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ABSTRACT 

 

 

 

 

This work describes the modification of bentonite to organobentonites in order to 

change its property from hydrophilic to organophilic to enhance its capability in 

adsorbing organochlorine pesticides from water. Bentonite was modified by adding 

quarternary ammonium cations through an ion exchange technique. The organochlorine 

pesticides studied were heptachlor, aldrin, dieldrin, DDT and mirex. The modified 

bentonites were characterized using Fourier transform infrared (FTIR), X-ray diffraction 

(XRD), carbon, and hydrogen and nitrogen analyzer (CHN). Gas chromatography-mass 

selective detector (GC-MSD) was used to determine the concentration of organochlorine 

pesticides while evaluating the efficiencies of organobentonites in removing the 

pesticides from water. Bentonite modified with dodecyltrimethylammonium (DDTMA) 

has the highest capacity in removing pesticides. DDTMA-bentonite with the lowest 

amount of quarternary ammonium cations (0.710%) was capable of removing very high 

percentage of pesticides (95.96±2.50% of aldrin) after 30 minutes of water treatment 

duration. The optimized treatment conditions of 30 minutes of treatment duration, 

0.2000 g of DDTMA-bentonite and 50 rpm of shaking speed were applied throughout 

this work on the samples obtained from the locations suspected of containing 

organochlorine pesticides.  

 

 

 

 

 

 

 



 

 

ABSTRAK 

 

 

 

 

Penyelidikan ini menerangkan pengubahsuaian bentonit menjadi organobentonit 

untuk menukarkan sifat bentonit daripada hidrofilik kepada organofilik supaya boleh 

menambah keupayaan bentonit menyerap pestisid yang bersifat organoklorin daripada 

air. Bentonit diubahsuai dengan menambahkan kation kuarterner ammonium melalui 

teknik pertukaran ion. Pestisid berorganoklorin yang dikaji adalah heptachlor, aldrin, 

dieldrin, DDT dan mirex. Pencirian bentonit terubahsuai dilakukan dengan 

menggunakan spektroskopi Fourier transform inframerah (FTIR), pembelauan sinar-X 

(XRD), dan penganalisis karbon, hidrogen dan nitrogen (CHN). Kromatografi gas-

pengesan pemilihan jisim (GC-MSD) digunakan untuk menentukan kepekatan pestisid 

yang bersifat organoklorin dalam proses menilai kecekapan organobentonit 

menyingkirkan pestisid tersebut daripada air. Bentonit yang diubahsuai dengan 

dodesiltrimetilammonium (DDTMA) mempunyai kapasiti tertinggi dalam penyingkiran 

pestisid. DDTMA-bentonit yang mempunyai jumlah kation kuarterner ammonium 

terendah (0.710%) dapat menyingkirkan lebih banyak pestisid (95.96±2.50% of aldrin) 

selepas perawatan air selama 30 minit. Keadaan rawatan air yang optimum iaitu masa 

rawatan air selama 30 minit, DDTMA-bentonit sebanyak 0.2000 g dan kadar 

pengacauan 50 rpm telah digunakan dalam kajian ke atas sampel yang dikumpul dari 

kawasan yang berkemungkinan mengandungi pestisid berorganoklorin. 
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CHAPTER I 
 
 
 
 

INTRODUCTION 
 
 
 
 

1.1 Research Background 
 
 

This research is able to enhance current water treatment process in order to attain 

better water quality for consumption by adding modified bentonite to remove 

organochlorine pesticides.  During the 7th Malaysia Plan (RMK7), the Government has 

implemented programmes and efforts to improve environmental health by establishing 

the Environmental Health Research Centre in September 1997 to cater for the needs of a 

safe and healthy environment.   This is in line with the aspiration of the National Water 

Resource Council in 1998 to provide an integrated approach for the planning and 

management of water resources until the year 2050.    

 

The improved, efficient and economic composite materials developed from 

natural clay materials such as bentonite is prepared by modifying the active sites as well 

as impregnating them with active cations (In this research, quarternary ammonium 

cations have been used as the active cations).   The increasing presence of organic 

pollutants in natural water makes the quest for new sorbents an interesting research for 

the remediation of polluted waters (Piver, 1992).   Therefore, the composite materials 

are useful to remove persistent organic pollutants (POPs) from the water.    

 

Inorganic clays have been shown to sorb numerous polar pesticides (Cox, et al., 

1994; Cox, et al., 1995; Hermosin, et al., 1991; Laird, 1996; Celis, et al., 1997) and they 

have been recently suggested as sorbents to eliminate pesticides from water (Gonzalez-

Pradas, et al., 1993; Gonzalez-Pradas, et al., 1996).  The organoclays have been found 



useful for removing mainly non polar organic contaminants (Boyd, et al., 1988) and as 

well some polar organic contaminants from water (Bottero, et al., 1994; Feldkamp and 

White, 1978; Hermosin and Cornejo, 1992).    

 

The development and evaluation of new materials for the sorption of organic 

contaminants still remain in the focus of innovative applications in water treatment 

(Gavaskar, et al., 1998; EPA, 1998).  The potential of using natural zeolites and clays 

modified by cationic surfactants for the removal of organic contaminants from aqueous 

solution was studied by several investigators (Cadena and Cazares, 1996; Li, et al., 2000; 

Li, et al., 1998; Li, et al., 1999; Haggerty and Bowman, 1994; Boyd, et al., 1988; Koh 

and Dixon, 2001; Gitipour, et al., 1997).  The natural and modified clay with expandable 

layered structure is one of the sorbents that attract the present interest of researchers in 

doing further research on it (Lagaly, 1994). 

 

In 2001, Huttenloch, et al. had demonstrated the efficiency of the surface 

modification of natural diatomite and zeolite material by chlorosilanes.  They used 

trimethylchlorosilane (TMSCl), tert-butyldimethylchlorosilane (TBDMSCl), 

dimethyloctadecylchlorosilane (DMODSCl), and diphenyldichlorosilane (DPDSCl) to 

possess different headgroups and chemical properties.  The surfaces of modified 

materials in the studies of Huttenloch, et al.  showed great stability even when exposed 

to extremes in ionic strength, pH, and to pure organic solvents.  The sorption of toluene, 

o-xylene, and naphthalene form water was greatly enhanced by the surface modification.   

The performance of the enhanced sorption depends on the organic carbon content as 

well as on chemical characteristics of the chlorosilanes used. 

 

A natural clay material, bentonite was used because it is cheap, easy to obtain as 

well as having a very good adsorption ability.  For example, a 50 pound package of raw 

bentonite imported from United States of America was RM 50 (purchased in year 2002) 

whereas only 0.2000 g of the bentonite is needed for removing 10 ppm of 

organochlorine pesticides as done in the laboratory test run.  Moreover, the raw 

bentonite can also be obtained from our neighbour country such as Indonesia.  

Organobentonite is bentonite modified by cationic surfactants such as quarternary 

ammonium cations or similar long-chain molecules to increase their ability to adsorb 

organic contaminants from aqueous solution (Boyd, et al., 1988; Koh and Dixon, 2001) 



and contaminated soils (Gitipour, et al., 1997).  Organobentonite is very useful for the 

removal of organic pollutants such as organochlorine pesticides.  These persistent 

organic pollutants are found to be very low in concentrations in drinking water.  

Nonetheless, the persistent organic pollutants are extremely harmful to health since they 

can bioaccumulate and non-degradable over decades. 

 

Quarternary ammonium cations are used to modify bentonite from hydrophilic to 

hydrophobic in order to remove organochlorine pesticides which are hydrophobic (Bolto, 

B. et al., 2000).  According to Smith, et al., 1990, quarternary ammonium cations can be 

added to the outer and interlayer surfaces of an expandable clay particle by an ion-

exchange process and are not easily displaced by smaller cations such as H+, Na+, or 

Ca2+.  The enhanced sorption capacity of zeolite materials after modification with 

hexadecyltrimethylammonium (HDTMA) was shown for benzene, toluene, 

ethylbenzene and xylene (BTEX) compounds (Cadena and Cazares, 1996), for benzene, 

aniline, and phenol (Li, et al., 2000) and for perchloroethylene (PCE) (Li and Bowman, 

1998).  Moreover, the removal of inorganic oxyanions such as sulfate, chromate, and 

selenate from aqueous solution by HDTMA modified zeolite was studied (Haggerty and 

Bowman, 1994).  However, Li et al. (Li, et al., 1999) proposed a combination of a 

reductive material (zerovalent iron) with a sorptive material represented by HDTMA-

modified zeolites to enhance the removal of chromate and PCE from contaminated 

groundwater.   

 

The organobentonites that are effective in the removal of organochlorine 

pesticides from water is suggested to be used in water treatment plants or industries 

which large amount of water need to be purified. 

 
 
1.2 Bentonite 
 
 

The data obtained from technical data sheet of Wyoming bentonite shown that 

bentonite is an expandable aluminosilicate clay mineral with a unit layer formula of (Na, 

Ca)0.33(Al1.67Mg0.33)Si4O10(OH)2·nH2O.  It is a hydrous aluminum silicate comprised 

principally of the clay mineral montmorillonite which contains small portions of feldspar, 

calcite and quartz.  A montmorillonite mineral is of lamellar shape with a size of 



approximately 100 × 100 × 1 nm3 (Ichikawa, et al., 2001).  Bentonite is alkaline with a 

pH range of 8.5 to 10.5.   

 

The clay minerals (such as bentonite, montmorillonite) consist of inorganic 

aluminosilicate layers carrying negative permanent charge, which is balanced by the 

hydrated inorganic cations in the interlayer (Socias-Viciana, et al., 1998).  Bentonite is a 

2:1 type of lamellar clay mineral, and its unit layer structure consists of one Al3+ 

octahedral sheet placed between two Si4+ tetrahedral sheets (Hillel, 1980, Güngör and 

Karaoğlan, 2001).  The isomorphous substitution of Al3+ for Si4+ in the bentonite 

tetrahedral layer results in a net negative surface change on the clay.  The ion exchange 

of Mg2+ for Al3+ in the structure of octahedral layer also brings to a net negative surface 

charge on the bentonite (Shen, 2002).  Because of the net negative charges, clay 

minerals have a strong affinity for cations (Li and Bowman, 2001).  This charge 

imbalance is offset by exchangeable cations (typically H+, Na+ and Ca2+) on the external 

and internal surfaces of the clay crystals (Rožić, et al., 2000).  In aqueous systems, water 

is intercalated into the interlamellar space of the bentonite, resulting in swelling of the 

mineral (Smith and Galan, 1995).  This interlayer space is available to host polar organic 

molecules (Mortland, 1970) or organic cations that may substitute the original inorganic 

ones (Lagaly, 1994; Lagaly and Weiss, 1969); these last organic cation saturated 

samples are the organoclays. 

 

The structure of bentonite is shown in Figure 1.1 (Terence, 2003).   

 

 

Figure 1.1 The structure of bentonite. 
 



Figure 1.2 shows the Al3+ octahedral structure unit.  Figure 1.3 shows the Si4+ 

tetrahedral structure unit. 

 

 

Figure 1.2 Al3+ octahedral structure unit. 

 

 

Figure 1.3 Si4+ tetrahedral structure unit. 

 
 
 Bentonite can adsorb odor of cat litter, made into facial mask and etc.  Some 

people consume bentonite to help in the adsorption of toxic elements in their body.  In 

this research, the adsorption ability of bentonite is modified from hydrophilic to 

hydrophobic in order to adsorb the organochlorine pesticides from water. 

 
 
 
 
1.3 Organochlorine Pesticides 

 
 
Aldrin, dieldrin, DDT, heptachlor and mirex are the organochlorine pesticides to 

be eliminated from water samples using organobentonites.  All of these pesticides 



contain chlorine in their structures.  Therefore, they are named organochlorine pesticides 

as well.   

 

The mentioned pesticides are grouped as persistent organic pollutants (POPs) 

according to their characteristics such as toxicity, persistent (not degradable even after 

years or decades), mobile (can spread far away from its source through atmosphere by 

repetition of volatilization and deposit processes), bioaccumulate and bioconcentrate.  

The uses, characteristics, structures, hydrophobicity and health effects of each 

organochlorine pesticide are mentioned separately as in the following text. 

 

 

1.3.1 Aldrin 
 
 
Aldrin is a white crystalline solid, odourless, with a melting point of 104.0 °C -

104.5 °C (Mercier, 1981).  The structure of aldrin is shown in Figure 1.4.   

 

 
Figure 1.4 The structure of aldrin. 

 
 
 Aldrin is a type of pesticide used to control soil insects including termites, corn 

root worms and grasshoppers.  It had been widely used to protect crops such as corn and 

potatoes, and had been effectively used in the protection of wooden structures from 

termites.  Aldrin is readily metabolized to dieldrin by plants and animals.  It strongly 

binds to soil particles and is very resistant to leaching into groundwater.  However, 

volatilization is an important mechanism of losing aldrin/dieldrin from the soil.  Aldrin 

is known to be bioconcentrated, mainly as its conversion products, due to its persistent 



nature and hydrophobicity.  Since aldrin can be rapidly converted to dieldrin in the 

environment, the fate of these two pesticides can be linked closely (Jones, 1998).   

 
 
 
 

1.3.2 Dieldrin 
 
 

Dieldrin forms white odourless crystals of melting point 175 °C – 176 °C 

(Mercier, 1981).  Dieldrin was used in agriculture in the control of soil insects and 

several insect vectors of disease.  Nowadays, it has been banned in a number of 

countries due to environmental and human health concerns.   

 

The half-life of dieldrin in temperate soils is approximately 5 years.  This 

persistence, combined with high lipid solubility, provides the necessary conditions for 

dieldrin to bioconcentrate and biomagnify in organisms.  One of the bioconcentrated 

methods of dieldrin is by aquatic organisms.  The chemical properties of dieldrin (low 

water solubility, high stability, and semi-volatility) encourage its long range transport 

(mobility).  Similar to aldrin, dieldrin also binds strongly to soil particles and is very 

resistant to leaching into groundwater.  Volatilization is an important mechanism of loss 

from the soil (Jones, 1998).  Dieldrin has been detected in the air, water and organisms 

including humans and human breast milk (Halsall, et al., 1998).   

 

As aldrin is readily and rapidly converted to dieldrin in the environment and in 

organisms, the levels of dieldrin detected will likely reflect the total concentrations of 

both compounds.  The structure of dieldrin is shown in Figure 1.5. 

 

Figure 1.5 The structure of dieldrin. 



1.3.3 Dichloro-Diphenyl-Trichloroethane (DDT) 
 
 

Dichloro-Diphenyl-Trichloroethane (DDT) was commonly used during the 

Second World War to protect the troops and civilians from malaria, typhus and other 

vector borne diseases (Bidleman, and Falconer, 1999).  After the war, DDT was widely 

used on a variety of agricultural crops and for the control of disease vectors as well.  

Growing concern about adverse environmental effects, especially on wild birds, led to 

severe restrictions and bans in many developed countries in the early 1970s (Ockenden, 

et al., 1998a).  Moreover, the ban for DDT is contentious since tropical countries still 

use DDT to control malaria (Bidleman, and Falconer, 1999).  Spencer, et al.  (1996) had 

found DDT residues in air above soil at a California farm, where DDT had been applied 

23 years previously. 

 

DDT is highly insoluble in water but is soluble in most organic solvents.  It is 

semi-volatile with the ability to partition into the atmosphere.  Its presence is ubiquitous 

in the environment.  It is lypophilic and can be stored in the fat of all living organisms.  

DDT is bioconcentrated in nature.  The breakdown products of DDT: 1,1-dichloro-2,2-

bis(4-chlorophenyl)ethane (DDD or TDE) and 1,1-dichloro-2,2bis(4-

chlorophenyl)ethylene) (DDE), are present in the environment and are more persistent 

than the parent compound.  In conclusion, the persistency of DDT and related 

compounds in the environment is as much as 50% can remain in the soil ten years to 

fifteen years after application.   

 

The chemical properties of DDT (low water solubility, high stability and semi-

volatility) encourage its long range transport.  DDT and its metabolites have been 

detected in arctic air, water and organisms.  This route is likely the greatest source of 

DDT exposure for the general population (Halsall, et al., 1998; Ockenden, et al., 1998a).  

Figure 1.6 shows the structure of DDT. 

 



 

Figure 1.6 The structure of DDT. 

 
 
 

 
1.3.4 Heptachlor 
 
 
 Heptachlor is an insecticide used primarily against soil insects and to combat 

malaria.  Heptachlor is highly insoluble in water but is soluble in organic solvents.  It is 

semi-volatile and able to partition into the atmosphere.  It binds readily to aquatic 

sediments and bioconcentrates in the fat of living organisms.  Heptachlor metabolized to 

heptachlor epoxide whose toxicity is similarly to that of heptachlor, and stored in animal 

fat (Ockenden, et al., 1998b). 

 The half life of heptachlor in temperate soil is up to two years.  This persistence 

provides the necessary conditions for heptachlor to bioconcentrate in organisms.  The 

chemical properties of heptachlor (low water solubility, high stability, and semi-

volatility) favor its long range transport (Jones, 1998).  Moreover, heptachlor and its 

epoxide have been detected in arctic air, water and organisms.  WHO suggests that food 

is the major source of exposure of heptachlor to the general population.  The structure of 

heptachlor is shown in Figure 1.7. 

 

Figure 1.7 The structure of heptachlor. 



1.3.5 Mirex 
 
 

Mirex is an insecticide with little contact activity.  Its main use was against fire 

ants in the southeastern United States, and combat leaf cutters in South America, 

harvester termites in South Africa.  It has also been used as a fire retardant in plastics, 

rubber, paint paper and electrical goods (Reid, et al., 1998).  Figure 1.8 is the structure 

of mirex. 

 

 
Figure 1.8 The structure of mirex. 

 

 Mirex is one of the most stable and persistent pesticides with a half-life of up to 

10 years.  This persistence, combined with lypophilicity, provides the conditions for 

mirex to bioconcentrate in organisms.  Mirex binds strongly to aquatic sediments due to 

its insolubility.  The chemical properties of mirex (low water solubility, high lipid 

solubility, high stability, and semi-volatility) favor its long range transport, and 

therefore, mirex has been detected in arctic freshwater and terrestrial organisms.  The 

main route of exposure of mirex to the general population is through food, especially 

meat and fish (Jones, 1998, Reid, et al., 1998).   

 
 
 
 
1.3.6 Health effects of POPs 
 
 
 A number of persistent organic pollutants (POPs) are available in this research, 

such as aldrin, dieldrin, DDT, heptachlor and mirex.  Table 1.1 shows the health effect 

of the POPs (Albanis and Hela, 1995; Fatoki and Awofolu, 2003). 

 



Table 1.1: The health effects of POPs. 
 

POPs Heptachlor Aldrin/Dieldrin DDT Mirex 

Health 

effect 

  ~ Dizziness 

  ~ Fainting 

  ~ Convulsions 

  ~ Mild liver    

     changes 

  ~ Kidney  

     damage 

  ~ Nervous  

     system    

     damage 

  ~ Headaches 

  ~ Irritability 

  ~ Vomiting 

  ~ Uncontrollable  

      muscle movements 

  ~ Convulsions 

  ~ Nervous system  

     damage 

  ~ Kidney damage 

  ~ Death 

  ~ Nervous system  

     damage 

  ~ Excitability 

  ~ Tremors 

  ~ Seizures 

  ~ Irritation of eyes,   

     nose, throat 

  ~ Changes of liver  

     enzymes 

  ~ Nervous system  

     damage 

  ~ Reproductive  

     system damage 

  ~ Liver damage 

  ~ Harm  

     development in  

     rodents 

  ~ Miscarriage 

  
 

The LD50 is a standardized measure for expressing and comparing the toxicity 

of chemicals.  The LD50 is the dose that kills half (50%) of the animals tested (LD = 

"lethal dose").  The animals are usually rats or mice, although rabbits, guinea pigs, 

hamsters, and so on are sometimes used.  Ritter, et al. (1999) has shown the toxicity 

(LD50) of the studied persistent organic pollutants including aldrin, dieldrin, heptachlor, 

DDT and mirex in their report which as the following. 

 

The acute oral LD50 for aldrin in laboratory animals is in the range of 33 mg/kg 

body weight for guinea pigs to 320 mg/kg body weight for hamsters.  Reproductive 

effects in rats were observed when pregnant females were dosed with 1.0 mg/kg aldrin 

subcutaneously.  In laboratory studies, acute oral LD50 values in the range of 37 mg/kg 

body weight in rats to 330 mg/kg in hamsters have been found for dieldrin.  Dieldrin 

residues have been detected in air, water, soil, fish, birds and mammals, including 

humans and human breast milk.  As aldrin is readily and rapidly converted to dieldrin in 

the environment and in organisms, the levels of dieldrin detected likely reflect the total 

concentrations of both compounds. 

 

The acute oral LD50 of heptachlor to laboratory animals is in the range of 40 

mg/kg body weight in rats to 116 mg/kg in rabbits.  A daily intake of 0.25 µg/person/day 



(for heptachlor and heptachlor epoxide combined, based on a 60 kg person) was 

estimated for Vietnam, and of 0.07 µg/person/day (for heptachlor alone) for India. 

 

DDT and related compounds are very persistent in the environment, as much as 

50% can remain in the soil 10-15 years after application.  DDT has also been detected in 

human breast milk.  In a general survey of 16 separate compounds in the breast milk of 

lactating mothers in four remote villages in Papua, New Guinea, DDT was detected in 

100% of forty-one samples taken.  DDT is not highly acutely toxic to laboratory animals, 

with acute oral LD50 values in the range of 100 mg/kg body weight for rats to 1770 

mg/kg for rabbits.  DDT is highly toxic to fish, with 96-hour LC50 values in the range of 

0.4 µg/L to 42 µg/L.   

 

In acute studies, the oral LD50 of mirex to rats ranges from 600 to >3000 mg/kg, 

depending on sex of the test animal and nature of the formulation tested.  Short term 

effects included decreased body weight, hepatomegaly, induction of mixed function 

oxidases, and morphological changes in liver cells. 

 
 
 
 
1.3.7 Hydrophobicity of POPs 
 
 
 It is important to know the hydrophobicity of the POPs because the 

hydrophobicity of modified bentonite should suit with that of the organochlorine 

pesticides in order to adsorb the pollutants (Cadena, 1989).  The amount of chlorine 

found in the structure of the organochlorine pesticides is one of the criteria to determine 

their hydrophobicity.  In this research, quarternary ammonium cations with different 

amount of carbon atoms (short alkyl or aryl group and long alkyl group) give different 

hydrophobicity to the modified bentonite.  The hydrophobicity matching between 

organochlorine pesticides and modified bentonite is evaluated through the results of 

laboratory test run on the capability of modified bentonite in removing the 

organochlorine pesticides.  In other words, higher percentage of certain organochlorine 

pesticide will be removed by the particular modified bentonite which its hydrophobicity 

is matched.  Table 1.2 shows the hydrophobicity of POPs. 

 



Table 1.2: The hydrophobicity of POPs. 
 

PESTICIDES WATER SOLUBILITY HYDROPHOBICITY 

Mirex Insoluble  

DDT 1.2-5.5 µg/L at 25 °C  

Dieldrin 140 µg/L at 20 °C  

Aldrin 17-180 µg/L at 25 °C  

Heptachlor 180 µg/L at 25 °C  

 
 
 
1.4 Quarternary Ammonium Cations 
 
 

A range of cationic surfactants mainly primary and quarternary alkylammonium 

have been use to render different organoclays (Dentel, et al., 1995; Hermosin, et al., 

1995; Mortland, et al., 1986; Zhang, et al.,1993).  Therefore, modification of bentonite 

from hydrophilic to hydrophobic by quarternary ammonium cations was carried out.  

Quarternary ammonium cations increase the adsorption ability of organobentonite to 

organic pollutants with same hydrophobicity (Smith and Galan, 1995).  The alkyl chains 

on the quarternary ammonium cations also create a partition medium for sorption of the 

organic pollutants (Smith and Galan, 1995).   

 

The quarternary ammonium cations can be divided into two groups: 1) short-

chain alkyl or aryl functional group, 2) long-chain functional group which is (CH3)3-N
+-

R where R is a 10-, 12-, 14-, or 16-carbon alkyl chain.  The first group consists of 

tetraethylammonium (TEA), benzyltrimethylammonium (BTMA), and 

benzyltriethylammonium (BTEA).  The second group is decyltrimethylammonium 

(DTMA), dodecyltrimethylammonium (DDTMA), tetradecyltrimethylammonium 

(TDTMA), and hexadecyltrimethylammonium (HDTMA).   

 

The quarternary ammonium cation is more hydrophobic with longer alkyl chain.  

The hydrophobicity consequently increases from short-chain alkyl or aryl functional 

group to long-chain functional group.  For the long-chain functional group, the 

I
N
C
R
E
A
S
E 



hydrophobicity increases from DTMA, DDTMA, TDTMA to HDTMA.  The structure 

of these quarternary ammonium cations can be seen in Figure 1.9 to Figure 1.15.  Each 

of these quarternary ammonium cations contains only one nitrogen atom in its molecule.  

Hence the amount of quarternary ammonium cations that successfully added to bentonite 

was determined by carbon, hydrogen and nitrogen analyzer (CHN).   

 

 
 

Figure 1.9 The structure of tetraethylammonium (TEA) bromide. 
 
 

 
 

Figure 1.10 The structure of benzyltrimethylammonium (BTMA) bromide. 
 
 

 
 

Figure 1.11 The structure of benzyltriethylammonium (BTEA) bromide. 
 
 

 
 

Figure 1.12 The structure of decyltrimethylammonium (DTMA) bromide. 
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Figure 1.13 The structure of dodecyltrimethylammonium (DDTMA) bromide. 
 
 

 
 

Figure 1.14 The structure of tetradecyltrimethylammonium (TDTMA) bromide. 
 
 

 
 

Figure 1.15 The structure of hexadecyltrimethylammonium (HDTMA) bromide. 
 

  
 
 
1.5 Bentonite Modification 
 
 
 In this research, bentonite modification from hydrophilic to organophilic through 

ion exchange technique.  The history of ion exchange can be traced back to Moses, who 

softened the bitter water of Mara to make it potable for his flock in the desert.  

Aristotle’s observation indicated that the salt content of water is diminished or altered 

upon percolation through certain sands.  The major evolution came in 1935 with the 

work of Adams and Holmes, two English scientists, whose chance discovery that a 

shattered phonograph record exhibited ion exchange properties led them to invent ion 

exchange resins, materials with in many respects superior properties (Helfferich, 1986).   
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 According to Helfferich (1986), in the first decade after the Second World War, 

more stable and reproducible ion exchange resin on styrene basis and of strong-base 

anion exchangers (with quarternary ammonium groups) were advent.  Then the 

commercial development of effective inorganic ion exchangers in the form of synthetic 

zeolites and macroporous type ion exchange resins were done.  The macroporous type 

ion exchange resins opened up many applications under conditions where the active 

groups of conventional resins are not accessible for lack of swelling.  Moreover, the 

resins are used as disinfectants.  These resins have high sorption affinity for bacteria and 

carry antibacterial agents such as quarternary ammonium ions as either functional 

groups or counter ions.   

 

 The ion exchanger also acts as a carrier of a metal ion that forms complexes of 

different strengths with various ligands, and is used for the separations of such ligands.  

Ligand exchange becomes a standard chromatographic technique and is generally used 

for separations of amines, amino acids, etc.  Ion exchange has been used widely in the 

field of catalysis (Helfferich, 1986).  Ion exchange is then used in water treatment in this 

study. 

 

According to Kunin (1958) in the crystal lattice theory, the ease with which the 

surface ions may be replaced by another ion depends therefore on: 1) the nature of the 

forces binding the ion to the crystal, 2) the concentration of the exchanging ion, 3) the 

charge of the exchanging ion, 4) sizes of the two ions, 5) the accessibility of lattice ions, 

and 6) solubility effects. 

 

The lattice of the bentonite has to be large enough to permit an exchanging ion to 

diffuse into it.  Bentonite has the ability to swell along its crystallographic c-axis when 

hydrated.  The structure of bentonite is separated into two plates after the swelling, each 

consisting a silica layer and an alumina layer held together by the monovalent and 

divalent cations, such as sodium, potassium, calcium and magnesium.  When hydrated, 

other cations may diffuse between the layers and exchange with these cations.  The 

exchange capacity and the seat of exchange have been related to the constitution of the 

silicate lattice.  If a silicon atom which has an ionic charge of four, is replaced with an 

aluminum atom that has the same coordination number but an ionic charge of three in 

the chains, the charge deficiency must be balanced by the presence of other cations.  



This substitution explains the ion exchange phenomenon in bentonite.  The substitution 

of a magnesium atom of an ionic charge of two for an aluminum atom of an ionic charge 

of three gives the same effects as the substitution of an aluminum atom for a silicon 

atom. 

 

At high concentrations, the differences in the exchange ‘potentials’ of ions of 

different valence (Na+ versus Ca2+) diminish and, in some cases, the ion of lower 

valence has the higher exchange ‘potential’.  Organic ions of high molecular weight and 

complex metallic anionic complexes exhibit unusually high exchange potentials (Kunin, 

1958). 

 

According to Smith, et al.  (1990), the layered structure of the clay allows 

expansion (swelling) after wetting, which in turn exposes additional mineral surface 

capable of cation adsorption.  These factors, in combination with its small particle size, 

cause the montmorillonite to exhibit a high cation-exchange capacity relative to other 

natural soils.  Therefore, bentonite which is a type of layered clay and composed 

primarily of Na+-montmorillonite, is very suitable to be modified through ion exchange. 

 

In aqueous systems, quarternary ammonium cations can be retained by both the 

outer and interlayer surfaces of an expandable clay particle by an ion-exchange process 

and are not easily displaced by smaller cations such as H+, Na+, or Ca2+.  The sorptive 

properties of the modified clay surface may be significantly altered by this substitution 

reaction. 

 

The structure of bentonite in the middle of Figure 1.16 has been discussed earlier.  

As shown in Figure 1.16, quarternary ammonium cations were added to the internal and 

the external layers of the bentonite.  The attraction of the organochlorine pesticides to 

quarternary ammonium cations is through the long hydrophobic chains (Delozier, et al., 

2002).  The amount of organochlorine pesticides that has been attracted to the 

quarternary ammonium cations depends on the quantity of quarternary ammonium 

cations.  The higher amount of quarternary ammonium cations found on the bentonite 

means more organochlorine pesticides can be eliminated from water through partitioning 

process by the alkyl chains of the quarternary ammonium cations. 

 



 
 
Figure 1.16 The diagram of removal of organochlorine pesticides from water by 
modified bentonite. 

 
 
 

1.6 Water Quality Standards 
 
 

Water quality standards are important guidelines to ensure that pollutants found 

in water do not exceed the safety level.  In other words, these guidelines can be used to 

determine whether the water is safe for consumption or not.  Global water quality 

standards and Malaysia water quality standards are used as guidelines in this research.   

 
 
 
1.6.1 Global water quality standards 

 
 

Water is transported globally in the environment, unconstrained by geopolitical 

boundaries through atmosphere, underground, oceans, waterways, human activities, life 

cycles of the flora and fauna.  Environmental Health Laboratories (EHL) has suggested a 

set of drinking water quality standards as the global drinking water quality standards.  

The global water quality standards actually are a combination of drinking water quality 

standards from eleven organizations and developed countries: Environmental Health 

Laboratories of United States of America (EHL), United States Environmental 

Protection Agency (EPA), World Health Organization (WHO), Canadian Drinking 

Legend: 
 
          : Quarternary ammonium 

cation; its long tail 
represented alkyl chain 

 
          : Organochlorine pesticide 



Water Quality Guidelines, Taiwan, Taipei Drinking Water Regulations, European 

Economic Community (EEC), United Nations, US EPA Contaminant Candidate List, 

South Africa, Umgeni, China and Czech Republic. 

 

A few categories of the drinking water quality standards are divided as 

inorganics, disinfection by-products (DBPs), metals, radiological, solid organic 

chemicals (SOCs), volatiles, physical parameters, additional parameters and 

microbiological.  Table 1.3 is the water quality standards of aldrin, dieldrin, DDT, 

heptachlor and mirex.   

 

EHL (0.1 µg/L, 0.1 µg/L), WHO (0.03 µg/L, 0.03 µg/L), Canada (0.7 µg/L, 0.7 

µg/L) and Taiwan (3 µg/L, 3 µg/L) have water quality standards for the concentrations 

of aldrin and dieldrin in drinking water.  EHL, WHO, Canada, Taiwan and China set the 

safety consumption limit of the drinking water with the amount of DDT at 0.1 µg/L, 2 

µg/L, 3 µg/L, 1 µg/L and 1 µg/L, respectively.  EHL, WHO, EPA, Canada and Taiwan 

control the concentration of heptachlor in drinking water with 0.1 µg/L, 0.03 µg/L, 0.4 

µg/L, 3 µg/L, and 1 µg/L, respectively.  Only EHL (0.5 µg/L) has water quality 

standards for mirex in drinking water.   

 
Table 1.3: A suggested global drinking water quality standards on the studied 
organochlorine pesticides. 
 
SOCs-ug/L (ppb) Heptachlor Aldrin Dieldrin DDT Mirex 

BST 0.1 0.1 0.1 0.1 0.5 
WHO 0.03 0.03 0.03 2 - 
EPA 0.4 - - - - 

Canada 3 0.7 0.7 3 - 
Taiwan 1 3 3 1 - 
China - - - 1 - 

EPA Method 
(EHL-S125) 

525.2 525.2 525.2 525.2 525.2 

Note:-  
BST Environmental Health Laboratories Broad Spectrum Test 
WHO World Health Organization 
EPA United States Environmental Protection Agency Regulated Analytes 

Canada Canadian Drinking Water Quality Guidelines 
Taiwan Taiwan, Taipei Drinking Water Regulations 
China China 

EHL-S125 Environmental Health Laboratories – Gas Chromatography/Mass 
Spectrometry (GC/MS) 

 



1.6.2 Malaysian water quality standards 
 
 

Interim National Water Quality Standards (INWQS) are developed for the 

Malaysian water quality standards.  As shown in Table 1.4, water is divided into six 

classes (I, IIA, IIB, III, IV and V) by INWQS according to its uses.   

 

Class I represents water bodies of excellent quality for the conservation of 

natural environment in its undisturbed state.  Class IIA represents water bodies of good 

quality which mainly for raw water supply.  Class IIB standard is based on criteria for 

recreational use and protection of sensitive aquatic species.  Class III is defined with the 

primary objective of protecting common and moderately tolerant aquatic species of 

economic value.  Class IV defines water required for major agricultural activities which 

may not cover minor applications to sensitive crops whereas Class V represents other 

water which do not meet any of the above uses. 

  
 

Table 1.4: The classes of Malaysia’s water according to the uses. 
 

Class  Uses  
l   Conservation of natural environment 

 Water supply l - practically no treatment necessary (except by 
disinfection of boiling only)    
Fishery l - very sensitive aquatic species 

   
llA   Water supply ll - conventional treatment required 

  Fishery ll sensitive aquatic species 
    

llB  Recreational use with body contact 
  

lll  Water supply lll - extensive treatment required 
 Fishery lll - common, of economic value and tolerant species 
   

lV  Irrigation 
    

V   None of the above 
 
 
Table 1.5 showed the water condition parameter of INWQS.  The water 

parameters of INWQS for inorganic residues are shown in Table 1.6.   

 

 



Table 1.5: Interim National Water Quality Standards for Malaysia (INWQS) – Water 
Condition Parameter. 
 

Classes Parameters (Units)  
l  llA  llB  lll lV  V  

Ammonical 
Nitrogen  

mg/l  0.1 0.3  0.3  0.9 2.7  > 2  

BOD  mg/l  1 3  3  6 12  > 12 
COD  mg/l  10 25  25  50 100  > 100 

DO  mg/l  7  5 - 7  5 - 7  3 - 5 < 3  < 1  

pH  -  6.5-8.5 6.5-9.5 6 - 9  5 - 9 5 - 9   
Colour  TCU  15 150  150       
Electrical 
Conductivity  

mmhos/
cm 

1000 1000    - 6000  - 

Floatables  -  N N  N  - -  - 
Odour  -  N N  N  - -  - 
Salinity  o/oo  0.5 1  -  - -  - 
Taste  -  N N  N  - -  - 
Total Dissolved 
Solids  

mg/l  500 1000  -  - -  - 

Total Suspended 
Solids  

mg/l  25 50  50  150 300  > 300 

Temperature  oC  - Normal 
+2  

- Normal 
+2 

-  - 

Turbidity  NTU  5 50  50  - -  - 
Faecal 
Caliform*  

counts/ 
100ml  

10 100  400  5000 
(2000)@ 

5000 
(2000) 

- 

Total Coliform  counts/ 
100ml  

100 5000  50000  50000 50000  >50000 

  Note:-  
N No visible floatable materials/debris  
 or No objectionable odour 
 or No objectionable taste 
* Geometric Mean 
@ Maximum not to be exceeded 

 
 
 
 
 
 
 
 
 
 
 
 



Table 1.6: Interim National Water Quality Standards for Malaysia (INWQS) – 
Inorganic Residues. 

 
Classes  Parameters  (Units)  

l  llA / llB  lll@  lV  V  
A1  mg/l    -    (0.06)   0.5   

As  mg/l   0.05   0.4 (0.05)   0.1   

Ba  mg/l   1   -   -   
Cd  mg/l   0.01   0.01* (0.001)   0.01   

Cr(Vl)  mg/l   0.01   1.4 (0.05)   0.1   

Cr(lll)  mg/l   0.05   2.5   -   
Cu  mg/l   1   -   0.2   
Hardness  mg/l   250   -   -   
Ca  mg/l   -   -   -   
Mg  mg/l   -   -   -   

Na  mg/l   -   -   3 SAR   

K  mg/l   -   -   -   
Fe  mg/l   0.3   1   1 (leaf)  

5 
(others)   

Pb  mg/l   0.05   0.02* (0.01)   5   
Mn  mg/l   0.1   0.2   0.2   
Hg  mg/l   0.001   0.004 (0.0001)   0.002   
Ni  mg/l   0.05   0.9*   0.2   

Se  mg/l   0.01   0.25   0.02   
Ag  mg/l   0.05   0.0002   -   
Sn  mg/l   -  0.004   -   
U  mg/l   - -   -   
Zn  mg/l   5   0.4*   2   

B  mg/l   1   (3.4)   0.8   
Cl  mg/l   200   -   80   
Cl2  mg/l   -   (0.02)   -   
CN  mg/l   0.02   0.06 (0.02)   -   

F  mg/l   1.5   10   1   

NO2  mg/l   0.4   0.4 (0.03)   -   
NO3  mg/l   7   -   5   
P  mg/l   0.2   0.1   -   

Si  mg/l   50   -   -   

SO4  mg/l   250   -   -   
S  mg/l   
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Classes  Parameters  (Units)  
l  llA / llB  lll@  lV  V  

CO2  mg/l   -   -   -   

Gross-a  Bq/l   

Natural 
level 0.1   -   -   

Levels 
above 



Gross-b  Bq/l   1   -   -   
Ra-266  Bq/l   < 0.1   -   -   
Sr-90  Bq/l   < 1   -   -   

IV 

  Note:-  
@ Maximum (unbracketed) and 24-hour average (bracketed) concentrations 

 
 

Table 1.7 shows the water parameters of INWQS for organic residues.  The 

water quality standards set the levels of organochlorine pesticides (aldrin/dieldrin, t-

DDT, heptachlor) differently under INWQS according to water classes.  The 

organochlorine pesticides in class I water are limited to their natural levels.  Class IIA 

and IIB water have the same water quality standards for the organochlorine pesticides 

(aldrin/dieldrin, t-DDT, heptachlor) which are 0.02 mg/L, 0.1 mg/L and 0.05 mg/L, 

respectively.  The maximum concentrations of the organochlorine pesticides 

(aldrin/dieldrin, t-DDT, heptachlor) for Class III water are 0.2 mg/L, 1 mg/L and 0.9 

mg/L, respectively.  Moreover, the average concentrations of the organochlorine 

pesticides (aldrin/dieldrin, t-DDT, heptachlor) for Class III water within 24 hours of 

discharge time should not be more than 0.01 mg/L, 0.01 mg/L and 0.06 mg/L, 

respectively.  Specification of water quality standards on Class IV and V water was not 

done for the organochlorine pesticides. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1.7: Interim National Water Quality Standards for Malaysia (INWQS) – Organic 
Residues. 
 

Classes  Parameters  (Units)   
l   llA / llB   lll@  lV   V   

CCE  m g/l   500   -   -   

MBA/BAS  m g/l   500   5000 (200)   -   

O&G (mineral)  m g/l   40;N   N   -   

O&G (emulsified / 
edible)  

m g/l   7000;N   N   -   

PCB  m g/l   0.1   6 (0.05)   -   
Phenol  m g/l   10   -   -   
Aldrin/Dieldrin  m g/l   0.02   0.2 (0.01)   -   
BHC  m g/l   2   9 (0.1)   -   

Chlordane  m g/l   0.08   2 (0.02)   -   
t-DDT  m g/l   0.1   1 (0.01)   -   
Endosulfan  m g/l   10   -   -   
Heptachlor/Epoxide  m g/l   0.05   0.9 (0.06)   -   
Lindane  m g/l   2   3 (0.4)   -   

2,4-D  m g/l   70   450   -   
2,4,5-T  m g/l   10   160   -   
2,4,5-TP  m g/l   4   850   -   
Paraquat  m g/l   

  
   
N 
A 
T 
U 
R 
A 
L 
  
  
L 
E 
V 
E 
L 
S 

10   1800   -   

   
L 
E  
V 
E 
L 
S 
  
A 
B 
O 
V 
E 
  

IV   

Note:-  
N Free from visible film, sheen, discoloration and deposits 
@ Maximum (unbracketed) and 24-hr average (bracketed) concentrations 
 
 
 On the other hand, the sewage and industrial effluents are being identified under 

Environmental Quality (Sewage and Industrial Effluents) Regulations 1979.  In Table 

1.8, the effluents discharge from a sewage treatment process to an inland water are 

identified by two types of water quality standards according to the location of discharge.  

Standard A criteria applies only to catchments areas located upstream of drinking water 

supply off-takes while the discharges into other inland water are categorized under 

Standard B.   

 
 
 
 
 
 



Table 1.8: Parameter limits of effluent from Environmental Quality (Sewage and 
Industrial Effluents) Regulations 1979 [Regulations 8(1), 8(2), 8(30]. 
 

Classes Parameters Units  
A  B  

Temperature  oC  40 40  

pH Value  - 6.0 - 9.0 5.5 - 9.0  
BOD5 at 20

oC  mg/l  20 50  
COD  mg/l  50 100  

Suspended Solids  mg/l  50 100  
Mercury  mg/l  0.005 0.05  
Cadium  mg/l  0.01 .02  

Chromium, 
Hexalent  

mg/l  0.05 0.05  

Arsenic  mg/l  0.05 0.10  
Cynide  mg/l  0.05 0.10  

Lead  mg/l  0.10 0.5  
Chromium, 
Trivalent  

mg/l  0.20 1.0  

Copper  mg/l  0.20 1.0  
Mangenese  mg/l  0.20 1.0  
Nickel mg/l  0.20 1.0 
Tin mg/l  0.20 1.0 
Zinc mg/l  1.0 1.0 
Boron mg/l  1.0 4.0 
Iron (Fe) mg/l  1.0 5.0 
Phenol mg/l  0.001 1.0 
Free Chlorine mg/l  1.0 0.5 
Sulphide mg/l  0.50 0.05 
Oil and Grease  mg/l  Not detactable  10.0  
  Note:-   
Standard A for discharge into inland waters in a catchment  
 or No objectionable odour 
Standard B for discharges into other inland waters 
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