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ABSTRACT 

 

 

 

 

 The demand for data traffic has initiated the development of optical 
telecommunications. Due to explosive growth of optical network, has brought 
forward an increased need for guided-wave optical component. The purpose of this 
work is to investigate the temperature profile in the thermo-optic waveguide. Here, 
we use one and two dimensional model to analyze the thermal model. We focus on 
polymer waveguide since these technology is attractive for many advantages, 
including large thermo-optic coefficient (for Polyurethane (PUR): dn/dt ~ -3.3-4  K-1) 
and low thermal conductivity ( ~ 0.19 W m-1 K-1). The buried and rib waveguide 
structure is used for two dimensional model thermal analysis. We interested to see 
how heating the heater will change the refractive index and change the profile in the 
waveguide. Thermal coupling became next task of this project. We analyze the effect 
of heater to the nearby waveguide. To perform this analysis, we utilized a 
commercial finite element method (FEMLAB 2.0), which is a tool for PDE-based 
multiphysics modelling in an interactive environment-MATLAB. The simulated 
result will use one and two dimensional model respectively. Effective index change 
is dependency of heater size as well as distance between core to the heater. 
Increasing 1µm of heater width will reduce -0.1 of dneff/dt it also increasing the 
power consumption. Thermal coupling is related to waveguide spacing and depth. 
The coupling estimation is increase with the waveguide depth but decrease with the 
waveguide spacing. Apply trench structure can reduce the thermal coupling 
estimation, K .The temperature of heated waveguide decreases as the trench depth 
increases, therefore it requires less power in performing its function. 
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ABSTRAK 

 

 

 

 

 Perkembangan terhadap komunikasi optik bermula dengan permintaan 
terhadap pengangkutan data. Peningkatan yang cepat memberi peluang terhadap 
penggunaan komponen gelombang pandu. Matlamat di sini adalah untuk mencari 
kesan suhu terhadap gelombang yang di panaskan. Oleh itu, penggunaan satu dan 
dua dimensi digunakan didalam analisis kesan haba ini. Analisis ini dilakukan 
menggunakan bahan polimer kerana ia mempunyai pemalar haba optik yang tinggi( 
dn/dt ~ -3.3-4  K-1) dan juga pengaliran arus elektrik yang rendah ( ~ 0.19 W m-1 K-1). 
Model haba menggunakan dua bentuk struktur gelombang yang berbeza iaitu 
penanaman (buried) dan juga melengkung (rib). Kami ingin melihat bagaimana  haba 
memberi impak terhadap perubahan indek bias dan juga terhadap profil gelombang. 
Selepas itu, fokus terhadap perangkai haba (thermal coupling) di lakukan. Analisis 
pemanas terhadap gelombang yang bersebelahan dilakukan. Untuk melakukan semua 
analisis ini kami menggunakan komersial perisian iaitu FEMLAB 2.0 yang mana 
menggunakan asas fenomena fizik model dan juga persamaan matematik. Ia juga 
interaktif dengan perisian MATLAB. Simulasi akan menggunakan satu dan dua 
dimensi. Perubahan indek bias bergantung kepada saiz pemanas dan juga jarak di 
antara teras (core) kepada pemanas. Peningkatan sebanyak 1µm kelebaran pemanas 
akan mengurangkan -0.1 perubahan indek bias (dneff/dt) dan ini akan meningkatkan 
penggunaan kuasa. Manakala, perangkai haba (thermal coupling) amat bergantung 
kepada jarak di antara dua gelombang dan juga kedalaman teras. Nilai ini, K akan 
meningkat bergantung kepada jarak kedalaman gelombang dan mengurang sekiranya 
jarak di antara dua gelombang meningkat. Penggunaan kaedah perparitan (trench) 
akan mengurangkan nilai perangkai haba,K. Suhu gelombang yang di panaskan akan 
berkurang sekiranya kedalam parit (trench depth) meningkat. Oleh itu, ia akan 
menjimatkan penggunaan kuasa di dalam melakukan sesuatu fungsi.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 
 

  
 Guided wave optics will play an increasing and important role in optical 

communication networks and optical sensor systems. In particular, polymeric 

waveguide devices are being developed; because the process can be low-cost, and 

high manufacturing output can be achieved. The low temperature fabrication process 

of polymer waveguide also gives the designer a large degree of freedom. Because 

most polymer materials have a thermo-optic coefficient an order of magnitude larger 

than that of silica, thus, they can be temperature tuned over a wider spectral range 

(Edwin Y. B. Pun and W.H. Wong, 2002). 

 
 

 In general polymer has a temperature dependent refractive index which is 

known as the thermo optic (TO) effect. Recently, the active optical glass waveguide 

utilizing the TO effect such as modulators and switches has been demonstrated 

(M.Haruna and J.Koyama ,1982). In 1989, there is published paper due to application 

of TO which is using polymer waveguide to make a switch. The author demonstrated 

that effective index changes at least one order higher than those obtained with the 

electro optic effect in LiNbO3 are found (M.B.J. Diemeer, J.J. Brons and E.S. 

Trommel, 1989). Two years ago, the researcher (H.P. Chan, C.K. Chow and Alok K. 

Das 4, 2003), found that by using the polymer material in application of digital 

optical switch (DOS), there can reduces the crosstalk value. 
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 Nowadays, there have a lot of research to find a robust material or versatile in 

optic communication application. Figure 1 shows the material that used until 2001, 

polymer contribute only few percentage. 

 

 

Table 1.1: Integrated optics market in 2001 by material type (L. Gasman, 2001) 

  Material       % 

  Lithium niobate      30 

  Indium phosphide      22 

  Gallium arsenide      20 

  Silica on silicon      11 

  Polymer       5 

  Silicon       3 

  Other        9 

  TOTAL       100 

 

 

 
 
1.1 Statement of the Problem 

 

 
 The explosive growth of the Internet, and the emergence of a strong wireless 

market are driving these changes, and optoelectronic components are fundamental 

enablers of this transformation. This combination of optical and electrical 

technologies allows data to be generated, transported and manipulated at high rates. 

Today, optoelectronics are being integrated into existing networks. By 2007, all-

optical networks will most likely be needed (John Stafford, 2001).  

 

 

 Today’s components and packages are too costly as well as too cumbersome. 

The industry will need to move to new technologies, such as flip chip instead of wire 

bond, and multichip modules to reduce package size (John Stafford, 2001). Still need 

a lot a research in this field due to demanding of optical communication.  

 19



 As the new technology trends to increase the speed and the bandwidth for 

communications in wide area networks, the all optical network becomes a good 

choice as a solution for that problem. New devices and materials using linear or non 

linear effects of light are extremely useful for such networks because of their 

compatible speed (Mario L and Jose A.M. Pereira, 1996). Our project use polymer 

material to build optical waveguide. Recently, development on optical polymer 

waveguide will used electro –optic to implement the device. Because polymer has 

large TO coefficient, we will apply this effect to implement future device. 

 

 

 

 

1.2 Integrated Optics in Polymers 

 

 

 Polymer materials are of great interest in integrated optics as they can be 

tailored to meet specific applications. The thermo-optic effect is large in these 

materials -1×10-4 K-1 to -4×10-4 K-1 which leads to power efficient dynamic 

components. They are potentially low cost and rapidly processed by direct photo 

patterning or reactive ion etching. Waveguide can be designed with very large or 

very small index contrast between core and cladding (0% – 35%). Polymer can also 

have very low optical loss <0.1dB/cm at the telecommunication wavelengths 1310 

nm and 1550 nm (John M. Senior, 1992). Cross linked polymer systems operated 

above the glass transition temperature even allow for waveguides free of stress 

induced scattering and birefringence. Polymer material classes used in integrated 

optics include acrylates, polyimides, polycarbonates and olefins (Robert Blum, 

2003).  

 

 

 Realized polymer devices cover a wide range of optical applications like 

switches, couplers, filters, attenuators, polarization controllers, dispersion 

compensators, modulator, laser and amplifiers (R.T. Chan,1993).Even 3D multi layer 

architectures of integrated circuits are possible as successive layers are deposited b 

simple spin coating (S.M. Garner et all, 1999).Table 2 compares several typical 
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materials used in integrated optics. In almost all categories polymers exhibit 

excellent values. However, it is difficult to combine all these properties in single 

material. 

 

Table1.2: Typical properties of waveguides in popular materials used in integrated 

optics. The refractive indices of the core and cladding materials are denoted by ncor 

and nclad respectively. 

 Propagation 

Loss 

[dB/cm] 

Refractive

Index 

Index 

Contrast 

(ncornclad)/ncor

Birefringence T/O 

Coef.dn/dt 

[K-1] 

Max. 

Modulation

Freq. 

Silica 0.1 1.5 0-1.5% 10-4-10-2 10-5 1kHz (TO) 

Silicon 0.1 3.5 70% 10-4-10-2 1.8×10-4 1kHz (TO) 

Polymers 0.1 1.3-1.7 0-35% 10-6-10-2 -1×10-4- -

4×10-4

1kHz (TO) 

Lithium 

Niobate 

0.5 2.2 0-0.5% 10-2-10-1 10-5 40GHz 

(EO) 

Indium 

Phospide 

3 3.1 0-3% 10-3 0.8×10-4 40GHz 

(EO) 

Gallium 

Arsenide 

0.5 3.4 0-14% 10-3 2.5×10-4 20GHz 

(EO) 

 

 

 Most serious problems in connection with polymers are environmental 

stability (temperature, humidity) and commercial availability. Thermal aging due to 

oxidation is often observed in organic materials as well as water incursion and the 

associated optical absorption from the overtone bands of the OH stretch (Robert 

Blum, 2003).However, these problems have been solved by many manufacturers 

(e.g. AlliedSignal, JDS Uniphase, Du Pont, Dow Chemical) and some materials even 

passed the Bellcore 1209 and 1221 test (R, Moosburger et all, 1996). 

 

 

 Unlike silicon, silica or InP, polymers are materials are designed by chemists 

to meet specific needs. Their usage is often hindered by patents and they are seldom 

sold or manufactured in small quantities as needed for integrated optics (J.D. 

Plumber, M.D. Deal and P.B. Griffin, 2000). Therefore commercially available 

polymers are usually built for other applications like microelectronics, display or 
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furniture coating. By chance, some of them also show desirable optical 

characteristics like BCB (Cyclotene by Dow Chemical). 

 

 

 

 

1.3 Scope of this Work 

 

 

 This project is about an investigation of temperature profile in the thermo-

optic waveguide due to the effect of having thin film heater on top of polymer 

waveguide structure by using the one and two dimensional model. Here, we would 

like to determine the effective index change from the change of temperature. By 

heating the heater, it will distribute the heat in the surrounding area and cause 

increasing the temperature in the waveguide structure. 

 

 

 In the way to analyze the TO effect, we will design thermal model based on 

two different structure which is rib waveguide structure and buried waveguide 

structure. The lateral heat diffusion distance in both structures will be studied. Two 

phenomena will be studied seriously, which is the distance from heater to the core 

waveguide (H) affect the effective index change. We also interested to investigate 

how heater size would affect the key parameters in modelling waveguide structure.   

 

 

 Thermal coupling became an issue when we have two waveguides in parallel. 

The structure will consists of two square waveguide. Due to thermal phenomena, 

heat one of the waveguide will effects nearby waveguide. Actually, these are 

unwanted phenomena and will degrade the devices performance. The relationship 

between them is known as thermal coupling estimation. Here, we will determine 

these values and try to figure out the way to reduce these effects. One method is by 

applying the trench structure. All the simulation is done using software named 

FEMLAB. The result can be obtained by GUI (Graphical User Interface). This 

software apply finite element as a method to solve all the problems.   
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1.4 Overview of this Report 

 

 

 This section outlines the organization of the work contained in this thesis. 

Throughout this thesis we have seven chapters including the conclusion. A brief 

history of integrated optic is discussed in Chapter 2. Follow with the literature review 

of this project. Several papers are discussed under section 2.2 sub topics. 

 

 

 In Chapter 3, all the theory that applies for the project progress is explained 

briefly. The discussion start with phenomena that cause light can travel in the 

waveguide. Maxwell equation are introduces to get wave equation. Then, the types of 

the structure are discussed following with several type of control waveguide. But for 

this project, we focus on thermo-optic control. At the end of this chapter, the 

subtopic is on polymer waveguide. 

 

 

 Chapter 4 is about the methodology of the project. Since we used the 

numerical method in the way to get the result, a basic theory of finite element 

method is discuss. Thermal analysis, which is the heat transfer equation are explain 

due to the one and two dimension respectively. Thermal model including rib and 

buried waveguide structure is explained under section 4.3. Lastly, a quick step on 

simulation used FEMLAB software is shown. 

 

 

 The result section is divided into two sub topic which is thermal model and 

thermal coupling. Under thermal model we show the result for rib and buried 

structure. One dimensional is also shown under this sub topic. All the parameter that 

will be influence the performance of effective index change is shown in this topic. 

Discussion and analysis or data interpretation are shown in Chapter 6. A lot of issue 

is discussed here. Last chapter is about the conclusion of the project throughout this 

course. 
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