technique suitable for use with classifier network. The loss 

of phase information in the Quadratic Time–Frequency Distributions (QTFDs) 

makes it an incomplete solution as Phase Shift Keying (PSK) modulation is widely 

employed in many wireless communication applications nowadays. Therefore, Cross 

Time–Frequency Distribution (XTFD) which can provide localised phase 

information is proposed in this research. The Adaptive Windowed Cross Wigner–

Ville Distribution (AW–XWVD) and Adaptive Smoothed Windowed Cross Wigner–

Ville Distribution (ASW–XWVD) are developed to analyse a broader class of signals 

such as PSK, Quadrature Amplitude Modulation (QAM), Amplitude Shift Keying 

(ASK) and Frequency Shift Keying (FSK) signals without any prior knowledge. In 

non–cooperative environment, two kernel adaptation methods are proposed: local 

and global adaptive. The developed XTFD is proven to be an efficient estimator as it 

meets the Cramer–Rao Lower Bound (CRLB) for phase estimation at Signal-to- 

Noise Ratio (SNR) ≥4 dB and Instantaneous Frequency (IF) estimation at SNR ≥–3 

dB. Other TFDs such as the S–transform never meet the CRLB in both phase and 

frequency estimation. A complete signal analysis and classification system is 

implemented by combining the AW–XWVD and ASW–XWVD for signal analysis. 

In the presence of Additive White Gaussian Noise, the classifier gives 90% correct 

classification for all the signals at SNR of about 6 dB. Thus, it has been demonstrated 

that the XTFD is a complete solution for the analysis and classification of digitally 

modulated signals.  
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ABSTRAK 

 

 

 

 

Pemantauan spektrum bukan sahaja penting bagi pihak penguatkuasa dalam 

pengurusan spektrum, tetapi juga untuk angkatan tentera dalam aktiviti perisikan. Di 

akhir ini, ia telah menjadi sebahagian daripada pengesanan spektrum yang 

merupakan kunci kepada sistem radio kognitif. Antara fungsi dalam sistem 

pemantauan spektrum adalah pengumpulan maklumat penggunaan spektrum dan 

penentuan parameter modulasi isyarat. Semua ini memerlukan teknik analisis isyarat 

yang sesuai untuk digunakan bersama rangkaian klasifikasi isyarat. Kehilangan 

informasi fasa dalam taburan masa–frekuensi quadratik menjadikan ia bukan satu 

solusi yang menyeluruh memandangkan modulasi Phase Shift Keying (PSK) banyak 

digunakan dalam aplikasi komunikasi wayarles pada masa kini. Oleh itu, taburan 

masa–frekuensi bersilang yang memberikan informasi fasa setempat dicadangkan 

dalam penyelidikan ini. Taburan Adaptive Windowed Cross Wigner–Ville 

Distribution (AW–XWVD) dan Adaptive Smoothed Windowed Cross Wigner–Ville 

Distribution (ASW–XWVD) telah direka tanpa pra–pengetahuan bagi meliputi kelas 

isyarat yang lebih luas seperti PSK, quadratur modulasi amplitud (QAM), Amplitude 

Shift Keying (ASK) dan Frequency Shift Keying (FSK). Dalam keadaan tiada 

kerjasama, dua kaedah adaptasi kernel dicadangkan: adaptasi setempat dan global. 

Taburan XTFD yang direka telah dibuktikan sebagai penganggar efisien kerana ia 

mencecah limit Cramer–Rao Lower Bound (CRLB) untuk fasa pada Signal-to-Noise 

Ratio (SNR) ≥4dB dan untuk frekuensi pada SNR≥–3dB. Taburan lain seperti S–

transform tidak mencecah CRLB untuk kedua–dua fasa dan frekuensi. Sistem 

analisis dan klasifikasi yang menyeluruh telah dibentuk dengan menggabungkan 

AW–XWVD dan ASW–XWVD. Pengelas tersebut memberikan 90% klasifikasi 

tepat bagi semua isyarat pada SNR 6 dB dengan kehadiran Additive White Gaussian 

Noise. Maka, taburan XTFD telah dibuktikan sebagai sistem analisis dan klasifikasi 

yang menyeluruh bagi isyarat modulasi digital.  
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CHAPTER 1 

INTRODUCTION

  

1.1 Background  

Wireless communication is a fast growing technology that was stimulated by 

various emerging applications from commercial use, specialized application in public 

protection, disaster relief and wireless communication [1]. The development of 

wireless communications technologies from the first generations to today’s fourth 

generation results in the explosion of the number of wireless communication users. 

According to the International Telecommunications Union (ITU) statistics, the total 

number of mobile cellular users is 6000 million up to year 2011 [2]. For Malaysia, 

the total number of mobile subscribers recorded until June 2012 can be found in [3]. 

Users communicate in new ways through the internet and multimedia 

communications where speeds and communication reliability are crucial. Therefore, 

various modulation and coding techniques such as M-ary modulation, Orthogonal 

Frequency Division Multiplexing (OFDM), Code Division Multiple Access 

(CDMA), multicarrier–CDMA [4–8] were introduced to cater for the increase of the 

users’ demand. Technologies such as cellular network, wireless local area network 

(WLAN), wireless metropolitan network (WMAN), Bluetooth, Zigbee, radio 

frequency identification (RFID), ultra-wideband (UWB), WiMax, TV broadcast and 

satellites require radio spectrum to operate [9]. Other than those applications, the 

available spectrum is also used for military, maritime and aeronautical applications. 
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Since the availability of the spectrum is very limited, hence there is a need to 

manage the usage of the frequencies. This can be done through spectrum monitoring 

which is usually conducted by the regulatory bodies, military, wireless operators and 

security agencies. General features of a spectrum monitoring system are the 

measurement of signal carrier frequency, power, direction, estimation of modulation 

parameters and symbol rate [10]. Regulatory bodies such as Malaysian 

Communication and Multimedia Commission (MCMC) and the United States 

Federal Communication Commission (FCC) perform spectrum monitoring as a mean 

of spectrum management and surveillance to ensure the conformance to the 

frequency planning [11]. From military applications perspective, spectrum 

monitoring is part of electronic warfare and threat assessment [12–15]. Cognitive 

radio which arises recently as a solution to the spectral congestion problem has 

adopted spectrum monitoring or spectrum sensing to sense the spectral environment 

for unoccupied band [16, 17]. Other than detecting the radio frequency over the 

spectrum, spectrum sensing also involves measurement of the signal characteristics 

such as the modulation parameters, carrier frequency and waveform [18]. Thus, a 

powerful and efficient signal analysis tool is required to perform all the tasks of a 

spectrum monitoring system.  

1.2 Problem Statement and its Significance  

Any information bearing signal in communication system needs to be 

modulated so that it could be transmitted through the frequency band of interest. Due 

to the development of wireless communication, various modulation schemes were 

introduced to provide efficient use of the available spectrum. The modulation 

schemes can be classified into three general classes: amplitude shift keying (ASK), 

frequency shift keying (FSK) and phase shift keying (PSK). Other modulation 

schemes such as minimum shift keying (MSK), quadrature PSK (QPSK), quadrature 

amplitude modulation (QAM) and OFDM are derived from any one of these three 

general classes. The type of modulation and the data format must be known at the 
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receiver before information can be recovered from the received signal. Signal 

analysis and classification represents an intermediate step between signal 

interception and demodulation. Other than that, it is also part of a spectrum 

monitoring system where it provides information such as the instantaneous 

parameters of a signal. The task is more challenging in non–cooperative environment 

where there is no prior information of the received signals available. Therefore, there 

is a need to develop a method to perform signal analysis and classification of digital 

modulation suitable for a non–cooperative environment.  

Digital communication signals are exposed to channel impairment such as 

multipath fading, path loss, noise and interference [19]. Multipath fading occurs due 

to the presence of reflectors and scatterers in the transmission channel causing 

signals arriving from multiple propagation paths [20]. The resulting signals exhibit 

time–varying amplitude and phase and is attenuated or delayed. Flat fading can result 

in amplitude reduction as multiple received signals cancel out each other [19]. This 

phenomenon reduces the signal–to–noise ratio (SNR) and leads to the inaccuracy of 

the analysis and classification process. In this case, the cross time–frequency 

distribution (XTFD) provides a better solution in estimating instantaneous 

parameters compared to quadratic time–frequency distribution (QTFD) for low SNR 

[21].  

Since digital communications signals are time–varying, hence time–

frequency analysis (TFA) is a suitable method to analyze these signals. The problem 

with power spectrum estimation method is that it assumes signals to be time–

invariant and stationary. The conventional power spectrum estimate provides only 

frequency content of the signal but not its temporal characteristics. Previous work 

based on the QTFD has demonstrated that this method is capable to analyze ASK 

and FSK signals accurately at SNR as low as –2 dB [22, 23]. Since the QTFD 

represents the distribution of the signal power over the time and frequency plane, 

hence the phase information of a signal is not represented and could not be used to 

analyze PSK and QAM signals completely. The XTFD which is capable to extract 

phase information of a signal is proposed in this research. Similar to the cross terms 
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which appeared in the QTFD, interference terms are introduced in the XTFD. The 

interference terms are referred to as duplicated terms instead of cross terms in QTFD 

because it carry the same information as the auto terms but shifted in both time and 

lag in the time–lag representation. Both cross terms and duplicated terms cause 

misinterpretation of a signal and must be suppressed. This justifies the need for an 

optimal kernel that minimizes the effect of the cross terms and duplicated terms to 

produce an accurate TFR of a signal.  

Adaptive modulation and coding (AMC) scheme is a resource allocation 

technique used in WiMax and HSDPA to enhance the data throughput [24, 25]. It is 

also applied in modern high frequency (HF) communication systems such as 

PACTOR I/II/III and MIL STD 188-110B [26]. By varying the type of modulation, 

level of modulation, coding techniques and transmission symbol rate according to 

time–varying channel, spectral efficiency is achieved while maintaining good 

connection quality and link stability [27, 28]. Due to the time–varying characteristic 

of these signals, an adaptive cross time–frequency analysis is the most 

comprehensive technique to estimate the signal instantaneous parameters such as 

instantaneous frequency (IF), instantaneous amplitude (IA) and instantaneous 

information bearing phase (IIB–phase). Therefore, an optimum signal analysis and 

classification method that can adaptively change its kernel parameters to be used 

with systems employing AMC scheme is required.  

Instantaneous parameters such as IF, IA and IIB–phase are important 

parameters in many applications. In seismic, radar, sonar, communications, and 

biomedical applications, the IF and IIB–phase are good descriptors of some physical 

phenomena [29, 30]. In this research, these parameters are used as input to classify 

digitally modulated signals. Estimation of these parameters is a challenging task as in 

practice signals are exposed to noise and interference. Accurate parameters 

estimation is crucial as it significantly affects the classification accuracy. The QTFD 

can accurately estimate IF but it is less robust to noise as compared to XTFD [21]. 

Moreover, the XTFD can estimate both IF and IIB–phase which makes it a complete 

optimum instantaneous parameters estimator.  
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1.3 Research Philosophy and Motivation 

 The traditional power spectrum estimation method which assumes that 

signals to be stationary has a limitation in analyzing signals with time-varying 

contents. Therefore, it fails to provide a useful representation for precise 

characterization and identification of digital communication signals which are time-

varying in nature. In this research, the time-frequency distribution which gives 

representation of signal jointly in time and frequency arises as the motivation for 

devising a more sophisticated and practical analysis tool for time-varying signals. It 

has been proven in the previous work [22, 23] that the QTFD is practically useful in 

analyzing digitally modulated signals. However, success is limited only for ASK and 

FSK signals as the phase information is lost in the computation of the bilinear 

product. Thus, there is a necessity to derive a comprehensive distribution which is 

capable to analyze a broader class of signals while maintaining the IIB-phase in the 

PSK and QAM signals. The XTFD gives the complex distribution of the signal over 

the time-frequency plane. Thus, it is capable to represent phase information in the 

signal. Due to the presence of duplicated terms and cross terms in the time-lag 

representation, the adaptive XWVD is proposed in this research to provide an 

accurate TFR for digitally modulated signals. 

An accurate TFR is necessary as the parameter estimation is derived using 

peak detection method. In practice, signals are subjected to impairments such as 

noise, interference and fading which causes variance in the estimation of 

instantaneous parameters. Therefore, an optimum parameter estimator for digitally 

modulated signals is required. In order to benchmark the developed parameter 

estimation performance, the CRLB is used as the theoretical limit. An optimum 

parameter estimator is crucial as it translates to a good classification results 

especially in the low SNR range of less than 10dB. Further outcome of this work is 

applicable to any frequency band since the limitation is on the sampling frequency 

and also in radar where similar signals are used in pulse compression. 
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1.4 Objectives 

The objectives of this research are: 

1. To develop a XTFD with an adaptive window function which yields accurate 

TFR for PSK, QAM and ASK signals. Then, together with a time-smooth 

function this adaptive window is capable to produce accurate TFR for FSK 

signals.  

2. To estimate the instantaneous parameters of digitally modulated signals using 

the peak detection method from the TFR.  

3. To benchmark the instantaneous parameter estimation with the Cramer–Rao 

lower bound (CRLB) to verify the optimality of the estimation method. 

1.5 Scope of Work 

This research focuses mainly on the analysis and classification of digitally 

modulated signal using TFA method. The scopes of this project are as follows: 

1. Signals considered here are the digitally modulated signals which include the 

class of ASK, FSK, PSK and QAM signals. This research is extensions of the 

previous work done on the QTFD where only ASK and FSK signals had been 

considered [22, 23].  



7 

2. Intercepted signals are HF communications signals due to the availability of 

the Perseus software defined radio (SDR) at the Digital Signal Processing 

Lab, Universiti Teknologi Malaysia. With the suitable receiving equipment, 

the research findings could be applied to receive signals from other frequency 

bands.  

3. In this research, the received signal is demodulated to baseband and the 

analysis is performed at baseband. The choice of sampling frequency must 

meet the Nyquist sampling theorem. The sampling frequency used throughout 

this research is normalized to 1 Hz to show that the developed methods are 

not limited to communication applications in the HF band solely. 

4. A reference signal is required in the computation of the XTFD. In this 

research, it is assumed a pure sinusoid signal with the same carrier frequency 

as the signal of interest. This reference signal is generated synthetically based 

on the estimated frequency of the received signal using traditional power 

spectrum estimation technique.  

5. Pattern recognition method [31] is employed in this research as the signals 

parameters are first estimated before classification of the signal is performed  

6. The main interest of this research is to focus on developing an efficient and 

accurate signal analysis techniques based on the XTFD and not on the 

classification algorithm. The purpose for selecting the rule based classifier is 

to demonstrate the performance of complete signal analysis and classification 

system which is a component of a spectrum monitoring system. 

7. Since all digital communication signals suffer from channel impairments, 

simulation is performed in the presence of additive white Gaussian noise 



8 

(AWGN). The developed signal analysis method is then benchmarked to the 

CRLB to determine the optimality of the developed methods.  

8. In this research, it is assumed that the fading rate is slow compared to the 

received signal packet length as such that the signal instantaneous energy is 

approximately constant.  

9. The developed method is compared with other time–frequency distributions 

(TFDs) such as S–transform and adaptive smooth–windowed Wigner Ville 

distribution (ASWWVD) for IF estimates. Since the S–transform is capable 

to provide localized phase information of a signal, it is compared with the 

XTFD in terms of the IIB–phase estimate.  

1.6 Research Methodology 

The overall procedure and methodology carried out through this research can be 

represented as a flow chart as shown in Figure 1.1.  This research begins with the 

studies and reviews on digital communications, spectrum monitoring, TFA, signal 

analysis and classification. The purposes of conducting literature review on these 

areas are to gain better understanding and generate new ideas to resolve the problems 

encountered in the research. On top of that, review of other works done is beneficiary 

in benchmarking this research.  Then, analysis of the cross bilinear product of the 

PSK and QAM signals with time–varying IIB–phase in the time–lag representation. 

Based on the signal characteristics, an optimum kernel function and parameters that 

gives accurate TFR is designed. Adaptive algorithms for estimating the kernel 

parameters suitable for non–cooperative communication environment are developed. 

Two methodologies are proposed: local adaptation method and global adaptation 

method.  



9 

Next, the previously developed methods are then extended for the analysis of 

digitally modulated signals such as the ASK and FSK signals. Analysis of the cross 

bilinear product for these signals in the time–lag representation is performed and a 

mathematical model is developed to represent these signals. A generalized XTFD 

which capable to analyze all digitally modulated signals is formed by combining 

both distributions. Thus, this formulation can be used to analyze broader class of 

signals such as ASK, FSK, PSK and QAM signals. The performance of the XTFR is 

evaluated using a set of comparison criteria: main–lobe-width (MLW), peak–to–side 

lobe ratio (PSLR), symbol duration (SD) and signal–to–cross terms ratio (SCR). All 

these performance measures are quantified in terms of the absolute percentage error 

(APE) for further comparison.  

The instantaneous parameters such as IIB–phase and IF are estimated from 

the peak of the TFR. Monte Carlo simulations of 100 realizations are carried out at 

various SNR level and the performance of the XTFD, S–transform and ASWWVD is 

then benchmarked to the CRLB. Followed by that, a signal analysis and 

classification system is designed. The analysis is done using the XTFD and 

classification is done based on the rule based classifier. Signals parameters’ 

estimated are used as inputs to the classifier. Classification is done based on the type 

of modulation, subcarrier frequency, IIB–phase and symbol duration. Monte Carlo 

simulation is used to verify the performance of the signal analysis and classification 

system. Simulation is run at SNR range from –5 dB to 12 dB to classify ASK, FSK, 

PSK and QAM signals. The performance of the signal analysis and classification 

system is evaluated based on the percentage of correct classification. In order to 

validate the proposed system, field testing is conducted using equipment available in 

the DSP laboratory.  
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Figure 1.1 Research procedures
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1.7 Contributions of Work 

In this work, a signal analysis and classification system for digitally 

modulated signals using the XTFD is proposed. The XTFD overcomes the limitation 

of previous work on the QTFD where it is capable to retain phase information of a 

signal. Design of the kernel function of the XTFD is done in a systematic way where 

the signal characteristics is first analyzed and then used to develop the appropriate 

kernel function. It is demonstrated that the XTFD is capable to analyze phase bearing 

signals such as PSK and QAM signals. Various works were reported using this 

distribution but most of them were used for IF estimate in biomedical applications 

[21,30]. So far, there is no work presented based on this distribution for 

communication applications. 

An optimum formulation for XTFD which is capable in analyzing a broader 

class of signals such as the ASK, FSK, PSK and QAM signals is proposed. This 

significantly overcomes the limitation of previous work on QTFD for digitally 

modulated signals which is applicable only for ASK and FSK signals. Two 

adaptation methods namely local adaptation and global adaptation are proposed to 

estimate the kernel parameters. Between these two methods, the local adaptation 

method which changes its kernel parameter every time instant gives better 

performance at low SNR at the expense of computation cost. However, with the 

advances of current technologies such as parallel processing this adaptation method 

is still feasible.  

Comparison is made with other TFDs such as the S–transform and 

ASWWVD. The S–transform has received major attention recently due to its 

capability to provide localized phase information of a signal. The ASWWVD 

provides accurate TFR for ASK and FSK signals. As an IF estimator, it is capable to 

work at low SNR of –3 dB. The proposed optimum XTFD is proven to be an 

efficient phase estimator as it meets the CRLB at minimum SNR of 4 dB whereas the 

S–transform did not meet the CRLB even at SNR of 12 dB for all PSK and QAM 
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signals. Since, the ASWWVD cannot represent phase, it is compared to the optimum 

XTFD as an IF estimator. Both the optimum XTFD and ASWWVD are efficient IF 

estimators as both meet the CRLB at SNR –3 dB for FSK signals. The optimum 

XTFD is both efficient frequency and phase estimator which makes it a complete 

solution to analyze digitally modulated signals.  

A comprehensive signal analysis and classification system is proposed based 

on the optimum XTFD method that works at low SNR of 6 dB. Signals modulation 

parameters such as the IIB–phase, carrier frequency and symbol duration are 

estimated from the peak of the TFR. These modulation parameters are then used as 

input to the classifier to determine the signal type from a set of possible signals. Most 

of the automatic modulation classification system classifies the modulation type 

alone without any addition information on signals available. Thus, the proposed 

signal analysis and classification system can provide other information on signals 

such as the instantaneous energy, IIB–phase, carrier frequency and symbol rate.  

1.8 Thesis Organization 

This thesis is organized as follows. Overview of this research is given in the 

Chapter 1. Chapter 2 discusses on some recent work on spectrum monitoring, 

cognitive radio, phase estimation, IF estimation, TFA, signal analysis and 

classification. The mathematical model for signals carrying phase information such 

as PSK and QAM signals are given in Chapter 3. Selection of the kernel is done 

based on the analysis of the signal in the time–lag domain. The kernel function for 

PSK and QAM signals is a time–dependent lag window. In the same chapter, the 

adaptation algorithm used for estimating the time–dependent lag window is 

discussed. In Chapter 4, the analysis method is extended to include ASK and FSK 

signals. The mathematical representation of these signals in the time–lag domain and 

the kernel function is given. Chapter 5 presents the benchmark of the proposed 
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XTFD with other TFDs and the CRLB for parameters estimation. In the same 

chapter, the classification performance of the designed system is discussed. 

Conclusion and recommendations for future work are presented in Chapter 6. 
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