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ABSTRACT 

 

 The human brain is an extremely complex system performing demanding 

information processing tasks rapidly.  It consists of billions of neurons, each 

connected to others through thousands of synapses or interconnections.  This huge 

network has many electric and chemical processes that can be measured in various 

ways.  Magnetoencephalography (MEG) is a technique of measuring and recording 

the minute and very weak magnetic fields generated by the currents in the neurons.  

There are two types of problems in MEG, the forward problem and the backward or 

the inverse problem.  The forward problem deals with finding the magnetic fields 

when the current source distribution is given or known.  On the other hand, the 

inverse problem is to find the neural current source distribution given a series of 

magnetic fields measurements.  This study has proposed the model FTTM2 (Fuzzy 

Topographic Topological Mapping Version 2) which is an extension to the novel 

mathematical modeling FTTM1 (Fuzzy Topographic Topological Mapping Version 

1).  The model FTTM2 comprises four components namely the Image Contour Plane 

(IC), Base Image Plane (BI), Fuzzy Image Field (FI) and Topographic Image Field 

(TI).  In the process of applying FTTM2, emphasis is made on its first component, 

the IC where two different algorithms are being applied to the data.  The first is the 

fuzzy c-means (FCM) algorithm which is used to determine the region where the 

current sources lie and also to approximate the number of current sources.  The 

second is the seed-based region growing (SBRG) algorithm which is used to confirm 

the number of current sources available in the system by automation.  Two theorems 

and three corollaries are derived and proven as theoretical basis of the proposed 

system.  Finally, FTTM2 is tested on the generated and experimental data and 

subsequently verified using forward and backward calculations. 
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ABSTRAK 

 

 Otak manusia adalah suatu struktur yang kompleks yang melaksanakan 

pemprosesan maklumat dengan tangkas.  Otak terdiri daripada ribuan juta neuron 

yang berkait antara satu sama lain melalui ribuan jaringan.  Jaringan ini pula 

mengandungi banyak proses elektrik dan kimia yang boleh diukur dengan pelbagai 

cara.  Magnetoencephalography (MEG) adalah suatu teknik mengukur dan merekod 

medan magnet yang amat kecil dan lemah yang dihasilkan oleh arus yang mana arus 

itu pula terhasil oleh tindakan neuron.  Terdapat dua permasaalahan di dalam MEG 

iaitu masalah ke hadapan dan masalah ke belakang.  Masalah ke hadapan melibatkan 

pengiraan medan magnet apabila kedudukan arus diketahui.  Sebaliknya, pengiraan 

ke belakang melibatkan pengiraan kedudukan arus apabila hanya nilai-nilai medan 

magnet diketahui.  Penyelidikan ini telah mengesyorkan model FTTM2 (“Fuzzy 

Topographic Topological Mapping Version 2”) yang mana ia adalah model yang 

telah diunjurkan dari FTTM1 (“Fuzzy Topographic Topological Mapping Version 

1”).  Model FTTM2 ini terdiri dari empat komponen iaitu Image Contour Plane (IC), 

Base Image Plane (BI), Fuzzy Image Field (FI) dan Topographic Image Field (TI).  

Dalam proses mengaplikasikan FTTM2, tumpuan diberikan pada komponen pertama 

(IC) yang mana dua algoritma berbeza digunakan.  Algoritma pertama ialah 

penggunaan fuzzy c-means (FCM) yang dapat menentukan lokasi bagi kedudukan 

arus dan dapat menganggarkan bilangan arus.  Algoritma yang kedua melibatkan 

penggunaan seed-based region growing (SBRG) yang berupaya menentupastikan 

bilangan arus secara automasi.  Untuk menguji kebolehgunaan kedua-dua algoritma 

ini, dua teorem beserta tiga korolari diterbitkan dan dibuktikan.  Akhir sekali, 

FTTM2 diujikan ke atas data yang diperolehi dari simulasi dan juga dari ujikaji dan 

seterusnya dibuktikan dengan pengiraan ke depan dan ke belakang. 
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φâ  - The unit vector along the concentric circular path of the 
magnetic field lines 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Introduction 

 

The human brain is the most important organ in our body.  It is also the most 

sophisticated creation known to exist.  Therefore, understanding how the brain works 

is one of the greatest challenges ever faced by mankind.  The brain fulfills several 

important functions such as processing of sensory information, the programming of 

motor and emotional responses, the storage of information and learning.  These 

complex tasks are carried out by the interconnected sets of neurons.  There are at 

least  neurons in the outermost layer of the brain, the cerebral cortex (Penfield 

and Rasmussen, 1950).  This is the part which differs most from the brain of other 

animals (Devinsky, 2001).  This cerebral cortex is a greatly convoluted sheet of cells, 

about 3 mm thick, consisting of small grooves (sulci), large grooves (fissures) and 

bulges between them (gyri).  The neurons are the active cells units in a vast signal 

handling network, which include  interconnections or synapses.  When 

information is being processed, small currents flow in the neural system and 

produced a weak magnetic field, which can be measured noninvasively by a device 

known as Superconducting Quantum Interference Device (SQUID) magnetometer, 

placed outside the skull, provided that thousands of nearby neurons act 

synchronously (Hamalainen et al., 1993). 
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The brain consists of two hemispheres, separated by the longitudinal fissure.  

The left and right halves, in turn are divided into lobes by two deep grooves.  The 

Rolandic fissure runs down the side of both hemispheres, while the Sylvian fissure is 

almost horizontal (see Figure 1.1).  There are four lobes in both halves of the cortex: 

frontal, parietal, temporal and occipital.  Each lobe contains many different areas that 

have different functions.  Most regions of the cortex have been mapped functionally 

(Hamalainen et al., 1993).  Figure 1.1 below shows some of the important structural 

landmarks and special areas of the cerebral cortex. 
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Figure 1.1     The important parts of the human brain (left side) 

 

The primary somatosensory cortex, which receives tactile stimuli from the 

skin, is located posterior to the Rolandic fissure.  The area in the frontal lobe just 

anterior to the Rolandic fissure contains neurons concerned with the integration of 

muscular activity: each site of the primary motor cortex is involved in the movement 

of a specific part of the body (Hamalainen et al., 1993). 
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The nervous system is the most complex and delicate of all the body systems.  

At the center of the nervous system is the brain. The brain sends and receives 

messages through a network of nerves.  These nerve cells or the neurons are the basic 

functional unit of the nervous system.  Figure 1.2 is an illustration of the structure of 

the neuron.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2     (a) Schematic illustration of a pyramidal neuron and three magnified 

synapses, (b) pyramidal neuron (Hamalainen et al., 1993). 

 

The neuron is a nerve cell specialized for the reception, interpretation and the 

transmission of electrical messages.  They function like computer chips, analyzing 

and processing information and then sending signals through the nerve fibers.  

Basically, a neuron consists of a cell body that receives electrical messages from 

other neurons through contacts called synapses located on the dendrites or on the cell 

body.  The dendrites are the parts of the neuron specialized for receiving information 

from stimuli or from other cells.  If the stimulus is strong enough, the neurons 

transmit an electrical signal outward along a fiber called an axon.  The axon or nerve 
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fibre, which may be as long as 1 meter carries the electrical signal to the muscles, 

glands or other neurons. 

 

The two principal groups of cortical neurons are the pyramidal and the 

stellate cells.  The former are relatively large; their apical dendrites from above reach 

out parallel to each other, so that they tend to be perpendicular to the cortical surface.  

Since neurons guide the current flow, the resultant direction of the electric current 

flowing in the dendrites is also perpendicular to the cortical sheet of gray matter.   

 

In the human brain, there are more than several hundred millions of neurons 

connecting with each other and working for auditory and visual information 

processing.  In these neurons, ion currents flow while these neurons are involved in 

the information processing.  The ion current goes out of the neurons and flows in the 

conductive brain.  It is these ion currents that produce the magnetic fields which 

flows according to the Right-Hand Rule (RHR) (Sadiku, 1995).  Amazingly, this 

magnetic field can emerge out of the head through the brain, the skull, the 

cerebrospinal fluid and the scalp without receiving any distortion.  This outstanding 

characteristic of magnetic fields becomes important in the studies of 

Magnetoencephalography (MEG). 

 

MEG is a revolutionary medical imaging technology that provides 

unprecedented insight into the workings of the human brain through the 

measurement of electromagnetic activity.  It is a technique of recording and 

measuring the minute and very weak magnetic fields produced by electrical activites 

in the brain (Hamalainen et al., 1993).  By measuring the magnetic fields created by 

the electric current flowing within the neurons, MEG identifies brain activities 

associated with various functions in real time with millimeter spatial accuracy.  MEG 

is also completely non-hazardous since the human subject is not exposed to x-rays, 

radioactive tracers or to time-varying and strong static magnetic fields.  Furthermore, 

MEG is noninvasive since it permits studies of the brain without opening the skull.   
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Different parts of the brain produce different patterns of magnetic waves 

(signals).  Diseased brains can produce abnormal magnetic signals.  The special 

feature of MEG is that it can be used to determine which brain regions are 

malfunctioning.  It can also identify specific foundation regions of the brain such as 

auditory and visual cortex.  Stimuli such as sounds or pictures will activate specific 

portions of the brain in characteristic sequences.  MEG examines neuromagnetic (a 

near synonym of MEG, meaning the study of neuronal activity by means of magnetic 

fields) activity changes during this stimulation and pinpoints the location of 

functional regions.  This helps determine if the sequence of activation has been 

perturbed by disease.  MEG can be used to accurately localize sources within the 

brain.  This information is useful in the field of medicine especially for pre-surgical 

functional mapping assessment of pathological functional deficits, 

neuropharmocological investigations, trauma assessment and a growing list of 

research investigations in neuroscience and psychiatry.  Furthermore, by using MEG, 

one can measure the activity of the brain in real time.  This means that the brain can 

be observed “in action” rather than just viewing a still image.   

 

In MEG studies, the weak magnetic fields are measured with the sensitive 

device known as SQUID magnetometer.  This device only works at a temperature of 

-270 degrees Celcius, which requires that it be kept in a large container of liquid 

helium.  Figure 1.3 illustrates the arrangement of the magnetometer that is placed 

above a patient’s head while the patient is in a lying position. 
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Figure 1.3     Detection of cerebral magnetic fields using a SQUID magnetometer 

(Hamalainen et al., 1993) 

 

MEG measurements are normally carried out inside a special magnetically 

shielded metal room.  This is due to the fact that the magnetic signals from the brain 

are extremely weak as compared to the ambient magnetic field variations.  Thus, the 

rejection of the outside disturbances is of utmost importance.  Significant magnetic 

noise is caused for example, by fluctuations in the earth’s geomagnetic field, moving 

vehicles and elevators, radio, television and microwave transmitters and the 

omnipresent power-line fields. 

 

 

1.2 Background of the Research 
 

The neurons in the brain normally generate electrochemical impulses that act 

on other neurons, glands, and muscles to produce human thoughts, feelings and 

actions.  When there is any disruption of the electrical processes, the neurons may 

function abnormally.  Epilepsy or seizure disorder is a condition in which clusters of 
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nerve cells, or neurons in the brain sometimes signal abnormally.  In epilepsy, the 

normal pattern of neuronal activity becomes disturbed (Penfield and Jasper, 1954), 

causing strange sensations, emotions and behaviors, or sometimes convulsions, 

muscle spasms and loss of consciousness.  During an epileptic seizure, neurons may 

fire as many as 500 times a second, much faster than the normal rate of about 80 

times a second.  These seizures can last anywhere from a few seconds to a few 

minutes, and are usually spontaneous and uncontrolled.  According to Hari (1996), 

the first clinical application of MEG is in the determination of epileptic foci.  

Physiologically, the epileptic foci refer to the location of the current sources, which 

generate the corresponding magnetic fields.   

 

In spite of advances in antiepileptic medication, seizures in some patients 

cannot be controlled adequately.  About 10 % - 20 % of all epileptic patients 

ultimately suffer from medically intractable epileptic seizures (Yung and Hsiang, 

2002).  Neurologists often suggest surgery to resect the problematic cells.  However, 

the surgery can never be successful unless treated at the exact location of those 

problematic cells.  Hence, it is crucial to determine the epileptogenic focus precisely 

before choosing the surgical procedure, that is, a presurgical localization plays an 

essential role in neurosurgical planning.  This is to avoid injury to the primary 

sensory-motor cortices during the procedures (Lueders et al., 1983; Gallen et al., 

1995), thus reducing the risk of the patient being left with a permanent functional 

deficit such as paralysis or loss of speech and sensation.  As MEG is an established 

technique that can measure and record the very weak magnetic fields, it can therefore 

be adopted to determine or locate the epileptogenic focus in epileptic patients.  The 

weak magnetic fields produced by the cerebral electrical activities in the brain that 

occurs during epileptic seizure measured by the MEG can serve as a presurgical 

measure.  The main purpose of measuring these magnetic fields is to locate the 

electrical activity and to determine its distribution in the brain (Risto et al., 1994).   

 

In MEG, there exist two types of problems involving the forward and the 

backward (inverse) problems.  The forward problem involves calculating the 

observable variables (magnetic fields) caused by the current sources.  On the other 

hand, the inverse problem involves estimating the location, orientation and the 
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magnitude of the current sources from the results of the magnetic fields 

measurements.  These two problems can be presented using the corresponding 

models: the forward model and the backward model.  Figure 1.4 below illustrates the 

forward model. 
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Figure 1.4     The forward neuromagnetic modeling 

 

 

The backward model is illustrated in Figure 1.5 below; 
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Figure 1.5     The inverse neuromagnetic modeling 

 

Until now, all methods used to solve the inverse problems depended on prior 

data.  Clarke (1989), Hamalainen et al. (1993), Baillet and Garnero (1997), Philips et 

al. (1997) and Hasson and Swithenby (1999) applied the Bayesian approach, which 

allows the introduction of a priori information.  Ricardo et al. (2000) applied the 

independent component approach (ICA) to the analysis of MEG recordings.  Boris et 

al. (2004) and De Munck et al. (2004) used the maximum likelihood estimation 

(MLE) approach.  These approaches are based on statistical methods that involve 
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loads of data.  These kinds of models are also said to be the data-based models.  

Unfortunately, these models are limited by the computational burden where the 

computing time is unnecessarily long and hence makes the process of solving the 

problem tedious. 

 

As opposed to the above model, Tahir et al. (2000) proposed a novel 

structured-based model known as Fuzzy Topographic Topological Mapping Version 

1 (FTTM1).  The FTTM1 model requires only instantaneous data.  As a consequence 

of this, the computing time is consequently reduced, unlike the statistical-based 

models.  Figure 1.6 illustrates the FTTM1 model, which is based on the backward 

model as illustrated in Figure 1.5. 
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Figure 1.6     Inverse neuromagnetic modeling: FTTM1 
 

Basically, this newly developed model is a topological mapping which 

contains some fuzzy structures and it comprises four components linked by three 

different algorithms.  The four components are magnetic contour plane (MC), base 

magnetic plane (BM), fuzzy magnetic field (FM) and topographic magnetic field 

(TM).  Figure 1.7 illustrates the FTTM1 model; 
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Figure 1.7     Fuzzy Topographic Topological Mapping Version 1 (FTTM1) 

 

 Traditionally, the MEG data used for analyses are obtained using the SQUID 

measurements made above the head.  However, to test the applicability of the newly 

developed model FTTM1, simulated data were used (Fauziah et al., 2000).  As the 

model is structured-based, it does not need a priori data and hence, it is anticipated 

that the computing time can be reduced.  Initially, this model was applied to 

simulated data of single and unbounded current sources and has provided fairly good 

results (Fauziah, 2002). 

 

In this research, an extended version of FTTM1 which will be known as 

FTTM2 is proposed.  Unlike FTTM1, this new model uses image data, which are 

transformed from the magnetic fields data.  The use of the image data is to 

incorporate the image processing techniques that will provide better visualization of 

the image.  The model will then be used to solve the inverse problem of single 

bounded and multiple bounded current sources. 

 

 

1.3 Objective and Scope of Study 
 

The main objective of this study is to solve the backward (inverse) problem 

of MEG.  This involves finding the location of the current sources from the measured 

magnetic fields.  Physiologically, this implies finding the epileptic foci in epilepsy 
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disorder patients.  Before the backward problem can be solved, the forward problem 

must first be taken care of.  The forward problem deals with writing an algorithm to 

generate the magnetic fields data for multiple bounded current sources.  This 

includes the generation of data measured at three different planes where this kind of 

measurement is especially useful for overlapping current sources.  The magnetic 

fields data generated can then be used to find the parameters for multi-current 

sources.  This includes the number of current sources present, the location of the 

current sources, its orientation and also its magnitude.   

 

The newly proposed inverse model, FTTM2 is incorporated with a fuzzy 

clustering technique known as fuzzy c-means (FCM) and an image processing 

technique known as the seed-based region growing (SBRG).  Because of the 

topological structure of FTTM2, it has the biggest advantage in that it can be applied 

anywhere on a patient’s head (top or the sides).  In other words, it is invariant with 

regards to the measured space in a given time.  Consequently, new algorithms in 

solving the inverse problem of MEG are introduced.  Since this study deals with 

testing the applicability of the newly developed inverse model, the scope of this 

study is limited to the use of simulated magnetic fields data obtained from single 

bounded and multiple bounded current sources.  Experimental works are also 

undertaken to test the applicability as well as the performance of the developed 

model.  

 

 

1.4 The Significance of this Research 
 

This research adopts the techniques of image processing in solving the 

inverse problem of MEG.  In doing so, a new model is formulated which can 

consequently be used to further enhance the applications of MEG.  The new model, 

FTTM2, is a structured-based model.  This implies that the model is constructed by 

studying the characteristics of the current sources and its corresponding magnetic 

fields.  This model also uses instantaneous data which implies that the model does 

not require much time in providing the results.   
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Since the model is able to pinpoint the location of current sources, it will be 

useful in the presurgical localization of the current focus where only the problematic 

cells will be resected.  Hence, this will give minimum or no side effects to the 

patients when undergoing surgery.  This discovery serves as a significant 

contribution in the neurosurgical field specifically for epileptic disorder or any other 

problem areas analogous to it. 

 

 

1.5 Research Framework 
 

This research comprises two main phases namely solving the forward 

problem and the backward problem.  Solving the forward problem deals with 

generating the magnetic fields data.  This will be accomplished by using MATLAB 

simulations and experimental work in the laboratory.  The backward problem deals 

with using these data and applying the proposed model to determine the number of 

current sources, its location and also its magnitude.  Figure 1.8 illustrates the general 

procedures.  Data gathered by simulations and experiments in phase 1 are used in the 

second phase where FTTM2, incorporated with fuzzy c-means (FCM) and seed-

based region growing (SBRG), is adopted to produce an output.  This process 

produces the number of current sources, its location as well as its magnitude. 
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Figure 1.8     Research framework 
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1.6 Outline of Presentation 
 

This chapter gives an overview of the research undertaken.  Chapter 2 begins 

with a review of previous studies on Magnetoencephalography, its measurement and 

the methods used to solve the forward and the inverse problems. 

 

Chapter 3 explains the essential mathematical background that are used in 

this research.  This includes substantial topics on magnetism, crisp set, fuzzy set, 

image processing, seed-based region growing and clustering. 

 

 The main contributions of this study are presented in the next four chapters.  

Chapter 4 describes the procedure to calculate the magnetic fields from known 

location of current sources.  The detailed algorithms are given.  In order to facilitate 

their uses, the algorithms are coded in MATLAB.  The outputs of the algorithms are 

presented in the form of magnetic fields data and its corresponding contour plots.  

This is to examine the patterns generated with the associated known current location 

and orientation of the current sources.  This information will be useful in solving the 

inverse problem later.   In addition to this, the characteristics of the magnetic fields 

data are also examined by means of equations and geometries. 

 

Chapter 5 describes the inverse model of FTTM2 in detail.  This involves the 

use of a clustering algorithm known as fuzzy c-means (FCM) that is used to cluster 

the data into foreground and background regions.  Another algorithm is the seed-

based region growing (SBRG) which can be used to determine the number of current 

sources present in the system by automation.  Once these two algorithms are applied, 

the data will be processed further by going through the other processes in FTTM2. 

 

In Chapter 6, we propose the theoretical bases supporting Chapters 5 and 7 by 

proving two theorems and three corollaries.  These theorems and corollaries showed 

that the partitioning applied to the first component is preserved during the 

transformation from the first component to the fourth component.  Since this 

involves some concepts of topology, some preliminaries on topology are also 
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included.  To verify these theorems and corollaries, they are implemented on the data 

as described in the next chapter. 

 

The detailed implementation of the FTTM2 is illustrated in Chapter 7 where 

the topological structure of FTTM2 plays another main role in localizing the current 

sources.  The implementation starts with the acquisition of magnetic fields data via 

two different methods.  In the first method, the data is acquired through MATLAB 

simulations while in the second method, the data is acquired through laboratory 

experiments.  These data acquisition is also called the forward calculations, which 

provides data to be used in solving the backward problem.  In the backward problem, 

the data is then processed by applying FCM clustering algorithm and the SBRG 

algorithm and the developed FTTM2 algorithm.  The results are also shown in this 

chapter. 

 

Finally, Chapter 8 concludes the thesis with a summary of the study and 

recommendations for further research into this area of study.  The thesis outline is 

summarized in Figure 1.9. 
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