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ABSTRACT 

 

 

 

 

The demand for soft computing techniques in the modeling and control of 

dynamic system has increased in recent years especially for flexible structures. 

Flexible plate structures are extensively used in many space applications, however 

this type of structure leads to high vibration problems. The aim of this investigation 

is to modelling and control of two dimensional flexible plate structures. This will 

involve an identification system including least squares, recursive least squares, and 

neural networks within an active vibration control framework. A thin rectangular 

plates with all edges clamped is considered. A simulation algorithm characterising 

the dynamic behaviour of the plate is developed through a discretisation of the 

governing partial differential equation formulation of the plate dynamics using finite 

difference methods. The simulation algorithm thus developed and validated forms a 

suitable test and verification platform in subsequent investigations for development 

of vibration control techniques for flexible plate structures. The design and analysis 

of an active vibration control (AVC) system utilizing conventional and soft 

computing methods with single-input single-output AVC structure is presented to 

suppressing the vibration of the flexible plate structures. Finally a comparative 

performance of the algorithm in implementing AVC system using recursive least 

square (RLS), Multilayer perceptron neural networks (MLP-NN) and Elman Neural 

networks (ENN) is presented and discussed. 
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ABSTRAK 

 

 

 

 

 Sejak kebelakangan ini permintaan ke atas teknik perkomputeran dalam 

pemodelan dan pengawalan sistem dinamik telah meningkat terutamanya bagi 

struktur-struktur yang fleksibel. Struktur plat nipis yang fleksibel ini banyak 

digunakan di dalam pelbagai aplikasi, namun begitu  struktur jenis ini lebih 

cenderung kepada masalah getaran yang kuat. Tujuan utama projek ini adalah untuk 

membina model dan mengawal getaran struktur segiempat tepat plat nipis yang 

fleksibel dengan menggunakan sistem pengenalan termasuk Least Squares (LS), 

Recursive Least Squares (RLS) dan Neural networks (NNs). Satu algoritma simulasi 

yang mengambarkan ciri-ciri dinamik segiempat tepat plat nipis dibentuk  melalui 

pemecahan persamaan pembezaan separa plat dengan menggunakan kaedah 

pembezaan terhingga. Algoritma simulasi yang telah dibentuk ini diuji dengan ujian- 

ujian pengesahan yang sesuai untuk memastikan kesahihannya dan dapat digunakan 

sebagai platform untuk pembinaan teknik pengawalan getaran (Active Vibration 

Control) segiempat tepat plat  nipis. Rekaan dan analisis keatas sistem aktif 

pengawal getaran dibina dan dianalisis dengan menggunakan RLS dan NNs untuk 

menghapuskan getaran yang wujud terhadap stuktur segiempat tepat plat nipis yang 

fleksibel ini. Akhir sekali perbandingan prestasi diantara LS, RLS dan NNs termasuk 

Multilayer Perceptron Neural Networks (MLP-NN) dan Elman Neural Networks 

(ENN) dalam perlaksanaan sistem aktif pengawal getaran dibentangkan dan 

dibincangkan dalam projek ini.    
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview 

 

 
Flexible structures are extensively used in many space applications. Plates, 

beams, frames and shells are basic elements for flexible structural analysis and are of 

great practical significance to civil, mechanical, marine, aerospace engineering and other 

areas of practical interest, such as slabs on columns, satellites flexible manipulators, 

printed circuit boards or solar panels supported at a few points.  

 

 

The flexible plate structures are used now in diverse applications leads to the 

demand of having reliable, light and efficient flexible structure. The plate materials are 

now thinner, lighter and larger than before. However, thin, light and large structure leads 

to high vibration. A vibration of flexible structures cause reduced system effectiveness, 

structural fatigue and human discomfort. With their potential applications and problems, 

the vibration of plates and with complex boundary conditions has received considerable 

attention from researchers. The vibration of plates has been studied extensively since 
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1787, due to its important in the design of plate structures and many of the important 

studies in this field were documented in Leissa’s monograph (Zhou and Zheng, 2005). 

However, to control the vibrating of plate is complicated due to the highly non-linear 

nature of dynamics of the system which is involving complex processes. Accordingly, 

there is a growing need for developing suitable modeling and control strategies for such 

system (Mat Darus and Tokhi, 2003). 

 

 

Various analytical and numerical methods have been developed to investigate the 

vibration behavior of plates. Although analytical methods are important to give an 

insightful understanding of the vibration behavior and to benchmark frequencies of 

plates, numerical methods are preferred in the vibration analysis of plates due to the fact 

that most of the plates vibration problems do not admit analytical solutions. The reason 

is a part from a few analytically solvable cases, there is no general solution for the static 

analysis of plates and therefore, numerical simulation is one of the major approaches. 

The performance of a numerical simulation depends crucially on the computational 

method employed. Typically, structural analysis computations are accomplished by 

using either global or local methods. Global methods are highly accurate but are often 

cumbersome to implement in dealing with complex geometries and non- conventional 

boundary conditions. For example, a global method may be found to converge slowly 

due to a mixed boundary condition which induces a large local stress concentration. In 

contrast, local methods are easy to implement for complex geometries and discontinuous 

boundary conditions. However, the accuracy of local methods is usually very low. For 

example, it may have convergence problems for the prediction of large eigenvalues in a 

vibration analysis (Hou et. al, 2005). 

 

 

A variety of computational methods have been employed successfully for plate 

analysis. These include the Superposition method, Levy approach, point collocation 

method, finite difference method (FDM), Boundary element method (BEM), differential 

quadrature (DQ) method, Rayleigh method, Ritz variational methods, Meshless methods 
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to the finite strip method and the finite element method (FEM) (Zhou and Zheng, 2004). 

The finite difference method (FDM) and the finite element method (FEM) are widely 

used numerical techniques. These methods are classified as domain methods, in that the 

engineering system is analyzed either in terms of discretized finite grids (FDMs) or finite 

elements (FEMs) throughout the entire region of the system.     

 

 

To obtain an accurate model of the plate structures in order to control the 

vibration of a plate efficiently is crucial. An accurate system will result in the realisation 

of satisfactory control. A model can be created using a partial differential equations 

(PDE) formulation of the dynamics of the flexible plate to representing the dynamics 

behaviour of the plate (Mat Darus and Tokhi, 2003). Among the most important of the 

numerical approaches for modelling flexible plate problem such as finite element 

method (FEM), finite difference method (FDM) and boundary element method (BEM) 

have previously been considered (Ugral, 1999). These techniques eventually require the 

solution of a system of linear algebraic equations. Such calculations are commonly 

performed by means of a digital computer employing matrix methods. The 

computational complexity and consequent software coding involved in both the FEM 

and BEM constitute major disadvantages of these techniques, especially in real-time 

applications. However, in order to makes the technique more suitable in real-time 

applications to reduced amount of complexity in computation involved in FDM (Mat 

Darus and Tokhi, 2003). Moreover, it is to be noted that the FDM is simple, versatile, 

suitable for computer and programmable desk calculator use, and the results in 

acceptable accuracy for most applications involving a uniform structure, such as plate 

considered here. Thus, FDM is used to obtain an efficient numerical method of solving 

the PDE formulation of the dynamic of the plate by developing a finite-dimensional 

simulation of flexible plate through discretisation of the PDE in both the time and space 

coordinates.  
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The MATLAB software is used to implementation the algorithm and it allows 

application and sensing of a disturbance signal at any mesh point on the plate. Such a 

provision is desirable for the design and development of active vibration control 

techniques for the system (Mat Darus and Tokhi, 2003). Then, a MATLAB finite 

difference method (FDM) was developed to perform subsequent system identification 

algorithm simulations. System identification is extensively used as a fundamental 

requirement in many engineering and scientific applications. The objective this system is 

to find exact or approximate models of dynamics system based on observed inputs and 

outputs. Once a model a physical system is obtained, it can be used for solving various 

problems such to control the physical system or to predict its behaviour under different 

operating conditions (Shaheed and Tokhi, 2001). A number of techniques have been 

devised by researchers to determine models that best describe input-output behaviour of 

a system. Parametric and non-parametric identification are two major classes of system 

modeling techniques.   

 

 

   In the case of non-parametric models, neural networks (NNs) are commonly 

utilised. Neural networks are extensively used in many engineering applications. In 

dynamic systems application, it can be easily combined with the natural system 

dynamics and an intelligent machine. Application of neural network for identification 

and control of systems has gained significant momentum in recent years (Shaheed and 

Tokhi, 2001). Neural networks (NNs) originated in an attempt to build mathematical 

models of elementary processing units of the brain and the flow of signals between these 

processing units. After a period of stagnation, these formal models have become 

increasingly popular, with the discovery of efficient algorithms capable of fitting them to 

data sets. Since then, neural nets have been applied to build computerized architectures 

that can approximate non-linear functions of several variables, and classify objects. A 

neural net is nothing more than a sophisticated black box non-linear model that can be 

trained on data. 
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1.2 Statement of Problems 

 

 

The aim of this project is to investigate and develop the Neuro modeling and 

vibration control of a two-dimensional flexible rectangular plate structure using neural 

networks. A thin rectangular plate with all edges clamped is considered. By 

understanding the dynamic characteristics and mode classification of the rectangular 

plates, it will be a useful tool to assist engineers for development of active vibration 

control strategies for flexible plate structures to avoid vibration. 

 

 

A simulation algorithm characterising the dynamic behaviour of the plate is 

developed through a discretisation of the governing partial differential equation 

formulation of the plate dynamics using finite difference methods.  An important aspect 

of the work is to implement this algorithm on the computer using the MATLAB. The 

MATLAB software is used to implementation the algorithm and it allows application 

and sensing of a disturbance signal at any mesh point on the plate. MATLAB was 

chosen as the programming language for this work; since (1) MATLAB which facilitates 

program development with excellent error diagnostics and code training capabilities, (2) 

Advanced software features such as dynamic memory allocation and interactive error 

tracing reduce the time to get solution, and (3) The versatile but simple graphics 

commands in MATLAB also allow easy to create graphs and surface plots. The 

investigation is accomplished by varying the width over the length ratio of the plate. The 

dynamic behaviour characterization of the system in performance of the developed 

algorithm is assessed in comparison with previously reported results by using various 

other methods. Therefore, the data obtained from the first part of work will be used to 

develop and control the neural networks model. This will involve a neural networks 

algorithm within an active vibration control framework. 
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