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ABSTRACT 

This study proposes a prediction model for the calculation of rain 

attenuation for optical wavelengths. Based on latency measurements via 850 

nm free space optics transceiver, exponential drop size distribution is derived 

by method of inference from knowledge of attenuation at the highest rain 

rate. As an alternative to the inferred exponential distribution, a lognormal 

drop size distribution that suits the observed measurements is derived from 

published distribution models. Both distributions are found to be consistent 

with measured data. Furthermore, a formula relating latency to rain rate is 

derived by nonlinear regression analysis. The derived formula gives a very 

good correlation of 0.971 with the measured data. Regression analysis is also 

performed to attenuation data obtained by graphically converting measured 

latency data to attenuation. The results are compared to the proposed 

attenuation model and found to be identical. The attenuation model, using 

both drop size distributions, is then compared to well established models in 

the literature and is found to be mathematically consistent and in good 

agreement with these models and their measured data. While the established 

models are for rain rates of up to 100 mm/hr, the proposed model with a 

simpler derived power law is for rain rates up to 250 mm/hr. The power law, 

γ(R) =1.118R0.614, is derived for economy of calculation and ease of use.  
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ABSTRAK 

Kajian ini bertujuan untuk mendapatkan model anggaran bagi hujan pada 

perambatan gelombang optik. Berdasarkan pengukuran masa lengah, satu 

pemancar-penerima optik yang menggunakan panjang gelombang 850 nm 

digunakan. Hasil daripada data yang diperolehi, agihan  saiz titisan diterbitkan 

secara eksponen menggunakan kaedah taabiran berpandukan kombinasi data yang 

diperolehi pada kadar hujan tertinggi. Sebagai alternatif lain untuk mendapatkan 

keputusan yang sama, agihan saiz titisan lognormal dipadankan dengan rujukan 

model yang telah diterbitkan. Kedua-dua agihan ini digunakan untuk memantapkan 

hujah bagi membuktikan data yang diperolehi adalah benar. Tambahan pula, 

dengan menggunakan penganalisaan regrasi tak lelurus, satu persamaan yang 

menghubungkan kadar hujan lengah bingkisan dihasilkan. Analisis regrasi 

kemudiannya digunakan pada data perambatan yang diperolehi daripada graf 

pengukuran masa lengah yang ditukarkan kepada graf perambatan. Keputusan ini 

kemudiannya dibandingkan dengan model yang diperkenalkan, dan hasilnya 

didapati sama. Model perambatan yang diperkenalkan kemudiannya dibanding 

dengan model perambatan yang telah diterima pakai dan didapati ia bersesuaian 

secara matematik dan aritmatik. Model yang diterima pakai hanya sesuai pada kadar 

100 mm/hr menggunakan formula biasa manakala model yang diperkenalkan 

boleh mencapai kadar sehingga 250 mm/hr dengan penggunaan formula yang 

lebih mudah. Dengan hanya menggunakan formula 614.0118.1)( RR =γ , anggaran 

perambatan boleh dikira dengan mudah dan ekonomik.   
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C H A P T E R  1   

INTRODUCTION 

It is hard to imagine a subject more complex, and yet more useful, 

than the study of the propagation of light in the atmosphere [ 1]. 

Atmospheric optics is one of the most interesting, literature rich, and 

mathematical rigorous subject. Yet, its progress, hindered by atmospheric 

effects, troubles the most devoted scientists and engineers of the field. The 

subject’s history starts with astronomy and is a matter for a wide variety of 

fields such as optical communications and remote sensing among others. 

The interest has accelerated with the invention of the laser in 1960 to a 

prevalent level only to be overwhelmed by the optical fiber dominance in the 

1970s. Nevertheless, development in space technology applications, the need 

for a fiber-like mobile capacity,  and the recognition of a potential in free 

space optics have brought the pace of interest even higher. 

Some of the advantages of free space optics include low cost fiber-like 

quality, reliability, capacity, mobility, and fast installation [ 2]. Furthermore, 

the majority of R&D effort today surrounds the use of point-to-point free 

space optical communications links [ 3]. 
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1.1 Atmospheric Turbulence 

The small temperature variations, on the order of 0.1 1C− ° , that are 

related to the sun's heating of the atmosphere and turbulent motion of the 

air cause perturbations in the refractive index of the atmosphere, on the 

order 610− , and hence changes in the velocity of optical waves passing 

through it. Although the variations of the refractive index from its mean is 

very small, the cumulative effect on a light-wave propagating through a large 

refractive index inhomogeneities can be very significant. Thus the 

intervening medium affects the properties of the received signal by distorting 

the intensity (scintillations), phase, angle-of-arrival, and displacing the light 

beam. 

The aforementioned effects on light waves are caused by an 

intervening medium that is turbulent. A second category of effects are those 

caused by a turbid medium that is composed of large numbers of discrete 

scatters or aerosol particles (e.g., rain, fog, or dust), which give rise to strong 

scattering effects. In such a medium refractive index variations are large, on 

the order of unity, and sharp due to the discrete particles. Consequently, the 

scattering is strong and in all directions (including backscattering) and the 

average beam intensity is strongly attenuated.  

The random fluctuations experienced by the amplitude and phase of 

the electric field of an optical wave traversing the atmosphere have been 

described by several mathematically rigorous theories based upon solving the 

wave equation for the electric field of the wave or for various moments of 

the field. Unfortunately, these mathematically rigorous approaches in most 

cases have led to tractable analytic results supported by experimental data 

only in certain asymptotic regimes [ 4]. 
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One of the early attempts to solve the wave equation was based on 

the geometric optics approximation, which ignores diffraction effects. Thus 

it is a simple method, but is generally limited to propagation paths, in 

which 2
0L l λ� , where l0 is the inner scale of turbulence. This is then 

followed by solutions based on perturbation theories widely known as the 

Born approximation and Rytov approximation that takes into account 

diffraction effects, important in the analysis of irradiance fluctuations 

sensitive to small scale sizes on the order of the Fresnel zone Lλ .  

The latter of the aforementioned methods also called the method of 

smooth perturbations treats the perturbation terms as multiplicative to the 

unperturbed field and the Born approximation or method of small 

perturbation assumes additive perturbations. Both of these perturbation 

theories are restricted to weak fluctuation conditions that normally limit the 

propagation path length to a few hundred meters [ 5,  6,  7]. 

Furthermore, the method of small perturbations leads to an 

expression for the probability density function of the irradiance as a modified 

Rice-Nakagami distribution [ 8]. This is considered not a suitable model when 

compared with experimental data except, possibly, under extremely weak 

fluctuations [ 9]. On the other hand the Rytov approximation method leads 

to a lognormal distribution that works fine in the weak fluctuation regimes 

but experimentally found to be inappropriate in strong fluctuations regimes 

[ 4,  10].  

The Rytov method came into existence due to the inadequacy of the 

Born approximation and its predecessor geometrical optics. It turned out 

however that the Rytov method is also inadequate except for path lengths of 

few hundred meters or so. This is considered logic from the view point that 

since a perturbation approach is used; the results are to be valid only if the 



 

 

4

perturbations are small. Nonetheless, the Rytov method is the standard 

method used today under weak fluctuations conditions [ 4]. 

1.1.1 History 

The problem of homogeneous turbulence was pioneered by G. I. 

Taylor (1935) introducing the correlation between the velocities at two 

points as one of the quantities needed to describe turbulence [ 11]. After 

Taylor has furnished the literature with his theory of turbulence by 

introducing the assumptions of statistically homogeneous and isotropic 

turbulence among others, various workers have contributed to the 

development of the theory of turbulence using Taylor’s concept like Von 

Kármán and other workers and the use of the Navier-Stokes equation – the 

equation governing the variation of the spatial distribution of the velocity 

with time given by 

( ) 21, t p v
t ρ
∂

= − ⋅∇ − ∇ + ∇
∂

u r u u u  (1.2) 

Where p represents pressure, u is the vector velocity of the turbulent 

motion at a position in the field specified by the vector coordinater , ρ is the 

density, and v μ ρ= is the kinematics viscosity. 

Kolmogorov (1941) then formulated his theory which is now the 

starting-point for many researchers. The hypothesis of small-scale 

components of the turbulence are approximately statistically equilibrium was 

also brought about independently at the same time by A. Obukhoff (1941), 

by L. Onsager (1945), and by C. F. von Weizsäcker (1948), [ 11]. 
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Active research in the effects of the atmosphere on light waves are 

traced to 1950s, where a number of papers appeared about twinkling 

(scintillation) and quivering (irregular displacements of the image of a star in 

random directions) of stellar images in telescopes, [ 12]. 

Effects of atmospheric turbulence on sound waves started as early as 

1941, [1]. Studies first used geometrical optics method, but the limitation on 

this technique of restricting the path length quite severely initiated the 

transition to the wave optics or diffraction theory techniques.  

A revolution came with the invention of the laser in 1960 by 

Theodore Maiman and the Hughes Aircraft Co. [ 13]. This allowed the use of 

coherent light, bringing the possibilities of wave optics, introduced through 

Huygens’ ideas and Fresnel mathematical models, to their full potential. 

However the optimism about its use as an optical communication tool was 

struck by the limitation and system degrades encountered due to the 

atmospheric effects. 

Therefore, physicists and engineers alike carried on their shoulders the 

heavy task of first revealing the magnitude of the difficulties with analytical 

models and then try to search for a solution to get the focus back on optics 

again. This task was greatly achieved by the monographs of Russian scientists 

Tatarski [ 5] and Chernov [ 6] analyzing the effects of atmospheric turbulence 

on optical frequencies by suggesting the Rytov approximation as a best 

model. 

Before 1967 almost all of the theory was centered on plane-wave 

propagation for mathematical simplicity. The first comprehensive paper on 

beam-wave propagation was published in 1967 [ 8]. 
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Experimental results for long distance wave propagation in the early 

1960s by Russian scientists revealed that the intensity fluctuations predicted 

by use of Rytov’s method does not agree with experimental result. It was 

found that the fluctuations reach a peak after which it saturates and no more 

increase is observed. Thus, an extensive effort was devoted in the 

development of new theories that better model optical wave propagation in 

the atmosphere. 

This resulted in the categorization of two regimes, namely the weak 

fluctuation regime where Rytov’s approximation is valid and the strong 

fluctuation regime over which new models were sought. This resulted in few 

models such as the Extended Fresnel-Huygens method and the Markov 

approximation among others. 

Although the new models contributed to a better understanding of 

the atmospheric effects and its characterizations, these effects on optical 

wave propagations are still permanent hindering the optimal use of optical 

waves through the atmosphere. 

1.2 Turbid atmosphere effects 

On the other hand, molecular and particle scattering add to the 

problem of optical wave communications. The main gas absorbent at optical 

wave length is water vapor. Fortunately, the near infrared wavelengths used 

for communications are all in optical windows were absorption is negligible. 

Furthermore, particles absorption by water drops is also negligible, 

relatively to loss due to scattering effects, at optical wavelengths. Thus the 
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main concern is extinction due to scattering. To this regard high attenuations 

are observed in dense fog, high intensity rain and clouds. 

Attenuation due to above mentioned phenomena are investigated at 

optical wavelengths with the use of the rigorous Mie theory. Calculations of 

specific attenuations are performed with regard to the scattering cross 

section of the particle and the rain drop size distribution. 

Mainly there is four drop size distributions commonly used in the 

literature. Marshall and Palmer exponential distribution was the earliest and is 

the main distribution that is still used in mid-high latitudes. Another 

distribution is the modified gamma distribution obtained from gamma 

distrigution. 

Measurements have shown that the above mentioned distributions are 

unsuitable for characterizing precipitation at tropical regions. This could be 

logic due to the fact that rain in the tropical regions is of warm cloud type 

forming at temperatures above 0 C°  and starts as  water drop whereas that of 

mid-high latitudes form at temperatures levels below freezing and therefore 

starts as ice crystals changing to its liquid form as it falls to the ground. 

All investigations of drop size distribution at tropical regions 

recommend use of the three parameters lognormal drop size distribution. 

This conclusion was due to measurements carried out in Japan, Nigeria, 

Brazil, India, and Malaysia all confirming and recommending the use of the 

lognormal distribution. 

Fog attenuation, on the other hand can be easily calculated by 

knowledge of visibility which can easily be obtained and data are available in 
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all airports and weather centers. This visibility value will be directly used in 

the calculation of specific attenuation for a particular wavelength. The same 

is also true for haze by using the same formula. 

1.3 Objective and Scope of  the Research 

The following research work aims at the investigation of atmospheric 

attenuation on free space optics communication link. A refine understanding 

of various effects on optical wave propagation in the free atmosphere is an 

essential element so as to carry the task of investigating the specific rain 

attenuation on free space optics communication link effectively and 

efficiently. Therefore an understanding of turbulence and its effects on 

optical wave propagation will help furnishing the ground for a better analysis 

of the different theories characterizing this propagation phenomenon. 

Investigation of the effects of molecular and particles absorption and 

scattering of optical wave propagation in a turbid media is then crucial for 

assessing the attenuation effects of precipitation on the free space optics link. 

This then will bring the focus on the main objectives of this study listed as 

follows: 

I. To measure rain attenuation on the free space optics link at 

850nm  optical wavelength for Malaysian weather. 

II. To infer new drop size distribution parameters for the optical 

wavelength from attenuation measurements. 

III. To derive a new power-law relation for calculations of specific 

attenuation for 850nm  optical wavelength. 
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IV. To derive a mathematical relation between the measured 

packet’s latency and rain rates. 

1.4 Outline of  the Thesis 

Building of the thesis is carried out with the objective of providing a 

refine understanding of various atmospheric effects on free space optics 

communication link. Thus the effects of the atmosphere are divided into two 

categories namely turbulent effects and turbid effects. 

Chapter 2 lays down the basics of turbulence and its characteristics 

that have major effects on wave propagation. The refractive index of the 

atmosphere fluctuations are discussed and analyzed. The randomness of the 

atmosphere and its characterization with the moments of the field is 

presented. The correlation and structure functions of the refractive index 

fluctuations are discussed. Finally, the different refractive index spectrums 

are given and explained. 

 Classical theories of wave propagation in turbulent media are 

presented in Chapter 3. The method of small perturbation and Rytov’s 

method are mathematically explained and analyzed. The shortcomings of 

these theories are discussed. Theories for the strong fluctuations regime are 

also presented and compared. 

Chapter 4 gives qualitative analysis of the effects of the turbulent 

atmosphere on optical wave propagation. Effects of intensity scintillation, 

beam wander, angle of arrival fluctuations, among others, are discussed and 

mathematical expressions are given. 
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Propagation of optical waves in turbid media are the subject of 

Chapter 5 with the effects of molecular and particles absorption and 

scattering reviewed. Drop size distributions for rain, fog, and haze are 

presented and analyzed. Effects of rain, haze, and fog on optical propagation 

are discussed and their attenuation’s expressions are given. 

The instrumentations used, set-up of equipment, and method of 

measurements are presented in Chapter 6. Wiring and the software used for 

this link are also presented. 

Chapter 7 presents the results and discussion of the thesis. The 

achieved objectives are explained in this chapter. The new drop size 

distribution’s parameters are derived. A new power-law relation for specific 

attenuation is mathematically derived. Furthermore, the relation between 

packet’s latency and rain rates is explained and formulated by a 

mathematically derived equation using regression analysis. 

Chapter 8 includes the final conclusion and outlook of the study. 
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