
 
 
 
 
 

CHARACTERISATION OF BALLISTIC CARBON NANOTUBE 
 FIELD-EFFECT TRANSISTOR 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RAHMAT BIN SANUDIN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIVERSITI TEKNOLOGI MALAYSIA 
 
 
 
 
 



 
 
 
 
 

CHARACTERISATION OF BALLISTIC CARBON NANOTUBE 
 FIELD-EFFECT TRANSISTOR 

 
 
 
 
 
 
 
 
 

RAHMAT BIN SANUDIN 
 
 
 
 
 
 
 
 
 

A project report submitted in partial fulfilment of the 
requirements for the award of the degree of 

Master of Engineering (Electrical - Electronics & Telecommunications) 
 
 
 
 
 
 
 

Faculty of Electrical Engineering 
Universiti Teknologi Malaysia 

 
 
 
 
 
 
 

NOVEMBER 2005 
 

 



 iii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

To my beloved parents and wife 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iv

 
 
 
 
 

ACKNOWLEDGEMENT 
 
 
 
 

 I would like to thank my supervisor, Associate Professor Dr. Razali Ismail, 

for giving me the opportunity to work on this project for two semesters; his advice, 

comments, support, and contacts have been invaluable. These past two semesters 

have been a struggle for me at times; however, I have learned an enormous amount. 

Without a strong background, this field was difficult to enter and hard to find a 

focused project; however the discussions and advice on the topic with my supervisor 

were very helpful. Also, his comments on my thesis were especially enlightening.  

 

 I would like to thank research group at Purdue University, West Lafayette. 

Their response to my email regarding the device simulation in MATLAB is truly 

helpful. It was wonderful to have the perspective and knowledge of someone 

working on research within the nanotube field. I would not have been producing the 

simulation result as presented in this thesis without the help and support from these 

people.  

 

 And last but not at all least, I would like to thank my family especially my 

wife who had gotten me through everything, good and bad. I do not know how to 

thank her enough with her endless amount of thought provoking comments and 

confidence. Thank you also to all my colleagues, who are very supportive and others 

who have provided assistance at various occasions. 

 
 
 
 
 
 
 
 
 
 



 v

 
 
 
 

 
ABSTRACT 

 
 
 
 

 Scaling process of silicon transistor, particularly MOSFET, in the past 

decades had increased the performance of silicon transistor with reduction of its size. 

However, the scaling process will eventually reaches its limit and by that time a new 

group of devices are expected to replace MOSFET in digital applications. This group 

of devices, known as nanoelectronic devices, is expected to offer better device 

geometry in nanometre scale with superior performance. Carbon nanotube field-

effect transistor (CNFET), one of nanoelectronic devices, is a transistor with its 

channel is made of carbon nanotube and it is designed to provide the solution for 

scaling process and the possibility of coexistence with current silicon technology. 

The purpose of this project is to study the behaviour of CNFET and the main focus is 

on the simulation of its current-voltage (I-V) characteristic. The simulation study is 

carried out using MATLAB program and the result obtained is used to compare the 

device performance with MOSFET. Further analysis is also made to see the effect of 

oxide thickness and carbon nanotube diameter on the device performance, in 

particular the drain current. From the simulation study, it is concluded that the 

performance of CNFET has no significant advantage over MOSFET and its 

performance is also affected by both nanotube diameter and oxide thickness. 
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ABSTRAK 
 
 
 
 

 Proses penskalaan terhadap transistor silikon, terutamanya MOSFET, selama 

beberapa dekad yang lalu telah berjaya memperbaiki pencapaian peranti ini serta 

mampu mengurangkan saiz peranti ini. Namun, proses ini akan tiba di had 

keupayaannya dan pada masa itu beberapa peranti baru akan menggantikan 

MOSFET dalam aplikasi digital. Kumpulan peranti ini, yang dikenali sebagai peranti 

elektronik-nano, dijangka akan memberikan bentuk peranti yang lebih baik dalam 

skala nanometer dan juga pencapaian yang mengkagumkan. Transistor tiub-nano 

karbon (CNFET), salah satu daripada peranti elektronik-nano, merupakan transistor 

yang mempunyai saluran yang diperbuat daripada tiub-nano karbon dan ianya 

direkabentuk untuk memberikan penyelesaian terhadap masalah penskalaan dan 

berkemungkinan untuk diintegrasikan bersama teknologi silikon. Tujuan projek ini 

adalah untuk mengkaji sifat peranti ini dan fokus utama diberikan kepada simulasi 

terhadap sifat arus-voltan (I-V) peranti ini. Kajian simulasi ini dibuat menggunakan 

program MATLAB dan hasil keputusan yang dicapai akan digunakan untuk 

membandingkan pencapaian peranti ini dengan MOSFET. Analisis selanjutnya 

dilakukan untuk melihat kesan diameter tiub-nano karbon dan ketebalan oksida 

terhadap pencapaian peranti ini, atau lebih tepat lagi terhadap arus drain. Hasil 

keputusan yang dicapai daripada kajian simulasi mendapati bahawa pencapaian 

peranti ini tidak mempunyai kelebihan yang nyata berbanding MOSFET dan 

pencapaian peranti ini juga dipengaruhi oleh diameter tiub-nano karbon serta 

ketebalan oksida.  
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 

 As an introduction, this chapter presents the objectives and scopes of this 

project and background of this project. This chapter also gives outline of this thesis 

as well as summary of content for each chapter.  

 
 
 
 
1.1 Project Objectives  
 
 
 The main interest of this project is to study the characteristic one 

nanoelectronic device. Ballistic carbon nanotube field-effect transistor (CNFET) is 

chosen as one of nanoelectronic devices that have great potential to be the switching 

device for future.  The main objectives of this project are as follows:  

a) Understand the device characteristic, fundamental equation and mathematical 

model of CNFET. 

b) To attain and investigate the I-V characteristics of CNFET. 

 
 
The means through which the main objectives could be achieved are: 

a) To study the behaviour of carbon nanotube, the most important material that 

is used to build CNFET. 

b) Identify the most suitable structure of CNFET that can promote ballistic 

transport. 
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1.2 Scope of Project 
 
 
 The scope of this project is to carry out simulation study of carbon nanotube 

field-effect transistor using MATLAB program based on the mathematical model. 

The structure of MOSFET-like CNFET is used in this project because this structure 

has better performance than Schottky-barrier CNFET (SB-CNFET). The simulation 

result is then compared with MOSFET in order to measure the level of CNFET 

performance.  

 
 
 
 
1.3 Layout of Thesis 
 
 
 This thesis consists of six chapters beginning with this chapter. Chapter 1 

gives the objectives and scope of the project as well as the layout of thesis.  

 
 
 Chapter 2 presents an overview of nanoelectronic devices such as single 

electron transistors, resonant tunnelling diode and carbon nanotube field-effect 

transistor. This chapter also discussed the limiting factors that prevent improvement 

in MOSFET performance as its size is kept on shrinking.  

 
 
 Chapter 3 is dedicated to carbon nanotube, the material used as transistor 

channel in CNFET. This chapter discussed the background of carbon nanotube, its 

basic structure as well as its properties that make it very special material. Growth 

technique of this material is presented briefly to give an overview of how this 

material is produced.  

 
 
Chapter 4 deals with CNFET, the basis of research in this project. It starts with its 

structure, followed by simple explanation on its operation and finally the applications 

associated with this device.  
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 Chapter 5 presents the simulation result of this project. This result is then 

analysed through comparison with MOSFET and also factors that affects the 

performance of CNFET.  

 
 
 Finally, Chapter 6 gives conclusion for the whole project. This chapter also 

presents several recommendations for future work.  
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