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ABSTRACT

During transient conditions, for instance during acceleration and deceleration, 

the inverter used in an induction motor drive normally operates in overmodulation in 

order to efficiently utilize the DC-link voltage. Beyond the based-speed, the flux is 

normally reduced proportionally with speed to extend the speed range of the drive 

system. The capability of the induction motor drive under overmodulation and field 

weakening modes are important, especially in electric vehicle applications, where the 

available power is limited and the speed range needs to be increased to avoid use of 

the mechanical gear. In order to fully utilize the dc link voltage, it is important to 

understand the characteristics and performance of the drive system under these 

conditions. The project will perform a simulation study on the performance of direct 

torque control (DTC) induction motor drive under overmodulation and field 

weakening conditions. In this project the study on overmodulation and field 

weakening modes will be concentrated mainly on constant frequency torque 

controller-based DTC drive. The potential of the constant frequency torque controller 

in overmodulation and field weakening regions will be analyzed through simulation 

using Matlab/Simulink package. The results obtained from the simulation is 

evaluated.
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ABSTRAK

Semasa keadaan fana, misalnya semasa dalam keadaan memecut dan nyah-

pecutan, elemen penyongsang yang digunakan di dalam kawalan motor aruhan 

biasanya beroperasi dalam keadaan pemodulatan lebih bagi memastikan penggunaan 

voltan rangkai arus terus (a.t.) adalah efisien. Fluks juga biasanya akan berkurangan 

secara berkadaran terhadap halaju apabila motor beroperasi melebihi halaju dasar. 

Dari itu, keupayaan kawalan motor aruhan beropearsi di bawah pemodulatan lebih 

dan penyusutan medan adalah penting terutamanya untuk aplikasi kenderaan 

berkuasa elektrik. Ini adalah disebabkan kuasa yang dibekalkan kepadanya adalah 

terhad dan pada masa yang sama halaju kenderaan perlu ditambah dengan segera 

bagi mengelakkan penggunaan gear mekanikal. Bagi memastikan penggunaan voltan 

rangkai arus terus yang optimum, ciri-ciri dan prestasi sistem pemacuan semasa 

dalam keadaan tersebut perlulah difahami terlebih dahulu. Oleh itu, malalui projek 

ini, kajian simulasi terhadap prestasi sistem kawalan dayakilas (DTC) secara terus 

bagi motor aruhan di dalam keadaan pemodulatan lebih dan penyusutan medan akan 

dilakukan. Kajian yang dilakukan adalah tertumpu kepada pengawal dayakilas 

berfrekuensi tetap yang digunakan pada  sistem kawalan dayakilas secara terus. 

Kebolehan pengawal dayakilas berfrekuensi tetap beroperasi dalam keadaan 

modulasi lebih dan susutan medan akan dianalisa mengunakan simulasi perisian 

Matlab/Simulink. Kemudian, keputusan yang diperolehi daripada simulasi 

dinilaikan.
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CHAPTER 1 

INTRODUCTION

1.1    Overview 

 The induction motors (IM) are so common and widely use in industry rather 

than the other type of electric machine.  This is due to their simplicity in construction 

and excellent scheme of electromechanical energy conversion. The rotor is 

inaccessible especially in the squirrel cage motors.  There is no moving contact, such 

as commutator and brushes as in dc machine or slip rings and brushes in ac 

synchronous motors.  These arrangements greatly increase the reliability of induction 

motors, less maintenance and eliminate the danger of sparking and corrosion. 

Therefore, the motors are safely used in explosive environment.  

 An additional degree of ruggedness, the induction motors is provided by less 

wiring in the rotor, where the winding consist of uninsulated metal bars. It is also 

light in weight and has low inertia.  A robust rotor has the capability to run at high 

speed and withstand heavy mechanical and electrical overload. Typically, the 

induction motors have a significant torque reserve and low dependence of speed on 

the load torque.



2

Although the induction motor is superior to the d.c. motor with respect to the 

advantages as described above, due to its highly non-linear dynamic structure with 

strong dynamic interactions, it is necessary for complex control schemes compared 

to the d.c. motor.  However, with the gain in power electronics technology, the 

complex control technique becomes easy and reduces the uses of expensive hardware 

because of powerful semiconductor devices are available.    

The induction motor control can be divided into two schemes; the scalar 

control and vector control. In general, the genealogy of the variable frequency 

control methods is illustrated in Figure 1.1.  In the scalar control, it is only valid on 

the steady state operations where only magnitude and frequency of voltage, current 

and flux linkage space vector are controlled.  Whereas uses of vector control, it is 

possible to control in steady state and during transient operations. According to 

Figure 1.1, there are many techniques can be implemented under vector control 

scheme.  The most popular technique is called field-oriented control (FOC) that has 

been proposed over 30 years ago by Blaschke as discussed in [1].  Then, in the 

middle of 1980’s, a new technique for the torque control of induction motors was 

proposed and presented by I. Takahashi and T. Noguchi which is known as direct 

torque control (DTC) [2] and by M. Depenbrock named as direct-self control (DSC) 

[3],[4] also categorized under DTC drives. These techniques are simpler, more 

robust, gives better performance, and possible to obtain good dynamic response of 

torque compared to the FOC scheme.  

Since DTC was introduced, many researchers working on this area in order to 

overcome the drawbacks have been encountered. Most of the contributions proposed 

have improved the performance of DTC drive, but they lead to more complex 

approaches and at the same time the simple structure of DTC drive is lost. One of the 

techniques proposed to improve the conventional DTC (hysteresis-based) is utilizing 

a constant frequency torque controller as presented in [5]-[8].  Utilizing this control 

technique, it is managed to overcome the drawbacks and at the time retain the basic 

structure of DTC drive as proposed by Takahashi and Noguchi. According to this 

advantage of the constant frequency torque controller implemented in DTC scheme, 
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this project will gain the capability of the technique to be able to operate in 

overmodulation and field weakening regions. The operation of DTC drive under 

overmodulation and field weakening modes is extremely important especially in 

traction and electric vehicle implementation. The operation under both conditions is 

to ensure the dc-link voltage of the inverter use in DTC will be fully utilized.  For 

that reason, this thesis will delve into the operation of constant frequency torque 

controller in DTC under the overmodulation and field weakening regions. 

VARIABLE
FREQUENCY

CONTROL

Scalar 
Based

Controllers

VECTOR 
BASED 

CONTROLLER

Constant 
V/Hz

Field
Oriented

Feedback
Linearization

DIRECT
TORQUE

CONTROL

Passivity
Based 
Control

Rotor Flux
Oriented

Stator Flux
Oriented

Direct Torque
Space-Vector

Modulation

CIRCULAR
FLUX

TRAJECTORY
(TAKAHASHI)

Hexagon Flux
Trajectory

(Depenbrock)

CONSTANT
FREQUENCY

TORQUE
CONTROLLER

Direct Flux
Controller
(Blaschke)

Indirect Flux
Controller
(Hasse)

is=f( r)

Figure 1.1: Genealogy of induction motor control techniques [9]. 

1.2 Objective of The Research Project 

The main objective of this project is to study and analyse the potentials of the 

constant frequency torque controller implemented in the direct torque control (DTC) 

of induction motor drive under overmodulation and field weakening modes. The 

study will be carried out using Matlab/Simulink simulation package. 
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1.3    Scope of Project

The works undertaken in this project are limited to the following aspects: 

1. Study the working principles of DTC motor drives utilizing constant 

frequency torque controller. 

2. Proposing a new switching strategy to achieve overmodulation and field 

weakening operations of constant frequency torque controller-based. 

3. Simulation work using Matlab/Simulink as a platform.  

1.4      Research Methodology 

The research work is undertaken in the following developmental stages: 

1. Conceptual study on overmodulation and field weakening regions from 

the previous finding in various techniques of direct torque control space 

vector modulation (DTC-SVM) based. 

2. Study the inverter switching sequences of DTC that utilize constant 

frequency torque controller. 

3. Establish a control technique to determine an appropriate switching of 

voltage vectors. 

4. Perform simulation using Matlab/Simulink. 

5. Analyze and evaluate the results obtained from simulation. 
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1.5  Literature Review 

The research on DTC has gained rapidly over the last decade to improve its 

performance. This is due to the hysteresis-based DTC drive proposed by Takahashi 

and Noguchi, which present some disadvantages.  The major disadvantages are high 

current and torque ripples, variable switching frequency behavior, difficulty to 

control torque and flux in low speed and unable to operate in high speed applications. 

Some of the techniques developed to solve the problems encountered are based on 

the following contributions [10]: 

a) Use of improved switching tables. 

b)  Introduce constant switching frequency operation with PWM or 

space vector modulation (SVM) techniques. 

c) Use of fuzzy or neuro-fuzzy techniques. 

d) Use of sophisticated flux estimators to improve the low speed 

behavior.

In addition, to gain the capability of DTC in high speed applications, some 

techniques have been proposed to be able to operate in overmodulation and field 

weakening regions. All the techniques proposed are based on DTC-SVM scheme 

[11]-[16].  Below are several researches on DTC scheme that have been done by 

researches.

I. Takahashi and T. Noguchi (1986) [2], developed a new technique for the 

torque control of induction motors which is called DTC scheme (hysteresis-based). 

The technique proposed departs from the idea of coordinates transformation and the 

analogy of dc motor control. In addition, there are no current control loops and no 

separate voltage pulsewidth modulator. These features are not for the FOC scheme. It 

was also characterized by simplicity, robustness and good performance. Using DTC 

scheme, it is possible to obtain a good dynamic control of the torque in steady state 

and transient operating condition without need for mechanical transducers on the 
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motor shaft. The scheme uses torque and flux hysteresis comparators to restrict the 

torque and flux error respectively and fed the signal to the voltage vector selection 

table. The torque and flux are calculated from the primary variable, hence its can be 

controlled directly and independently. 

Thomas G. Habetler et. al. (1992) [17], proposed a scheme to improve the 

performance of DTC drive based on the stator flux-field oriented method. In this 

scheme, a voltage reference in generated based upon the errors of torque and flux by 

estimation of back emf. The voltage reference is determined using quadratic 

equations and the voltage components in direct and quadrature-axis are calculated for 

every sampling period. The principle of space vector modulation PWM is used to 

compute the inverter switching states in order to realize the voltage reference that has 

been generated. The proposed scheme has managed to achieve constant switching 

frequency operation, however the simple DTC algorithm and good dynamic torque 

response as in conventional DTC scheme are lost. This is due to the increased of 

computational burden for complex calculation of reference voltage.  

J. Holtz et. al. (1993) [12] proposed a technique using common pulsewidth 

modulation in the basis of space vectors PWM for the operation of DTC drive under 

overmodulation to six-step regions. In PWM technique, the performance of the 

modulation is characterized by the modulation index, m that is in the range of 

. In this scheme the operation under overmodulation to six-step region can 

be achieved only if the modulation index can be increased beyond 0.907 up to 1 

(unity).  Two different modes have been proposed and known as overmodulation 

mode I and mode II. Thereby, a pre-processor is employed to regenerate a new 

reference voltage vector and finally the switching times are calculated for space 

vector modulation of the inverter. 

10 m

G. Griva et. al. (1995) [13] have developed a simplified method of torque and 

flux control in the transient and field weakening region based on DTC scheme. The 

proposed method limits the magnitude of the stator voltage reference to the 
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maximum instantaneous value allowable with space vector PWM. The magnitude of 

the voltage input to the space vector PWM is limited to the maximum inverter 

voltage when the resultant of voltage reference from the dead beat DTC algorithm is 

lies outside the hexagonal boundary. The simplified method was verified that is 

satisfactory in transient and overmodulation operation without need for additional 

computational burden on the circuitry has been used.  

A. Tripathi, A. M. Khambadkone, and SK. Panda (2002) [16] proposed a 

simple switching strategy of the inverter to achieve good dynamic torque and 

predictive deadbeat stator flux control. This method allows for smooth transition in 

overmodulation and six-step operations. The error in flux is used to compute the on-

times of the inverter switching states. In this scheme, the use of flux error based 

SVM mitigates the problem of current controller saturation encountered in 

conventional vector control. In addition, it achieves fast torque dynamic at constant 

switching frequency, which is difficult in the conventional of DTC scheme.  

The performance of DTC drive under overmodulation and field weakening 

regions is still undergoing research and thus works are still being carried-out to 

improve the DTC scheme performance.  
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1.6   Layout of Thesis 

This section outlines the structure of the thesis.  

Chapter 2 deals with the mathematical model of a squirrel cage induction 

motor.  The space phasors representations in various quantities of the motor are 

discussed utilizing the physical and mathematical considerations. The compact and 

simplified space phasor notation of the motor also introduced and will be used in the 

simulation.  

Chapter 3 will discuss the principles of direct torque control (DTC) of 

induction motor drives in detail. The working principle, pros and cons of DTC are 

described within this chapter. Afterwards, the DTC of induction motor drive that 

utilizes a constant frequency torque controller and the design algorithm will be 

demonstrated too. 

Chapter 4 touches about overmodulation and field weakening regions in 

DTC drives.  Various techniques from the previous finding on overmodulation and 

field weakening modes that is focus on DTC-SVM will be discussed briefly at the 

beginning of this chapter. Subsequently, a new strategy for overmodulation and field 

weakening modes of DTC drives will be presented.   

Chapter 5 discusses the simulation results.  The performance of DTC in 

overmodulation and field weakening modes is evaluated by simulation study using 

Matlab/Simulink.  

Chapter 6 concludes the topics and suggests recommendation for future 

works.
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