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ABSTRACT 

 

 

 

 

 Information security in terms of authentication, confidentiality, data integrity, 

and non-repudiation is one of the critical aspects in majority of communication and 

computer networks. The deployment of information security requires the 

implementation of public-key cryptographic schemes such as encryption, digital 

signature and key-agreement, as introduced by Diffie and Hellman in 1976. 

Recently, the elliptic curve cryptography (ECC) is rapidly gaining popularity due to 

its comparatively high security level and low bandwidth requirements. The main 

strength of ECC rests on the concept of discrete logarithm problem over the points 

on an elliptic curve, which provides higher strength-per-bit than any other current 

public-key cryptosystems. This thesis proposes a design of an elliptic curve 

processor core (ECP) to accelerate elliptic curve operations. The processor core is 

designed as a coprocessor to an embedded processor to perform Montgomery point 

multiplication and point addition. The design is described completely in 

parameterized VHDL code, such that the core is reconfigurable and reusable. An 

elliptic curve digital signature cryptosystem is developed as an evaluation platform to 

validate the proposed processor. The cryptosystem is an integration of a number of 

processors, which include an Altera Nios embedded processor, a SHA-1 hash 

processor core and the proposed elliptic curve processor core. The system is 

implemented on an Altera Nios Development Board (Stratix Professional Edition) 

and the experimental results show that the prototype can compute elliptic curve point 

multiplication in 0.14msec in finite field GF(2
163

) with an operating frequency of 95 

MHz. This computation speed is the fastest when compared to other existing designs 

reported in documented literature. Consequently, the result of this work is a reusable 

IP (Intellectual Property) core targeted for application in high-speed security system. 
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ABSTRAK 

 

 

 

 

 Keselamatan maklumat dalan konteks pengesahan, kerahsiaan, kewibawaan 

data dan tidak penolakan merupakan salah satu aspek kritikal dalam kebanyakan 

rangkaian komunikasi dan komputer. Penyediaan keselamatan maklumat 

memerlukan pelaksaan skim kriptografi kunci-awam seperti enkripsi, tandatangan 

digital, perjanjian kunci, seperti yang diperkenalkan oleh Diffie dan Hellman pada 

1976. Sejak kebelakangan ini, kriptografi lengkung eliptik mendapat populariti 

dengan cepat disebabkan oleh tahap sekuriti yang tinggi dan keperluan lebar jalur 

yang rendah secara bandingan. Kekuatan utama kriptografi lengkung eliptik terletak 

pada masalah logaritma diskret dalam titik lengkung eliptik, dimana ia memberikan 

kekuatan bit tertinggi jika dibandingkan dengan sistem kriptografi kunci-awam yang 

lain. Tesis ini mancadangkan rekabentuk satu teras pemproses lengkung eliptik untuk 

mempercepatkan operasi lengkung eliptik. Teras pemproses ini direkabentuk sebagai 

satu kopemproses kepada satu pemproses terbenam untuk menjalankan pendaraban 

titik Montgomery dan penambahan titik. Rekabentuk ini dibina dengan 

menggunakan kod VHDL berparameter, supaya teras ini boleh diaturcara dan 

digunakan semula. Satu sistem kriptografi tandatangan digital lengkung eliptik 

dibina sebagai pelantar penilaian untuk mengesahkan pemproses yang dicadangkan. 

Sistem kriptografi ini merupakan integrasi beberapa pemproses iaitu satu pemproses 

terbenam Nios oleh Altera, satu teras pemproses hash SHA-1 dan teras perproses 

lengkung eliptik yang dicadangkan. Sistem ini dilaksanakan pada papan 

pembangunan Nios (Edisi Stratix Profesional) oleh Altera dan keputusan eksperimen 

menunjukkan bahawa prototaip ini berupaya mengira pendaraban titik lengkung 

eliptik dalam tempoh 0.14 milisaat untuk medan terhingga GF(2
163

) pada 95 

megahertz sebagai frekuensi operasinya. Kelajuan pengiraan ini merupakan yang 

terpantas dibandingkan rekabentuk yang sebelumnya pada karya yang 

didokumentasikan. Justeru itu, hasil kerja ini merupakan teras IP yang boleh diguna 

semula dan disasarkan untuk aplikasi sistem sekuriti yang pantas. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

 This research work proposes an FPGA implementation of a dedicated 

processor core to accelerate elliptic curve computations as required by high-speed 

cryptosystem applications. This chapter covers the motivation, research objectives, 

scope of the work, research contribution and thesis organization. 

 

 

 

 

1.1 Motivation 

 

 

Security plays an important role in the majority of communication and 

computer networks nowadays. The development of digital communication media 

such as Internet, which requires high-end security over a transparent medium that 

becomes more and more accessible to public, means that security measures will have 

to be strengthened. These data exchanges must be protected from fraudulent access 

by third parties. The basic technology, which can warrant this kind of protection, is 

known as public-key cryptography. 

 

 

Information security is also one of the main aspects of e-commerce and e-

government. In this fast growing area, new services will only find acceptance when 

they provide a sufficient level of security in terms of authentication, confidentiality, 

data integrity and non-repudiation. The necessity of security has fueled research in 

the area of cryptographic protocols and encryption algorithms. 
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Elliptic curve cryptography (ECC) is a public-key cryptosystem that is 

rapidly evolving as an alternative to other schemes such as Rivest-Shamir-Adleman 

(RSA) scheme and Digitals Signature Algorithm (DSA) scheme by offering smallest 

key size and higher strength per bit (Certicom, 2000c). It is believed that the 

underlying mathematical hard problem, which ECC is based on, is harder to break 

than other traditional public-key cryptosystem. The ability to offer security with 

smaller keys and computationally more efficient algorithms in elliptic curve 

cryptosystems compared to the traditional asymmetric cryptographic algorithms are 

the two main reasons why elliptic curve cryptography has become popular (Johnson 

et al., 2001). 

 

 

General-purpose microprocessors are not optimized for fast execution of 

cryptographic algorithm such as RSA and ECC mainly because they lack instructions 

for modular arithmetic with operations on very large operands. Thus, word size 

mismatches, insufficient parallelism in computations and algorithm/architecture 

mismatches are the main problems faced by software implementation of 

cryptosystem (Janssens et al., 2001). As a result, such systems have low 

performance/cost ratios. As the popularity of ECC increases, so will the need for 

efficient hardware solution that accelerates the computation of elliptic curve point 

multiplication. 

 

 

For hardware implementation of elliptic curve applications, reconfigurable 

devices such as field programmable gate arrays (FPGAs) are of particular interest 

due to its high degree of flexibility compare to traditional application specific 

integrated circuits (ASICs). The reconfigurability of FPGA logic allows 

implementations to realize different security level in the same hardware. The ability 

to instantiate different architectures in FPGA logics provides benefit of architecture 

efficiency where the complexity of the arithmetic unit of the cryptosystem depends 

greatly on whether it support for specific finite field representation or arbitrary finite 

field representations (Orlando, 2002). Scalable architecture of the elliptic curve 

arithmetic unit in FPGA also allows implementers to explore different performance-

cost trade-off. 
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1.2 Research Objectives 

 

 
The objectives of this work are: 

 

 

1. To design an elliptic curve processor core (ECP) for high-speed 

cryptographic applications, where the core is reconfigurable and 

parameterizable to promote reusability in future developments. 

 

 

2. To implement the proposed ECP in the form of a VHDL-coded IP 

(Intellectual Property) softcore, serving as a coprocessor to an embedded 

processor. 

 

 

3. To develop an elliptic curve digital signature cryptosystem as an evaluation 

platform to validate the proposed ECP, by integrating a control processor, a 

cryptographic hash processor core and the proposed ECP into a System-on-

Chip (SoC) system. 

 

 

 

 

1.3 Scope of Work 

 

 

This research work is divided into two phases. The first phase is to design the 

ECP with parameterized VHDL code as design entry. This involves the hardware 

mapping of the chosen finite field arithmetic and elliptic curve algorithms into a 

hardware core. Constraints of speed, hardware resources and portability are taken 

into considerations. 

 

 

The second phase is to develop an elliptic curve cryptosystem to validate the 

design correctness of the proposed ECP. The SoC-based cryptosystem employs 

Altera soft-core embedded processor core, a SHA-1 (Secure Hash Algorithm) 

cryptographic hash processor core and the proposed ECP, as shown in Figure 1.1. 

The ECP and hash processor core functions as a coprocessor to the soft-core 

processor, which is the main control processor to carry out the elliptic curve digital 
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signature scheme. Test cases of elliptic curve digital signature algorithm (ECDSA) 

are applied to validate the correctness of the ECP and evaluate the performance of 

the hardware.  

 

 

 
 

 

Figure 1.1: SoC-based Elliptic Curve Cryptosystem 

 

 

 

 

1.4 Research Contribution 

 

 

1. A simplified documented summary of the theory and algorithms of finite 

fields and elliptic curves for fast and efficient hardware implementation of 

elliptic curve cryptography. 

 

2. A parameterizable ECP as the elliptic curve accelerator to perform elliptic 

curve point multiplication and point addition with competitive performance 

compared to existing implementations reported in documented literature. 
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3. An SoC-based elliptic curve digital signature cryptosystem, which consists of 

an Altera Nios embedded processor, a SHA-1 hash processor core and the 

proposed ECP. 

 

4. A set of embedded software modules to program the embedded processor that 

controls the proposed elliptic curve and SHA-1 coprocessor, where an 

application-level programmer can use it to access all the resources on the 

coprocessors and to perform elliptic curve operations and cryptographic 

hashing. 

 

 

 

 

1.5 Thesis Organization 

 

 

The thesis is organized into eight chapters. The first chapter introduces the 

motivation, research objectives, research scope, research contribution and together 

with thesis organization. 

 

 

Chapter two reviews the background of the research. Related works similar to 

this field are presented. Summary of the literature review is given to clarify the 

research rationale. 

 

 

Chapter three describes the methodology, system design environment and 

procedures that been used in this research.  

 

 

Chapter four presents the brief introduction of the mathematical concepts of 

finite fields and elliptic curves. Algorithms and design rules needed to realize the 

arithmetic operations are discussed. The cryptographic scheme implemented in this 

research together with the functional block diagram is shown. 

 

 

Chapter five presents the hardware design of the proposed ECP. It begins 

with the design of sub-modules in the datapath arithmetic unit, followed by the 

control unit. It is elaborated in a bottom-up manner according to arithmetic hierarchy 



 6 

discussed in the Chapter four. Design of data interface to facilitate data transaction 

between buses with different sizes is also presented in this chapter. 

 

 

Details on the development of elliptic curve digital signature cryptosystem 

(ECDSC) as the hardware evaluation system to validate the proposed ECP are 

presented in Chapter six. Integration of an Altera embedded processor, a 

cryptographic hashing processor and the proposed ECP is discussed. The ECP 

functions as a coprocessor to accelerate elliptic curve computations. 

 

 

Chapter seven reports on the design verification and test result of the ECP 

and ECDSC. The results are analyzed to give the performance of the cryptosystem 

prototype with different digit size. Comparison between the proposed ECP and 

previous implementations is made. 

 

 

In the final chapter, the research work is summarized and the potential future 

works are given. 
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