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ABSTRACT

 Three dimensional low Mach number film cooling of turbine blade have been 

conducted using computational fluid dynamics (CFD) software FLUENT. Strong 

anisotropic of film cooling turbulence and flow complexities require capable turbulence 

model such as Reynolds Stress Model (RSM) or Large Eddy Simulation (LES) model to 

solve film cooling flow field. Film cooling with holes arrangement on blade leading 

edge, pressure and suction were tested in present study. The effects of film cooling 

parameters such as blowing ratio, surface curvature, injection angle, hole spacing, hole 

length, and plenum geometry have been investigated. The results presented in adiabatic 

film cooling effectiveness as well as plots of temperature and velocity contour. Present 

study reveals that blowing ratio, injection angles and coolant holes arrangements are 

significant parameters in film cooling process. Performances of film cooling highly 

depend on a combination of parameters. Present study represents the feasibility of CFD 

utilization as an innovative predictive tool in turbine blade film cooling design. 
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ABSTRAK

Aliran penyejukan saput bilah turbin tiga dimensi dengan nombor Mach yang 

rendah di jalankan menggunakan perisian pergerakan bendalir berkomputer, FLUENT. 

Aliran gelora penyejukan saput yang tidak terarah dan struktur aliran yang komplek 

memerlukan model aliran gelora yang berkebolehan seperti Reynolds Stress Model 

(RSM) atau Large Eddy Simulation (LES) untuk penyelesaian. Penyejukan saput dengan 

aturan lubang pada pinggir depan, permukaan cembung dan cekung bilah di kaji. Kesan 

parameter penyejukan saput seperti nisbah pancutan, kelengkungan permukaan, sudut 

pancutan, jeda lubang, panjang saluran bahan penyejuk, bentuk lubang dan geometri 

ruang pembekal penyejuk turut dikaji. Keputusan kajian dipersembahkan dalam bentuk 

kecekapan adiabatik penyejukan saput serta melalui plot kontor suhu dan 

halaju.Perbincangan keputusan adalah berdasarkan pengaruh parameter ini ke atas 

struktur aliran penyejukan saput. Kajian ini memdedahkan bahawa nisbah pancutan, 

sudut pancutan dan susunan lubang mempunyai kesan yang ketara keatas kecekapan 

penyejukan saput.
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CHAPTER 1 

INTRODUCTION

1.1 Problem Statement 

The needs of protection of a surface due to extreme thermal condition by 

means of a fluid film were applied in many applications. Harsh and extreme thermal 

environment such as inside combustion chamber and turbine blade can lead to failure 

of their surface walls. The continuous improvement in the performance of gas turbine 

engine necessitates a continuous increase in the turbine inlet temperature. The 

efficiency and power output of gas turbine engine increase with increment in turbine 

inlet temperature. Is estimated that for every 100 0F increase in this temperature, the 

power output increases by about 10% and the efficiency increases by about 1.5% 

Berhe and Patankar (1998).

Since the inlet temperature of present generation gas turbines are much higher 

than the melting temperature of the available alloys used to make turbine blades. 

Hence cooling of the turbine blades is a critical issue in gas turbine engine 

technology. A suitable cooling mechanism is needed in term to reduce the resulting 

high thermal stresses and to prolong the life of turbine blade under this extreme 

condition. Currently, turbine blades are cooled by a combination of internal and 

external cooling mechanism. Convection and impingement cooling are the methods 

used to cool the turbine blade internally.

 Film cooling is most common cooling mechanism for external surface of 

turbine blades. Film cooling wherein cooler air from the compressor is bled thru 

cavities of connecting shaft and injected near the blade surface through holes or slots 

to provide a layer of cool fluid between the hot gaseous and the blade surface. The 
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objective of film cooling is to provide a blanket of cold film, which behaves as an 

insulation layer on blade surface or as a heat sink. 

Film cooling on turbine blade is controlled by many variables that contribute 

significantly on cooling effectiveness and local heat transfer coefficient over blade 

surface. Figure 1.1 depicted the turbine blade film cooling and its flow structures. 

Film cooling mainly affected by the blowing ratio, surfaces curvature, the 

mainstream turbulence intensity, the holes injection and compound angle, the holes 

spacing and the hole geometry. Recent studies also highlighted the importance of 

coolant supply hole and plenum geometry film cooling application. Numbers of the 

film cooling research of the past 30 years has been conducted especially on flat plat. 

Goldstein (1971), Simoneau and Simon (1993) and Bunker R.S (2005) provided 

intensive reviews on film cooling research. Although many important explanations 

have been obtained from these studies such as the qualitative understanding of the 

effects of a number of film cooling variables the quantitative applicability of these 

explanations to cooling of actual turbine blades is much less known.

Figure 1.1 General schematic of turbine blade film cooling and flow structures

(Garg, V. K., 2002) 

In film cooling application, especially on turbine vane and blade there are 

certain requirements must be considered. First, the coolant quantity should be the 

minimum possible. This is due to excessive coolant gases into the mainstream

undercuts the production of useful power; this is because the coolant air that is taken 

from compression would go to produce real power. Moreover increased coolant 
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quantity will require more force to delivery it. Large quantity of coolant will interfere 

with the normal functioning of combustion gaseous and will reduce the gas turbine 

efficiency. Second, jet penetration into mainstream should be minimised. If jet 

penetration into mainstream is high, the coolant gases are lost into the mainstream 

instead of protecting the blade surfaces. Third, a good lateral spread of the coolant 

gases is important in order to provide uniform coolant coverage over the blade. 

Finally, the disruption to the blade aerodynamics must be minimum. 

 Film cooling studies on turbine by experimental test are very expansive and 

time consuming. Computational method in other hand gained popularity as 

alternative tool in current year. Computational fluid dynamic (CFD) can be a good 

and affordable tool when experimental test is impossible.  Furthermore increase of 

storage capacity and computation speed may able to simulate complex flow problem 

with high accuracy and less cost compare to experimental test. This study proposes 

to investigate the turbine blade film cooling by computational method. Through 

computational fluid dynamic (CFD) the behaviour of turbine blade film cooling and 

its affecting parameters will be investigated. It is believed this work will provide a 

good contribution in understanding turbine blade film cooling.  

1.2  Objective  

The goal of this study is to use numerical method to investigate the turbine 

blade film cooling effectiveness and its parameters. 

1.3  Scope of Research 

In this study an investigation has been conducted to determine the effects of 

several film cooling parameters on cooling performance using commercial 

computational fluid dynamic (CFD) software, FLUENT. The blowing ratio, surface 

curvature, free stream turbulence intensity, coolant injection angle, compound angle 
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and holes spacing were investigated. The computational domain consists of main 

flow region, coolant hole and supply plenum placed at blade leading edge, suction 

and pressure surface. The main scope of this study directed as follows: 

1) Benchmark studies and validation of computational aspects in film 

cooling application.

2) Investigate the ability of the computational model to accurately predict 

the film cooling application.  

3) Simulate low Mach number three-dimensional turbine blade film cooling 

using anisotropic turbulence model. 

4) Discus and analyse effect of the film cooling parameters using 

computational data.  

1.4  Outline of Thesis 

 Chapter 2 of this thesis provide a literature reviews on film cooling research. 

This chapter start with brief review on film cooling theory and fundamentals and 

followed by reviews on computational studies on film cooling. Film cooling flow 

structures discussed in following section and then various film cooling parameters 

effects were discussed. 

 Research methodology been discussed in Chapter 3. Various computation 

aspects such as computation model, grid generation, governing equations, and 

turbulences models explained. FLUENT CFD components also reviewed in this 

chapter. In Chapter 4, results of validation and benchmark solution of flat plat film 

cooling and cylindrical leading edge film cooling presented and discussed. Grid 

independence and turbulences models been assessed to attain the yardstick for 

present simulation. 

 In Chapter 5 results and discussions on turbine blade film cooling are 

presented. Anisotropic turbulences models, RSM and LES utilised to conduct the 

simulation and both models were compared accordingly. Blade leading edge, suction 

and pressure surface film cooling investigated using temperature and velocity plots. 
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Film cooling adiabatic effectiveness calculated at stream direction and blade spans. 

Parametric variations on blade film cooling also presented in this chapter. The 

conclusion and recommendations for future work presented in Chapter 6. 




