MODELLING AND CONTROL OF AN INTELLIGENT ANTILOCK BRAKING SYSTEM

MOH. LUTFI WIJAYA

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical)

Faculty of Mechanical Engineering Universiti Teknologi Malaysia

DECEMBER 2005

To my beloved Mother, Father (Allahyarham), Wife and my cheerful son

ACKNOWLEDGEMENTS

I am greatly indebted to Allah SWT on his blessing for making this study successful.

I would like to express my thanks and gratitude to Assoc. Prof. Pakharuddin Mohd. Samin and Assoc. Prof. Dr. Musa Mailah, my supervisors, for their guidance, support and advice throughout my study. I am very thankful to Dr. Khisbullah Hudha for his assistance and ideas.

Thank you to my colleagues at the Faculty of Mechanical Engineering, UTM, Dr. Dody Prayitno for his advice, Pak Gigih Priyandoko for his control tutorial, Pak Sugeng Ariyono, Ahmad Nasirudin, Doni Setiawan, Ahmad Fitriadi etc. for providing an enjoyable study environment. Thanks also to my colleagues at the Faculty of Electrical Engineering, UTM, Pak Wahyu Kusuma for his mechatronics tutorial, Pak Ustadz Andi Ardiansyah, Pak Reza Firsandaya Malik, Rudi Harun etc. for sharing the electrical knowledge.

My sincere appreciation extends to my mother, father, sister and brother for their moral support.

Finally, special thank to my beloved wife for her encouragement, support and patience.

ABSTRAK

Tesis ini menerangkan satu pendekatan bijak untuk mengawal Sistem Brek Antikekunci (ABS) yang menggunakan kaedah Gradient Descent untuk penyesuaian secara terus bagi Fuzzy-Sliding Mode Controller (on-line FSMC). Ini merupakan suatu kaedah baru yang diaplikasikan dalam ABS dan ia merangkumi pembelajaran parameter untuk meminimumkan ralat jangkaan di antara input kehendak dengan output sebenar dalam loop kawalan suapbalik. Sistem fuzzy terjana melalui Adaptive Neuro-Fuzzy Inference System (ANFIS) dengan melatihkan data input-output Sliding Mode Control (SMC) yang berpandukan ABS. Penyelidikan ini juga memperihalkan satu pendekatan baru bagi pengawal boleh-sesuai untuk ABS di bawah skema Active Force Control (AFC) yang telah mempamerkan kebolehsesuaian dan kecekapan dalam mengawal sistem dinamik. Objektif utama strategi kawalan adalah untuk mengawal nilai optimum gelincir roda (optimum wheel slip value) sistem tersebut, termasuk ketidaklinearan, ketidakpastian parameter dan gangguan demi menghalang roda daripada menjadi terkunci sepenuhnya. Pengajian permodalan (modelling) dan simulasi telahpun dijalankan dengan bersungguhsungguh ke atas satu model brek kereta (suku) yang disimplifikasikan, pada halaju terus dengan mengambil kira skema kawalan gunaan (applied control scheme). Pengajian secara bandingan di antara berbagia kaedah kawalan terus juga dijalankan untuk menunjukkann perbezaan dari segi prestasi. Keputusan simulasi menunjukkan strategi on-line FSMC lebih baik dalam mengawal sistem ABS daripada strategi SMC. Keputusan simulasi juga menunjukkan bahwa strategi AFC memiliki ketahanan lasak walaupun ada kehadiran gangguan.

ABSTRACT

This thesis describes an intelligent approach to control an Antilock Braking System (ABS) employing a Gradient Descent Method for on-line adaptation of Fuzzy-Sliding Mode Controller (on-line FSMC). This is a new method that is applied into the ABS which includes the estimation of learning parameters to minimize the prediction error between the desired input and the actual output in the feedback control loop. The fuzzy system is developed using Adaptive Neuro-Fuzzy Inference System (ANFIS) by training the input-output data of the ABS based on Sliding Mode Control (SMC). This study also describes another new approach to robust control ABS employing Active Force Control (AFC) scheme. The main objective of the proposed control strategies is to control the optimum wheel slip value of the ABS that include nonlinearities, parametric uncertainties and disturbances in order to prevent the controlled wheel from becoming fully locked. A modelling and simulation study was rigorously carried-out on a simplified quarter car braking model in the straightforward speed (straight line braking) with the applied control schemes taken into account. A comparative study between a number of control strategies was also performed to demonstrate the differences in performance. The simulation result showed that the on-line FSMC strategy demonstrated its superiority in controlling the ABS than the SMC strategy. The simulation results showed also that the AFC scheme demonstrated its robustness even in the presence of disturbance.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	TITLE PAGE	i
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRAK	V
	ABSTRACT	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF SYMBOLS	xvi
	LIST OF APPENDICES	xviii
1	INTRODUCTION	1
	1.1 Introduction	1
	1.2 Objectives of Study	1
	1.3 Scope of Study	2
	1.4 Problem Statement	3
	1.5 Research Methodology	3
	1.6 Organization of the Thesis	5
2	LITERATURE REVIEW	6
	2.1 Introduction	6
	2.2 Antilock Braking System Overview	6
	2.3 Concept of ABS	8
	2.4 Review on ABS Control	12

	2.4.1 Sli	ding Mode Control	13
	2.4.2 Fu	zzy Logic Control	14
	2.4.3 Ne	eural Network Control	16
	2.4.4 Hy	ybrid Control	16
2.5	On-line	Adaptation in Intelligent ABS Control	
	System		17
2.6	Active F	orce Control (AFC) Scheme for ABS	
	System		18
2.7	Conclusi	on	18
MC	DELLIN	NG OF ANTILOCK BRAKING	
SY	STEM W	TTH NONLINEAR CONTROL	19
3.1	Introduc	tion	19
3.2	Modellir	ng Assumptions	19
3.3	Dynamic	e Model of A Brake System	21
	3.3.1 Lir	near Dynamics of the Wheel	21
	3.3.2 Ro	tational Dynamics of the Wheel	23
	3.3.3 Con	mbined Linear and Rotational	
	Dy	namics	24
3.4	Dynamic	cs Model of Hydraulic Actuator	
	System		26
3.5	Brake D	ynamic System in Term of Wheel Slip	27
3.6	Sliding N	Mode Control	30
	3.6.1 Ov	verview of Sliding Mode Controller	30
	3.0	6.1.1 Modelling Inaccuracies	30
	3.0	6.1.2 Sliding Surface	31
	3.6.2 Sli	ding Mode Control Formulation for	
	AI	35	32
	3.6.3 Si	mulation	34
	3.6.4 Re	esult and Discussion	37
	3.6.5 Co	onclusion	39

3

4

5

CO	NTROL	41
4.1	Introduction	41
4.2	Fuzzy-Sliding Mode Controller (FSMC)	41
	4.2.1 Overview of ANFIS	42
	4.2.2 Simulation and Training Data Using	
	ANFIS	46
	4.2.3 Results and Discussion	50
4.3	On-line Fuzzy Sliding Mode Control	56
	4.3.1 Parameter Estimation	57
	4.3.2 Prediction Error Based Estimation	
	Method	57
	4.3.3 The Gradient Descent Method	58
	4.3.3.1 Training Standard Fuzzy System	58
	4.3.3.2 Output Membership Function	
	Centers Update Law	59
	4.3.3.3 Input Membership Function	
	Centers Update Law	60
	4.3.3.4 Input Membership Function	
	Spreads Update Law	61
	4.3.4 Simulation of ABS based on On-line	62
	FSMC	
	4.3.5 Results and Discussion	66
4.4	Conclusion	70
AC	TIVE FORCE CONTROL	71
5.1	Introduction	71
5.2	Overview of AFC	71
5.3	Simulation	73
5.4	Disturbance Analysis	75
5.5	Results and Comparative Study	75
	5.5.1 Controller Without Disturbance	76
	5.5.2 Controller With Disturbance	81

	5.6	Conclusion	90
6	CON	CLUSION AND RECOMMENDATION	91
	6.1	Conclusion	91
	6.2	Recommendation	92
REFERENCES			93
Appendices A-C			97-99

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	Simulation parameters for ABS based on SMC	34
4.1	Stopping distance comparison between the FSMC and	
	the SMC	55
4.2	Learning parameter	66
4.3	Comparison of stopping distance between the SMC,	
	FSMC and on-line FSMC	69
5.1	Estimated mass	73
5.2	Comparison of stopping distance for a number of	
	controllers	80

LIST OF FIGURES

FIGURE NO. TITLE

PAGE

1.1	Flow-chart of the project implementation	4
2.1	Configuration of an ABS	9
2.2	Free body diagram of single-wheel	9
2.3	The µ-slip curve	10
2.4	The μ -slip curve varies on different road surface	12
3.1	The dynamics model for braking system	20
3.2	Typical friction curve	22
3.3	Block diagram of wheel linear and rotational	
	dynamics	25
3.4	Hydraulic brake system dynamics	26
3.5	The simple algorithm for the initial modeling of the	
	wheel slip control	28
3.6	The phase plane of sliding mode control	33
3.7	ABS based on the SMC	35
3.8	Block diagram of switching control decision	
	algorithm	35
3.9	Block diagram of hydraulic actuator	36
3.10	Block diagram of system dynamics	36
3.11	Wheel slip response of the ABS based on the SMC	
	with various initial speed	37
3.12	Vehicle and wheel speed response with various	
	initial speed	37
3.13	The stopping distance with various initial speed	39
4.1	An ANFIS structure with nine rules	43

4.2	FIS editor: sugeno FIS selection	44
4.3	FIS editor: Anfis selection	45
4.4	Anfis editor display	45
4.5	A Schematic diagram of ANFIS based on the SMC	46
4.6	Simulation block diagram of ANFIS based on the	
	SMC	47
4.7	Load data	47
4.8	Result of loading data	48
4.9	Generate FIS	48
4.10	Train FIS	49
4.11	Test FIS	50
4.12	Fuzzy rules generating by ANFIS	50
4.13	Membership function of FIS1	51
4.14	Membership function of FIS2	51
4.15	Simulation ABS based on the FSMC	51
4.16	Wheel slip response with various initial speed	52
4.17	Vehicle and wheel speed response with various	
	initial speed	53
4.18	Stopping distance with various initial speed	54
4.19	Wheel slip response of the SMC and FSMC	55
4.20	Stopping distance of the SMC and FSMC	56
4.21	Architecture of the ABS based on the on-line	
	FSMC	63
4.22	Simulink diagram of ABS based on-line FSMC	63
4.23	Block diagram of output membership function	
	update law	64
4.24	Block diagram of FIS1	64
4.25	Output membership function centers (b_i) updated	65
4.26	Input membership functions centers c_i^i and spreads	
	σ_{j}^{i} updated	65
4.05		
4.27	Input membership function centers update (-1)	66
4.28	Input membership function spreads update	67
4.29	Output membership function centers update	67

 on-line FSMC 4.31 The stopping distance of the SMC compared with the on-line FSMC 5.1 The schematic diagram of the AFC scheme applied to the APS 	68 69 72
the on-line FSMC5.1 The schematic diagram of the AFC scheme applied	
5.1 The schematic diagram of the AFC scheme applied	
	72
to the ADS	72
to the ABS	
5.2 Simulink diagram of the SMC-AFC	74
5.3 Simulink diagram of the FSMC-AFC	74
5.4 Simulink diagram of the on-line FSMC-AFC	75
5.5 Wheel slip response comparison between the SMC	
and the SMC-AFC with various initial speed	76
5.6 Stopping distance comparison between the SMC	
and the SMC-AFC with various initial speed	77
5.7 Wheel slip response comparison between the the	
FSMC and FSMC-AFC	78
5.8 Stopping distance comparison between the FSMC	
and the FSMC-AFC	78
5.9 Wheel slip comparison between the on-line FSMC	
and the on-line FSMC-AFC with various initial	
speed	79
5.10 Stopping distance comparison between the on-line	
FSMC and the on-line FSMC-AFC with various	
initial speed	80
5.11 Wheel slip response of the SMC with disturbance	81
5.12 Vehicle and wheel speed response of the SMC with	
disturbance	82
5.13 Wheel slip response of the SMC-AFC with	
disturbance	83
5.14 Vehicle and wheel speed response of the SMC-	
AFC with disturbance	83
5.15 Wheel slip response of the FSMC with disturbance	84
5.16 Vehicle and wheel speed response of the FSMC	
with disturbance	85

5.17	Wheel slip response of the FSMC-AFC with	
	disturbance	86
5.18	Vehicle and wheel speed response of the FSMC-	
	AFC with disturbance	86
5.19	Wheel slip response of the on-line FSMC with	
	disturbance	87
5.20	Vehicle and wheel speed response of the on-line	
	FSMC with disturbance	88
5.21	Wheel slip response of the on-line FSMC-AFC	
	with disturbance	89
5.22	Vehicle and wheel speed response of the on-line	
	FSMC-AFC with disturbance	89

LIST OF SYMBOLS

-	Effective orifice area of the build valve
-	Effective orifice area of the dump valve
-	Frontal area of the vehicle
-	Output membership function centers
-	Aerodynamic drag coefficient
-	Input membership functions centers
-	Prediction error that denoted
-	Aerodynamic drag force
-	Tractive force
-	Wheel viscous friction force
-	Gravitational constant
-	Center of gravity height
-	Estimated mass
-	Moment of inertia of wheel
-	Gain between $T_{\rm b}$ and $P_{\rm i}$
-	Wheel base
-	Mass of quarter vehicle
-	Mass of vehicle
-	Normal load
-	Number of wheels
-	Hydraulic pressure at the valves
-	Constant reservoir pressure
-	Constant pump pressure
-	Estimated disturbance torque
-	Wheel radius
-	Sliding surface

 T_{b} Brake torque - $T_{\rm di}$ Engine torque u(t)Control input -Vehicle speed V-J& Vehicle acceleration æ Wheel angular acceleration **x**(t) State vector ρ Air density - λ_d Desired slip -Friction coefficient μ -Maximum friction between tire and road μH - $\sigma^{\rm i}_{\rm j}$ Input membership functions spread -

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	μ - slip Curve Data for Wet Pavement	97
В	μ - slip Curve Data for Dry Pavement	98
С	Publications	99

CHAPTER 1

INTRODUCTION

1.1 Introduction

An Antilock Brake System (ABS) is a closed loop control system that modulates the brake torque that is applied to the wheel in order to prevent the controlled wheel from becoming fully locked.

ABS is among the most important safety systems in a vehicle. In automatic highway system, automatic brake actuation is a very important part of the overall vehicle control system. It prevents the wheel lock-up under critical braking conditions, such as those encountered with wet or slippery road surfaces and driver panic reaction (Bosch, 1995). By preventing the wheel lock-up, ABS ensures that the vehicle remains responsive to steering wheel inputs. Reduced stopping distance on account of ABS is more evident on wet or slippery road surfaces (Garrick *et al.*, 1998).

1.2 Objectives of Study

The objectives of this study can be stated as follows:

i. To study an Antilock Brake System (ABS) including the non-linear characteristics and the time-varying nature of the system components

- ii. To propose a new method of the intelligent ABS based on on-line Fuzzy-Sliding Mode Control (on-line FSMC) approach
- iii. To introduce a new robust control employing Active Force Controller (AFC) which implemented to the ABS system
- iv. To study the performance of the proposed controller

1.3 Scope of Study

The scopes of this study can be stated as follows,

- Modelling of brake system dynamics
 The mathematical model of the system is developed from a quarter car model
 by considering the straight line braking with zero steering wheel input.
- Modelling of hydraulic actuator system
 A nonlinear actuator employing hydraulic valve control was used as the controller element in the ABS system
- iii. Development of a nonlinear approach for controlling the ABS system based on Sliding Mode Controller (SMC)
- iv. Generation of fuzzy rules based on SMC-ABS using Adaptive Neuro-Fuzzy Inference System (ANFIS)
- v. Development of an intelligent control approach for the ABS system based on on-line Fuzzy-Sliding Mode Control (on-line FSMC) using gradient descent method
- vi. Development of a robust control approach for the ABS system based AFC scheme (SMC-AFC, FSMC-AFC, and Online FSMC-AFC)
- vii. Comparative study and performance analysis of the proposed control strategy

1.4 Problem Statement

ABS is one of the automotive industry's most recent attempts in enhancing passenger safety specifically related to accident avoidance. However, designing an ABS is a challenging task considering the fact that it is highly non-linear and a time varying system. The interaction between the tires and the road surface, the dynamics of the whole vehicle and the characteristics of key components in ABS (such as valves, brake chambers and brake pads) are all non-linear and time varying. Although a linear model can be derived through simplification, it is less accurate thus impedes the use of some advanced control strategy.

Due to the nonlinearities of the brake actuation system, an intelligent and robust braking control system with a faster response is required to handle even sudden, extreme variations in driving conditions with little loss of traction and steering ability. The vehicle could stop optimally regardless of spilt surface condition while directional stability and control is maintained. Many different robust and intelligent controls have been developed and research on improved control methods is continuing. Algorithms such as sliding mode control, fuzzy logic control, adaptive control, neural network control, fuzzy-sliding mode, fuzzy-neural, etc. have been successfully presented. In this study, a number of advanced control methods applied to ABS is proposed and evaluated.

1.5 Research Methodology

The modelling and control of an Antilock Braking System is mainly done through a simulation. The Simulation study is performed using MATLAB /Simulink version 6.5. Prior to simulation, the vehicle brake dynamic system, hydraulic actuator and the controller methods were first modelled. The next step is the simulation for wheel slip control of ABS considering a straight line braking which consist of slip trajectory. The Sliding Mode Control (SMC) approach was first implemented as the main control strategy of the ABS system. Later, an intelligent control method employing an on-line learning using gradient descent method was then investigated in the ABS based on SMC (SMC-ABS) system. This intelligent control requires an Adaptive Neuro-Fuzzy Inference System (ANFIS) tool to execute an off-line training procedure that produce the initial parameter and obtains the fuzzy rule. The Active Force Control (AFC) is also introduced and implemented into the ABS system at a later stage. The results were analyzed for each performance. Finally, a comparative study of the controllers was conducted. The methodology of executing this project is illustrated using a flow-chart diagram as shown in Figure 1.1.

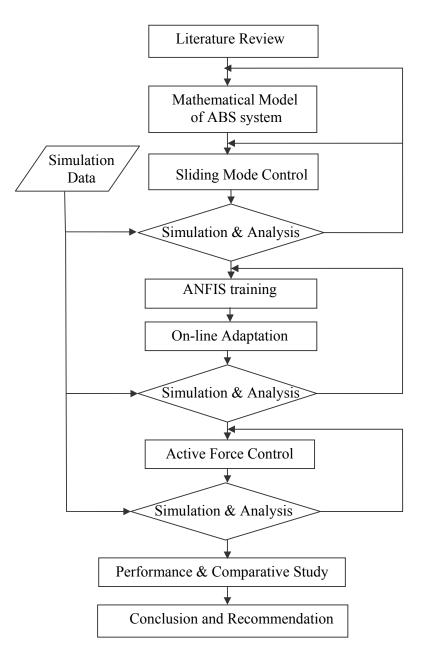


Figure 1.1 Flow-chart of the project implementation

1.6 Organization of the Thesis

This thesis is organized into five chapters. Chapter 1 presents an overview of the project, objective and scope of the study and the methodology of carrying out the project.

Chapter 2 provides an overview of an Antilock Braking System (the history and its function), followed by a theoretical background of ABS control system. It is also described the concept of ABS and some control strategies which have been implemented in the ABS system. Potential of the proposed controller is discussed in this chapter.

Chapter 3 discusses the mathematical model of the vehicle braking system and hydraulic actuator system. The sliding mode control approach is modeled and simulated for ABS using MATLAB/Simulink. The parameters used to run the simulation are shown in this chapter.

Chapter 4 deals with an intelligent control approach proposed for ABS. The discussion starts with the training of ANFIS in sliding mode ABS system. The intelligent control employing online learning using gradient descent method is then simulated and evaluated. This chapter also introduces the implementation of Active Force Controller on the ABS system. The performance of the proposed controller is evaluated based on the stopping distance achieved by each type of ABS control strategy.

Chapter 5 gives the overall conclusion on the study that has been done and the recommendations for future study are suggested.

REFERENCES

- Altrock, C. (1994). Fuzzy Logic Technologies in Automotive Engineering. Wescon 94, Idea/Microelectronics Conference Record. September 27-29.
- Bakker, E.T., Pacejka, H.B, Linder, L. (1982). A New Tire Model with an Application in Vehicle Dynamic Studies. *SAE Technical Paper No.* 870421.
- Balakrishnan, P. (1995). *A Fuzzy Logic Control for Anti-lock Braking System*. The State University of New York at Buffalo: Master Thesis.
- Bosch, R. (1995). Automotive Brake Systems. Cambridge, MA: Robert Bentley
- Chin, Y.K. (1992). Sliding-mode ABS Wheel Slip Control. *In: Proceedings of 1992* ACC. June 24–26. Chicago, IL: ACC, 1–6.
- Davis, L.I., Puskorius, G.V., Yuan, F. and Feldkamp, L.A. (1992). Neural Network Modelling and Control of Antilock Braking System. *Proceeding of the Intelligent Vehicle Symposium*. Dearborn, Michigan: IEEE, 179 - 184.
- Drakunov, S., Ozguner, U., Dix, P. and Ashrafi, B. (1994). ABS Control Using Optimum Search Via Sliding Modes. *Proc. of the 33rd Conference on Decision and Control.* December. Lake Buena Vista, FL: IEEE, 79-85.
- Garrick F., Mark Flick, W. and Riley G. (1998). A Comprehensive Light Vehicle Antilock Brake System Test Track Performance Evaluation. *Society of Automotive Engineers*. Warrendale PA.
- Gigih, P. and Mailah, M. (2005) Controller Design for an Active Suspension of a Quarter Car Model Using Fuzzy Logic Active Force Control. Proc. of the 2nd International Conference on Mechatronics. May 10-12. Kuala Lumpur: 693-700.
- Gillespie, T.D (1992). *Fundamentals of Vehicle Dynamics*. Warrendale: Society of Automotive Engineers, Inc.
- Hattwig, P. (1993). Synthesis of ABS Hydraulic Systems. *Technical Report 930509, Society of Automotive Engineers*. Warrendale PA.

- Hewitt, J.R., Burdess, J.S. (1981). Fast Dynamic Decoupled Control for Robotics Using Active Force Control. *Mechanism and Machine Theory*. 16(5): 535 542.
- Hudha, K., Jamaluddin, H., Pakharuddin, M.S., and Roslan, A.R. (2003). Active Roll Control Suspension System (ARCS) Using Active Force Control Strategy on a New Modified Half Car Model. *Society of Automotive Engineers*. Warrendale PA.
- Hussein, S.B., Jamaluddin, H. and Mailah, M. (2000). A hybrid intelligent active force controller for robot arms using evolutionary neural networks. *IEEE International Conference on Intelligent Systems and Tecnologies TENCON*. September 24-27. Kuala Lumpur: IEEE.
- Itkis, U. (1976). *Control Variable Structure*. New York: Halsted Press-john Wiley & Sons, Inc.
- Jang, J.-S.R. (1993). ANFIS: Adaptive Network-based Fuzzy Inference Systems. *IEEE Transaction on Systems, Man and Cybernetics*, 23(3), 665-685.
- Jiang, F. (2000). *A Novel Approach to a Class of Antilock Brake Problems*. Cleveland State University: PhD Thesis.
- Kachroo P. (1994). *Vehicle Traction Control and its Application*. The University of California at Berkeley: Ph.D Thesis.
- Koivo, H. (2000) ANFIS: Adaptive Neuro- Fuzzy Inference Systems. New York: Wiley.
- Kokes, G and Singth, T. (1999). Adapative Fuzzy Logic Control of An Antilock
 Braking System. *Proceeding of the 1999 International Conference on Control Applications*. August 22-27. Kohala Coast-Island Hawai'i: IEEE, 646 651.
- Layne, J.R. (1993). Fuzzy Learning Control for Antiskid Braking System. *IEEE Transaction on Control Systems*. June: IEEE, 122-129.
- Lin, C.M. and Hsu, C.F. (2003). Self-learning Fuzzy Sliding-Mode Control for Antilock Braking Systems. *IEEE Transactions on Control Systems Technology*. 11(2): 273 - 278.
- Lin, W.C. (1993). Design and Analysis of an Antilock Brake Control System with Electric Brake Actuator. *International Journal of Vehicle Design*, 14(1): 13-43.
- Madau, D. P., Yuan, F., Davis, L. I. and Feldkamp, L. A. (1993). Fuzzy Logic Antilock Braking System for a Limited Range Coefficient of Friction Surface. *IEEE Transaction*. Dearborn, Michigan: IEEE, 883 – 888.

- Maier, M. and Muller, K. (1995). ABS5.3: The New and Compact ABS 5 Unit for Passenger Cars. *Technical Report 930757, Society of Automotive Engineers*. Warrendale PA.
- Mailah, M. (1999). A Simulation Study on the Intelligent Active Force Control of Robot Arm Using Neural Network. *Jurnal Teknologi UTM*, 30(D): 55 – 78.
- Maisch, W., Mergenthaler W.D., and Sigi, A. (1993). ABS5 and ASR5: The New ABS/ASR Family to Optimize Directional Stability and Traction. *Technical Report 930505, Society of Automotive Engineers*. Warrendale PA.
- Mauer, G.F. (1995). A Fuzzy Logic Controller for an ABS Braking System. *IEEE Transaction on Fuzzy System.* 381 388.
- Merrit, H.E. (1967). Hydraulic Control System. New York: Wiley.
- Negnevitsky, M. (2005). Artificial Intelligence: A Guide to Intelligent Systems. England: Addison Wesley.
- Omar, Z. (2002). *Modelling and Simulation of an Active Suspension System Using Active Force Control Strategy*. Universiti Teknologi Malaysia: Master Thesis.
- Passino, K.M. and Yurkovich, S. (1998). *Fuzzy Control*. California: Addison Wesley Longman, Inc.
- Patil, C.B. (2003). Anti-lock Brake System Re-design and Control Prototyping Using a One-fifth Scale Vehicle Experimental Test-bed. The University of Texas at Austin: Master Thesis.
- Petersen, I. (2003). Wheel Slip Control in ABS Brakes Using Gain Scheduled Optimal Control with Constraints. Norwegian University of Science and Technology: Ph.D. Thesis.
- Plochl, M. and Lugner, P. (1996). Braking Behavior of a 4-wheel-steered Automobile with Antilock Braking System. *Vehicle System Dynamics Supplement.* 25: 547-558.
- Slotine, J.-J.E. and Li, W. (1991). *Applied Nonlinear Control*. Englewood Cliffs, NJ: Prentice-Hall.
- Spurgeon, S.K (1991).Choice of Discontinuous Control Component for Robust. Sliding Mode Performance. *International Journal of Control*. 53(1): 163 - 179.
- Tan, H.S., Tomizuka, M. (1990). Discrete-time Controller Design for Robust Vehicle Traction. In IEEE control systems magazine. April. IEEE, 107–13.

- Unsal, C. and Kachroo, P. (1997). Analytic non Linear Observer-based Design for Antilock Braking System. *Proceeding of SPIE –the International Society to Optical Engineering*. IEEE, 22-33.
- Utkin, V.I. (1977). Variable Structure System with Sliding Modes. *IEEE Transaction* on Automatic Control. 22: 212 222.
- Wang, W.Y., Chen, G.M. and Tao, C.W. (2003a). Stable Anti-Lock Braking System Using Output-Feedback Direct Adaptive Fuzzy Neural Control. *IEEE*. *Transaction on System Man and Cybernetics*. IEEE, 3675 – 3680.
- Wang, W.Y., Hsu, K.C., Lee, T.T. and Chen, G. M (2003b). Robust Sliding Mode-Like Fuzzy Control for Anti-Lock Braking Systems with Uncertainties and Disturbances. *Proceeding of the Second International Conference on Machine Learning and Cybernetics*. November 2-5. Xi'an: IEEE: 633 – 638.
- Wellstead, P. E. and Pettit, N. (1997). Analysis and Redesign of an Antilock Brake System Controller. *In: IEE Proceedings of Control Theory Application*. IEE, 413 - 426.
- Will, A.B., Zak, S.H. (2000). Antilock Brake System Modelling and Fuzzy Control. *International Journal of Vehicle Design*. 24(1): 1-18.
- Wu, M.C., Shih, M.C. (2003). Simulated and Experimental Study of Hydraulic Antilock Braking System Sliding-mode PWM Control. *Journal of Mechatronics*. 13 (4).
- Yuan, F., Puskorius, G.V., Feldkamp, L.A. and Davis, L.I., (1995) Neural Network Control of a Four-Wheel ABS Model. *Proceeding of the 37th Midwest Symposium on Circuits and Systems*. Dearborn, Michigan: IEEE, 1503 - 1506.