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ABSTRACT 
 
 
 
 

Hydrogenated amorphous carbon (a-C:H) thin films were deposited using the 

DC plasma enhanced chemical vapour deposition (DC-PECVD) technique. The 

effects of the deposition parameters (chamber pressure, electrode distance, CH4 flow 

rate, and substrate temperature) on the deposition rate were studied. It was found that 

with increasing DC power, w and hence ion bombardment energy, E the deposition 

rate increased initially and then decreased after passing a maximum. The increase in 

deposition rate of the a-C:H films with increasing ion energy is explained by the 

increase in the concentration of dangling bond sites on the growing film surface.  

Further analyses which were based on the films, revealed the optimum deposition 

rate for every set of deposition parameters. Both power and ion bombardment energy 

were continuously changing during the deposition, as a results of varying deposition 

parameters. The films properties ranged from polymer-like (PAC) to graphite-like 

(GAC) a-C:H films, as the power and ion energy increased. In order to study the 

structure and the optical properties of a-C:H films, infrared and Raman spectroscopy, 

XRD, SEM, Ellipsometer, UV-Vis Spectrophotometer and photoluminescence, were 

used as characterization techniques to extract information on sp3/sp2 and hydrogen 

contents, amorphous nature, morphology, optical gap, E0, absorption coefficient, α, 

photoluminescence response, refractive index, n, and extinction coefficient, k, of the 

a-C:H films. Based on these results, the films studied in the present research are 

found to consist of sp2 clusters of which their size increases with increasing power 

and ion bombardment energy during the deposition, resulting in lower hydrogen, sp3 

content and optical gap. This confirms the model proposed by Robertson where sp2 

content controls the optical gap. The increase in hydrogen freed from the films at 

higher ion energies results in an increase in the sp2 fraction, bigger cluster size and 

graphitic structures of the films. 
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ABSTRAK 
 
 
 
 

Filem tipis amorfus karbon terhidrogen telah disediakan menggunakan teknik 

pemendapan wap kimia yang diperkuat plasma, yang menggunakan arus terus (DC-

PECVD). Kesan parameter pemendapan (tekanan kebuk, jarak elektrod, kadar alir 

CH4 dan suhu substrat) terhadap kadar pemendapan telah dikaji. Di dapati dengan 

bertambahnya kuasa, w dan kemudiannya tenaga hentaman ion, E kadar pemendapan 

bertambah pada awalnya dan kemudian berkurang setelah mencapai satu nilai 

maksimum. Pertambahan di dalam kadar pemendapan filem a-C:H dengan 

bertambahnya tenaga ion diterangkan oleh pertambahan kandungan ikatan berjuntai 

di atas permukaan filem yang ditumbuhkan. Analisis selanjutnya adalah berdasarkan 

filem yang menunjukkan kadar pemendapan yang optimum bagi setiap set parameter 

pemendapan. Kuasa dan tenaga hentaman ion sewaktu pemendapan adalah berubah-

ubah, hasil daripada berubahnya parameter pemendapan. Filem ini mempunyai sifat 

antara serupa-polimer (PAC) ke serupa-grafit (GAC) filem a-C:H, apabila kuasa dan 

tenaga ion bertambah. Untuk mengkaji sifat struktur dan optik  bagi filem a-C:H, 

spektroskopi inframerah dan Raman, XRD, SEM, Ellipsometer, UV-Vis 

Spektrofotometer dan fotoluminesen, telah digunakan sebagai teknik pencirian untuk 

mendapatkan maklumat mengenai sp3/sp2 dan kandungan hidrogen, sifat amorfus, 

morfologi, jurang optik, E0 , pekali penyerapan, α, tindakbalas fotoluminesen, indeks 

biasan, n, dan pekali penghapusan, k bagi filem a-C:H. Berdasarkan keputusan, filem 

yang dikaji dalam penyelidikan ini, mengandungi kluster sp2 yang mana saiznya 

meningkat dengan meningkatnya kuasa dan tenaga hentaman ion sewaktu 

pemendapan, lalu menyebabkan kandungan hydrogen, sp3 dan jurang optik 

berkurang. Ini mengesahkan model yang dicadangkan oleh Robertson di mana 

kandungan sp2 mengawal jurang optik. Peningkatan pembebasan hidrogen daripada 

filem pada tenaga ion yang lebih tinggi menyebabkan terhasilnya pertambahan di 

dalam pecahan sp2, saiz kluster yang lebih besar dan filem berstruktur grafit. 
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CHAPTER I 
 
 
 
 

INTRODUCTION 
 
 
 
 

1.1   Introduction 
 
 

Thin films are solid materials of either metal, semiconductor or insulator,  

deposited onto substrates at film thickness in the range of 10 to1000 nm (Chopra, 

1969). Beyond this range they are refered to as thick films. While the term ultra thin 

film refers to the latest science frontier in which the film thickness is much thinner 

than100 nm. Its thickness creates different characteristics compare to the original 

bulk material and this contributes to a few new phenomena. Substrate is a kind of 

solid that can support the formation of thin film on it. It is usually a material that 

does not chemically interact with the film. A clean and smooth surface of substrate is 

required in order to obtain good quality and homogeneous films. Nowadays, we can 

see thin films widely used in electronics, optoelectronic devices and other optical and 

surface engineering applications (Kazmerski, 1980). 

 
 

Thin films can be produced by utilizing several methods. Generally, the 

preparation of thin films can be classified into 2 methods; physical and chemical 

techniques (Abu Talib et al., 1993). Some examples of physical vapour deposition 

are vacuum evaporation and sputtering. There is also variety in the chemical vapour 

deposition processes such as plasma enhanced (assisted) chemical vapour deposition 

(PECVD, PACVD), low-pressure chemical vapour deposition (LPCVD), etc.  Thin 

film product can be either in the form of single crystal, polycrystalline or amorphous, 

this depends on several deposition factors such as temperature, pressure and etc.  
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1.2  Research Background 
 
 

The past 25 years have seen an increase in the level of interest in the 

deposition and characterization of hydrogenated amorphous carbon (a-C:H) thin 

films due to its novel optical, mechanical and electrical properties of these films and  

its similarities to diamond (Grill, 1999, Dachuan et al., 1996 and Robertson, 2002). 

The main properties of diamond are low optical absorption throughout the UV, 

visible and IR regions, high electrical resistivity, high thermal conductivity, chemical 

resistance to most acids and solvent, hardness and low coefficient of friction (May, 

1995, 2000 and Smith, 2001). The matchless properties of natural and high-pressured 

synthetic diamond crystals make this material suitable for mechanical applications 

such as cutting and grinding, electronic applications such as high power and high 

frequency transistor and optical applications such as IR windows (May, 2000).  

 
 
Although these applications have a very large market, they are limited by the 

fact that the natural diamond was only available in the form of stone or grit and for 

the synthetic diamond because of the small size and high cost of producing single 

crystalline diamond (Sagnes, 1998, May, 2000 and Smith, 2001). The production of 

diamond coating is now possible by chemical vapour deposition (based on low 

pressure vapour-phase synthesis on a substrate heated at high-temperature) and the 

material is often referred to as CVD diamond (Deryagin et al., 1968 and Angus et al., 

1968). This development reduces slightly the cost and the limitation on the size of 

diamond, but the CVD diamond coating are polycrystalline, as opposed to natural 

and high-pressures synthetic diamond crystals which are normally single crystals. 

This polycrystalline characteristic is a drawback mainly because optical applications 

require smooth coatings. This is also true for electronic applications since they also 

require single crystal diamond. Although a number of groups have been working on 

producing single crystal diamond by CVD techniques, this goal has not yet been 

achieved (Sagnes, 1998 and May 2000). 

 
 
An alternative form of carbon coating is now becoming available. It is known 

as hydrogenated amorphous carbon (a-C:H) thin films, one of the diamond-like 

carbon (DLC) form . Aisernberg and Chabot, (1971) were the first to produced 
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diamond-like carbon by ion beam deposition techniques. The name diamond-like 

carbon came originally from the unrecognizable diffraction pattern obtained on the 

samples. It is however, generally accepted that this term means hard and structurally 

amorphous. Hydrocarbon gases were applied in the deposition process; therefore not 

only carbon was incorporated in the growing films but also hydrogen. Angus et al. 

(1986) defined pure DLC composed of carbon and/or hydrogen into two categories; 

hydrogenated amorphous carbon (a-C:H) and amorphous carbon, (a-C). The first 

type contains from less than 10% to 60% hydrogen; incorporations of hydrogen in 

this type of DLC are important for obtaining diamond-like properties. The second 

type, amorphous carbon contains less than 1% hydrogen. This material is not a good 

electrical, optical or mechanical material compared to a single crystal diamond, but it 

is satisfactory for many applications such as a protective coating in areas such as 

optical window, scratch resistant, magnetic storage disk, biomedical coating, and low 

friction wear resistant coatings for moving part in tools (Manage, 1998 and 

Robertson, 2002).  

 
 
Diamond is a material with a well-defined structure and has properties that 

vary within a relatively narrow range of values. Meanwhile a-C:H has a structure and 

composition that varies considerably with deposition parameters, as a result, so does 

its properties (Pierson, 1993). Therefore, if one can control these properties one can 

tailor them to fit specific applications. For instance, a-C:H is suitable as an anti 

reflection layer for germanium and silicon infrared windows and lenses (Bubenzer et 

al., 1983 and Zhang et al.,1994). This application takes advantage of the adjustable 

refractive index of a-C:H between 1.6 and 2.2 and the low optical absorption of a-

C:H in the infrared spectral region.  

 
 
Several deposition methods are suitable for a-C:H thin films. These 

deposition methods can be classified into two large families; physical vapour 

deposition (PVD) and plasma enhanced chemical vapour deposition (PECVD). PVD 

involves the sputtering of carbon atom from a solid carbon target by energetic gas 

species, typically argon ions (Chopra, 1969). PECVD features a chemical process, 

which takes place in the vapour phase very near, or at, the substrate so that a product 
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is deposited onto the substrate. The reaction product is activated by creating a low 

pressure plasma in the vapour phase.  

 
 

 The feature that make PECVD attractive is; deposition at low substrate 

temperatures, in contrast to CVD. In PECVD the high substrate temperature is 

overcome when an electric discharge is created in the reactant gases to produce a 

significant number of free radicals, which will be much more reactive at lower 

temperatures while maintaining a reasonable growth rate. The growth rate will 

depend on the form of excitation used to create the discharge, example include RF 

(Mutsukura et al., 1992, Benmassaoud and Paynter, 1996, Rusli et al., 1996, and 

Jing, 1999), microwave (MW) – RF PECVD (Bouree  et al., 1996), RF - pulse DC 

mode PECVD (Taube, 1998), DC saddle field glow discharge (Manage, 1998 and 

Sagnes 1998), DC - RF PECVD (Dachuan et al., 1996 and Cheng et al., 2000), 

electron cyclotron resonance (ECR) - MW Plasma Chemical Vapour Deposition 

(ECR-MPCVD) (Zhou et al., 2000), microwave electron cyclotron resonance (ECR) 

– RF discharge PECVD ( Hong et al., 2000a and Hong et al., 2000b) etc. 

 
 

The other distinction of PECVD over CVD is expressed by the moderate 

chamber pressure and therefore different qualities of the produced carbon layers as 

results of plasma-induced ion bombardment of the film during deposition (Vossen 

and Kern, 1991). Other special feature of PECVD for the fabrication of amorphous 

carbon films is that carbon deposition is possible over large areas and onto any given 

substrate. Moreover, due to the relatively low temperature, PECVD is a low-cost 

process as well.  

 
 

In the PECVD method, two types of plasma species contribute to the film 

growth; the radicals, (chemically active neutral species) and ions that diffuse from 

the plasma and drift toward the surface. The deposition and etching processes are the 

ones by which ions, radicals, and their reaction products are incorporated into the 

growing film or are re-emitted from the surface into the gas phase. Several processes, 

such as sub plantation of incident ions, hydrogen sputtering and chemical adsorption 

of free radicals are also responsible for the films deposition. The deposition 
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parameters strongly affected the plasma species and the ionic energies and densities 

at the substrate (Mutsukura et al., 1992). 

 
 

Other than that, this study is very important since the structure of a-C:H is 

very complicated as it consists of both sp3 and sp2 hybridized carbon. The presence 

of both σ and π bond in a-C:H is precisely the root of difficulties encountered in the 

analysis of the structure of a-C:H. Despite the fact that the large amount of research 

has been done on a-C:H and as a-C:H films are already used in many technological 

applications, much about its structure and properties is yet to be understood. To date, 

the most successful model is the Robertson model (Robertson, 2002). According to 

this model, amorphous carbon consists of sp2 clusters, which are embedded in sp3 

bonded matrix. Hence it is the sp2 sites that forms band edges and controls the optical 

properties while sp3 sites govern mechanical properties. 

 
 

This thesis will study those problems. The DC-PECVD is the chosen 

technique in this study to deposit a-C:H thin films. Experiments will be done with 

various deposition parameters of a-C:H thin films such as chamber pressure, 

electrode distance, CH4 flow rate and substrate temperature. By changing the 

deposition parameters of a-C:H films, one can expect to obtain different deposition 

rate, sp3 and sp2 bond distributions and different structures in the films caused it 

involve the change in plasma power and ion bombardment energy. Hence, the 

change in the properties of these films can be suited to specific applications. This 

study will also provide additional information on the chemical bonding and structure 

of a-C:H. 
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1.3  Research Objectives 
 
 
i) To grow hydrogenated amorphous carbon (a-C:H)  thin films using a DC-

PECVD  technique with a CH4 gas precursor, 

ii) To characterize the structural properties of a-C:H thin films using infrared and 

Raman spectrometer, x-ray diffraction (XRD) analysis and scanning electron 

microscope (SEM). 

iii) To characterize the optical properties of a-C:H thin films using Ellipsometer, 

UV-Vis spectrophotometer and photoluminescence. 

 
 
 
 
1.4   Scope of Studies 
 
 

The structure and chemical bonding of a-C:H thin films will be characterized 

using infrared and Laser Raman spectroscopy. While to confirm the presence of 

amorphous structures in the a-C:H thin films, it will be characterized using x-ray 

diffraction (XRD). Scanning electron microscopy (SEM) will be used to characterize 

the morphology of the a-C:H films; their uniformity, smoothness and pinhole sites. 

The thickness, refractive indices, n and extinction coefficient, k of the films will be 

measured using Ellipsometry technique. Meanwhile, optical properties such as 

optical band gap, E0 and absorption coefficient; α will be obtained using UV-Vis 

spectrophotometer. While photoluminescence characterization will be used to 

observe the a-C:H’s ability to exhibit strong room temperature photoluminescence.  

 
 

Specifically, this thesis will cover 6 chapters; chapter 1 is an introduction, 

research background, objectives and scope of studies. The literature review regarding 

the properties of a-C: H films such as basic concept of carbon, the structural and 

optical properties and also its application are discussed in chapter 2. Chapter 3 

describes basic theories of optics and semiconductor, standard DC glow discharge, 

plasma kinetics and basic step in thin film deposition. This chapter also provides the 

theory underlying the characterization technique used, which is infrared and Raman 

spectroscopy, XRD, SEM, Ellipsometer, UV-Vis spectrophotometer and 

photoluminescence . Chapter 4 will cover all the experimental and characterizations 
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