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ABSTRACT 
 
 
 
 

Porous alumina with high surface areas and narrow pore size distribution has wide 
applications in catalysis, catalyst support, molecular separation and adsorbents. In 
this study, agarose gel having porous structure was used as template in the 
preparation of mesoporous alumina. This method was introduced in order to provide 
an alternative method to design the pore structure of metal oxide having nanosized 
grains. Four different amount of agarose gel template were used to synthesize this 
material, i.e. 0.5 wt%, 1.0 wt%, 2.0 wt% and 4.0 wt%. The agarose gel was coated 
with aluminium isopropoxide precursor. The XRD and FTIR results showed that the 
alumina has γ-phase structure. The alumina obtained from 2 wt% and 4 wt% of 
agarose gel template exhibits uniform mesopores alumina and the surface properties 
analyzed using nitrogen adsorption-desorption showed narrowest pore size 
distribution centered at 7.2 nm with the highest surface area obtained was 308 m2/g. 
The SEM images of agarose showed sponge-like pore structure while FESEM 
revealed that the size of granule-like nanoparticles mesoporous alumina decreased by 
increasing amount of agarose template.  TEM proved that the mesoporous alumina 
particle was successfully obtained with rod-like morphology with average length of 
5-7 nm. Lewis Acid site present in mesoporous alumina was confirmed by pyridine-
FTIR and catalytic activity of alumina was evaluated in Knoevenagel condensation 
reaction of benzaldehyde with methyl cyanoacetate and dimethyl malonate 
separately. The percentage conversion of each reaction was 54% and 47%, 
respectively compared to uncatalyzed reaction which was 4.0% and 18%, 
respectively. The low conversion of dimethyl malonate was due to the bulky 
molecule product entrapped in the pore of alumina surface. The results obtained 
showed that synthesized mesoporous alumina is capable to catalyze Knoevenagel 
condensation reaction.  
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ABSTRAK 
 
 
 
 
 Alumina berliang meso dengan luas permukaan yang tinggi dan mempunyai 
taburan liang yang sempit digunakan secara meluas sebagai mangkin, penyokong 
mangkin, pemisahan molekul dan aplikasi penjerapan. Dalam kajian ini, gel agarose 
yan berstruktur liang digunakan sebagai templat untuk mensintesis alumina berliang 
meso. Kaedah ini diperkenalkan sebagai alternatif untuk merekebentuk struktur 
logam oksida berliang yang mempunyai butiran bersaiz nano.  Empat kuantiti 
agarose yang berbeza digunakan untuk mensintesis alumina, i.e. 0.5wt%, 1.0 wt%, 
2.0 wt% and 4.0 wt%. Gel agarose disaluti dengan precursor aluminium 
isopropoksida. Data XRD dan FTIR menunjukkan alumina bersaiz meso terhasil 
dalam fasa-γ. Kajian menunjukkan kuantiti agarose, 2 wt% and 4.0 wt%   sebagai 
templat, menunjukkan keseragaman alumina berliang meso dimana liang permukaan 
dianalisis menggunakan penjerapan-nyahjerapan nitrogen mempunyai taburan 
puncak yang sempit berpusat pada 7.2 nm dengan luas permukaan tertinggi iaitu 308 
m2/g.  Imej SEM agarose menunjukkan liang merupai span manakala imej dari 
FESEM menunjukkan saiz alumina berbentuk butiran dan mengecil apabila 
bertambahnya kuantiti agarose. TEM Berjaya membuktikan partikel alumina 
berliang meso berbentuk rod dengan aggaran saiz diantara 5-7 nm. Kehadiran 
permukaan asid Lewis pada alumina berliang meso disahkan dengan pyridine-FTIR 
dan diuji dalam tindakbalas kondensasi Knoevenagel diantara benzaldehid dengan 
dimetil malonat dan metil cyanoacetat secara berasingan. Peratusan pertukaran bagi 
setiap produk dengan kehadiran mangkin adalah masing-masing sebanyak 54% dan 
47% manakala tanpa kehadiran mangkin adalah sebanyak 4% dan 18%. Peratusan 
pertukaran dimetil malonate adalah rendah jika dibandingkan dengan metal 
cyanoacetat kerana kehadiran molekul berstruktur besar dimana sebahagian 
daripadanya akan terperangkap di permukaan liang mangkin. Keputusan yang 
diperolehi menunjukkan alumina berliang meso yang disintesis berpotensi untuk 
memangkinkan tindakbalas kondensasi Knoevenagel.    
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 
1.1 Aluminium Oxide, Al2O3 

 
 

Aluminium is the most common metallic element in the earth’s crust and 

occurs in rocks such as felspars and micas. Aluminium oxide is the amphoteric oxide 

of aluminium with the chemical formula Al2O3 as shown in Figure 1.1 [1]. It is also 

commonly referred to as alumina or aloxite in the mining, ceramic and materials 

science communities. There are two forms of anhydrous Al2O3, namely, α- Al2O3 

and γ- Al2O3. α- Al2O3 is stable at high temperatures and also indefinitely metastable 

at low temperature. It occurs in nature as the mineral corrundum and prepared by 

heating γ- Al2O3 or any hydrous oxide above 1000˚C.  α- Al2O3 is hard and is 

resistant to hydration and to attack by acids [2]. The density of α- Al2O3 is only about 

0.595 g/cm3 with a hexagonal close packed, HCP array of anions. Although the 

anions are topologically arrayed as if they are in closest packing, they are really not 

contacting with one another. 

 

 
 

Figure 1.1: Molecular structure of alumina 
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γ- Al2O3 is obtained by dehydration of hydrous oxides at low temperatures ~ 

450˚C giving medium surface area lamellar powders, ~100 m2g-1. γ- Al2O3   readily 

absorbs water and dissolves in acids. Metastable γ-form aluminas have a cation 

deficient cubic spinel structure [3]. Calcination at increasing temperatures gives rise 

to the sequence γ-Al2O3         δ-Al2O3        θ-Al2O3              α-Al2O3 [3].  

 
 
Alumina is a low cost material most widely used as a catalyst and catalyst 

support. In addition, it is also used as the starting material for the preparation of 

Al2O3 based ceramics [4]. Aluminas are extensively used as catalyst supports due to 

their favorable textural properties and intrinsic acid–base characteristics as shown in 

Figure 1.2. In particular, γ-alumina which has a crystalline structure with large 

surface area is widely used as catalysts, catalysts support and adsorbents such as in 

automotive and petroleum industries. Alumina supports with large surface areas, 

large pore volumes, narrow pore size distributions within the mesoporous range, as 

well as suitable surface acidic–basic properties can often result in favorable 

enhancements in the catalytic performances [5]. Porosity is necessary for high 

surface area within the pellet, but pore shape and size distribution are critical 

secondary factors when diffusion resistance is present. The best supports are those 

that are easily manipulated to produce optimum texture properties.  

 
 
According to IUPAC (Union of Pure and Applied Chemistry), the pores are 

classified in different classes depending on their width, W such as micropore 

(W<20Å), mesopore (20Å <W<500 Å) and macropore (W>500 Å) [6]. For most 

applications, it is preferable to have a designed crystal structure and morphology, and 

nanosized grains. Therefore, synthesis of mesoporous aluminas (MA) with high 

surface areas and uniform mesopores has attracted much attention [7]. Many 

synthesis routes have been developed for the preparation of MA. Among them, 

organic–inorganic assemblies involving complicated sol–gel processes by using 

surfactants as structure-directing agents are regarded as one of the most promising 

approaches [8]. Various neutral and ionic surfactants have been used as templates for 

the preparation of MA.  
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The catalytic properties of transition aluminas largely depend on their 

crystalline structures and textural characteristics [8]. Controlling the morphological 

properties of materials during synthesis is of great importance, as these structural 

characteristics strongly influence the performance and purpose of the materials.  

 
 
Templating is an approach which affords the ability to tailor the inner 

structural arrangements, such as pore size and overall porosity, along with the outer 

shape and size of the sample [9]. Many templates have been employed to prepare 

porous metal oxide structures, an example of these processes have recently been 

reviewed. Recently, researchers use the organic template such as cellulose, glucose 

starch and agarose in order to synthesize the porous metal oxide due to the ease 

removal of organic substance by calcination [7, 10, and 19]. 
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Figure 1.2: Acidic and basic site in alumina surface 
 
 
 
 

Knoevenagel condensation reaction is commonly catalyzed by base as well as 

Lewis acid. The presence of Lewis acidity in aluminas is expected to have successful 

application as a catalytic material in Knoevenagel reaction with the combination of 

mesoporosity, nanosized paticles, higher surface area and acid-base characteristic of 

alumina.  
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1.2 Research Background and Problem Statement 

 
 

Alumina is a very interesting material with broad applicability as a support 

for various catalytically active phases. There are several methods that have been used 

to synthesize the alumina particles in different classes of preparation alumina such as 

by precipitation, sol gel technique without the presence of outside template, non-

surfactant and surfactant templating techniques. Usually, conventional aluminas with 

surface areas of 50-300 m2/g are manufactured by precipitation technique [7].  

 
 
One of the major problems related to the use of alumina catalysts is the 

deactivation by coke formation and pore plugging which limits the diffusion of 

substrates and products in and out the catalyst particles. It is known that the larger 

the contribution of micropore to the specific surface area and the wider the pore size 

distribution, the greater the enhancement in the deactivation rate. 

 
 
Thus, synthesis of aluminas with mesoporous properties using templating 

techniques have been used to control the structural properties of materials including 

outer shape, inner porosity, and surface area. The type of template used can range 

from surfactant assemblies to latex spheres, inorganic crystals, and biomaterials. 

Recently, biopolymer templates have received attention due to the fact that they are 

readily available and inexpensive, making the structure-controlling process low cost 

and amenable to scale-up [10]. The templates used for examples are cellulose, 

collagen, β-chitin, starch and others.  

 
 

Nowadays, catalyst is very important for the reaction of bulky molecule such 

as organic molecule or bioinorganic molecule. For example in pharmaceutical and 

commercial polymer products which consist of big molecule. Since alumina is 

known to possess Lewis acidity, Knoevenagel condensation reaction was chosen to 

evaluate the catalytic ability of the prepared alumina catalyst. The Knoevenagel 

reaction is a condensation reaction of an aldehyde or a ketone with an active 

methylene compound to give the corresponding alkene product together with H2O.  
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In this study, attempt to prepare porous alumina by sol gel synthesis by using 

biomaterial agarose gel template is being carried out. Agarose gel is chosen over 

other biomaterials due to its availability and lowest. These porous alumina materials 

can be formed by treating an aluminum source that is derived from an aluminium 

alkoxide in an organic-aqueous solution with an organic structured directing agent to 

form meso-sized micelles followed by calcinations of the resulting composition. The 

potential of mesoporous alumina as Lewis acid catalyst for transformation of bulky 

organic molecule was investigated also.   

 
 
 
 
1.3 Significance of Research 

 
 
This research demonstrated the templating technique using aluminium 

isopropoxide as precursor and agarose gel biomaterial as the template in order to 

prepare an ordered mesoporous alumina. In addition, the research also investigated 

the effect of various amount of agarose used towards the formation of nanoparticle 

and narrow pore size distribution of alumina. The catalytic activity of the alumina 

was tested in the Knoevenagel condensation reaction.  

 
 
 
 

1.4 Research Objectives 

 
 
The main objective of this research is to synthesis an ordered mesoporous 

alumina by templating technique using a biomaterial (i.e agarose) to form a good 

catalystic material. Details of the objectives are: - 

 
 
1) To synthesize an ordered porous alumina, by sol- gel synthesis within 

agarose gel template. 

2) To characterize the synthesized alumina by FTIR, XRD, FESEM/TEM 

and N2 adsorption. 
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3) To study the physicochemical properties of the synthesized alumina as 

Lewis acid catalyst.  

4) To evaluate the catalytic ability of the catalyst in the Knoevenagel 

condensation reaction. 

 
 
 
 

1.5 Scope of Study 

 
 

This study involved an easy and simple sol gel method within templating 

technique by using agarose gel coated with aluminium isopropoxide as a precursor. 

Calcinations process was carried out to remove the agarose template in order to get 

mesoporous alumina with morphological characteristics inherited from the initial 

template, allowing designed pore structure and pore size.   

 
 
The synthesized alumina obtained was characterized by using FTIR, XRD, 

FESEM/TEM and N2 adsorption and is expected to exhibit nanosized grains with 

morphology design, having large surface areas, large pore volumes, and narrow pore 

size distributions within the mesoporous range. Lewis acidity of the sample was 

characterized using pyridine- adsorption and measured by FTIR spectroscopy.  

 
 
Finally, the mesoporous catalysts obtained was tested as potential catalysts in 

Knoevenagel condensation reaction between methyl cyanoacetate, dimethyl 

malonate with main reactant which is benzaldehyde. The research design is 

schematically illustrated in Figure 1.3. 

 
 
 
 
1.6 Outline of the Dissertation 

 
 
 This dissertation illustrates the information concerning the synthesis, 

characterization and the potential catalytic application of mesoporous alumina. 

Chapter 1 elucidates the research background and the importance strategies to 



  7

respond the current issue. Chapter 2 presents the literature search regarding this 

project whereas contains some information about the whole research done. Chapter 3 

describes the experimental methodology with the characterization techniques used in 

this research. Chapter 4 explains the results and discussion of the synthesized 

mesoporous alumina and its catalytic activity. Finally, chapter 5 summarizes the 

results obtained with recommendation for future work.      
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Figure 1.3: Flowchart of the research design 
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