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ABSTRACT 

 Dialysis membranes are fast gaining importance nowadays in membrane 
separation industries, mainly used in medical industry to remove uremic toxic, excess 
water and undesirable protein out of the human blood. Unfortunately, the current 
trend of dialysis technology in Malaysia still depends on foreign countries and the 
development of dialysis industries are far behind the world latest era. Therefore, the 
main objective of this study is to develop flat sheet membranes, suitable for dialysis 
of biomolecules such as urea and determine the optimum formulation for the dialysis 
membrane produced. The performance of the cellulose acetate membranes produced 
using various dope solution formulations were studied by varying the acetic acid 
(Acc)/polyethylene glycol (PEG) ratio and the amount of water as well as the 
different molecular weight PEG used. Three different additives were used namely 
PEG 200, PEG 400 and PEG 600 in the membrane formulations. The membranes 
were tested using a single layer continuous dialysis system. The molecular weight cut 
off clearance efficiency range, the permeability and sieving properties of the dialysis 
membranes were determined. The response surface method, central composite design 
was applied to construct the experimental trials for this study. Cross section image of 
each membrane produced were obtained by scanning electron microscopy (SEM) to 
explain the results obtained. The results revealed that the ratio of acetic acid/PEG is 
the significant factor that affects urea clearance performance. The amount of the 
distilled water was an insignificant factor to urea clearance performance, but its 
presence is vital in the membrane formulation. Dialysis membranes consist of acetic 
acid/PEG ratio of 16.5 gives the best urea clearance performance of 40.37 %. Among 
the additives used, PEG 200 shows the highest clearance rate of urea. When a triple 
layer continuous dialysis system was used to test the membranes and it was found 
that the performance was increase by 25 – 50 %. Dialysis membranes consisting of 
lower molecular additives gives higher molecular clearance cut off efficiency. Final 
stage experiments using human blood revealed that dialysis membranes produced 
were comparable to the commercialized membranes with urea clearance of 60 – 70 
%.
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ABSTRAK 

Dewasa ini, membran dialisis semakin penting dalam industri membran, 
terutamanya dalam industri perubatan untuk penyinggiran toksik urik, air berlebihan 
dan protin yang tidak diperlukan daripada darah manusia. Malangnya, teknologi 
dialisis dalam Malaysia masih bergantung kepada luar negara dan pembangunan 
industri dialisis dalam negara adalah jauh di belakang era dunia kini. Oleh itu, 
objektif utama dalam penyelidikan ini adalah untuk menghasilkan membran 
kepingan nipis yang sesuai untuk proses dialysis bagi biomolekul seperti urea dan 
formulasi optimum membran dialisis ditentukan.  Membran selulosa asetat dengan 
formulasi berbeza dihasilkan dan penampilan dikaji dari segi perubahan nisbah asid 
asetik/PEG dan kandungan air serta additif yang berbeza digunakan.Tiga additif yang 
berbeza, PEG 200, PEG 400 dan PEG 600 digunakan dalam formulasi membran. 
Membran yang dihasilkan dikaji dengan menggunakan sistem dialisis berterusan satu 
lapisan. Julat molecular weight cut off clearance efficiency, ciri-ciri kebolehtelapan 
serta keupayaan permisahan bagi membran bagi membran dialisis yang dihasilkan 
juga ditentukan. Metodologi permukaan respons, rekaan pusat komposit digunakan 
untuk membentuk eksperimen bagi penyelidikan ini. Imej rajah silangan bagi setiap 
membran yang dihasilkan diambil dengan menggunakan mikroskop imbasan electron 
bagi menjelaskan keputusan diperolehii. Keputusan menunjukkan bahawa kuantiti air 
adalah tidak penting bagi penyingkiran urea tetapi kewujudannya adalah penting 
dalam membran formulasi. Nisbah asid asetik/PEG merupakan faktor utama yang 
mempengaruhi keputusan penyingkiran urea. Membran dialisis dengan nisbah asid 
asetik/PEG 16.5 menunjukkan perfomasi yang terbagus dengan 40.37 % kadar 
penyingkiran urea. Antara additif digunakan, PEG 200 menunjukkan kebolehannya 
dengan kadar penyingkiran urea yang tertinggi. Sistem dialisis berterusan tiga lapisan 
membran digunakan untuk kajian penampilan membran dihasilkan dan didapati 
keputusan penyingkiran urea telah naik sebanyak 25 – 50 %. Membran dialisis 
dengan additif bermolekul rendah akan menghasilkan molecular cut off clearance 
efficiency yang lebih tinggi. Eksperimen pada tahap terakhir yang menggunakan 
darah manusia menunjukkan bahawa membran dialisis yang dihasilkan dalam 
penyelidikan ini adalah setanding dengan membran dialisis komersial yang berupaya 
menyinkirkan 60 – 70 % urea. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Dialysis first was reported in 1861 by Graham, who used parchment paper as 

a membrane, based on the observations that animal membranes were less permeable 

to colloids than to sugar or salt. Over the next 100 years, dialysis became widely 

used as a laboratory technique for the purification of small quantities of solutes. Yet, 

it was realized that there is no large-scale industrial applications for dialysis process. 

In the last 20 years, development of dialysis for the treatment of kidney failure has 

brought about a resurgence of interest in dialysis for a wide range of separations 

(Klein, 1987).  

Clinical evidence has shown that in the absence of normal renal function, the 

artificial kidney is a good substitute with regard to electrolyte, solute and water 

balance. In fact, approximately 28,000 to 50,000 people died each year due to kidney 

disease of one kind or another in the United States and over 300,000 people 

worldwide rely on the artificial kidney for chronic support (King, 1971). Of these, 

perhaps 6000 to 10,000 would be suited either to an artificial kidney or to 

transplantation as a form of long-term support. In addition, some three million 

residents of the United States are thought to have undiagnosed kidney diseases. In 

Germany, the total number of dialysis patients is increasing by about 8 % per year 
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and the latest figure of 48,000 patients, being reported. From year 1993 to 1995, the 

number of patient receiving renal replacement therapy (RRT) including hemodialysis 

and transplantation increased about 20 % in United Kingdom. Moreover, the total 

number of chronic dialysis patients in Spain is up to 17,800, representing around 454 

per million population (pmp) (Locatelli et al., 2000). Latest statistic shows that in 

Malaysia, intake of new dialysis patients increased from 43 in 1980 to 2223 in 2002 

and prevalent dialysis patients increased from 59 in 1980 to almost 10,000 at year-

end 2003 (Lim and Lim, 2003).  Furthermore, over 1000 Malaysian with kidney 

problems died in year 2001 (Lim, 2001) and these figure are expected to soar. 

From the economy prospect, membranes have made many inroads into the 

market, especially in the 1970s and 80s (Edward, 2003). Today, there are many 

refinements and more drastic growth.  The total world sales of dialysis membrane in 

1994 have been estimated at US$ 1400 million, accounting for about 40 % of the 

total predicted membranes of US$ 4000 million (Setford, 1995). Till year 2000, a 

treatment of hemodialysis cost around US$ 140, which promised about US$ 20,000 

per year of profit margin per patient (Locatelli et al., 2000). The world demand of 

dialysis treatment increased rapidly and entailed its fast gaining importance due to 

the increase in the number of patients having kidney failure. Therefore, dialysis 

membrane industries are a far more profitable and encouraging field to be 

emphasized.  

The early hemodialysis used membranes are highly permeable to small 

solutes up to 200 Dalton. Clearance of small solutes is governed by membrane 

permeability and diffusion resistances in the blood and the dialysate phases. In the 

early 1970s, most of the researches on dialysis membranes were focused on 

producing membranes with better solute diffusion and water removal properties.  

Interests in removal of relatively small solutes from blood by convective transport 

have become more intensive. Lack of permeability of the early membranes for some 

middle molecular weight solutes in the range of vitamin B12, which in the range of 

1355 Dalton, was held responsible for the appearance of uremic polyneuritis 

(Shettigar, 1989).  
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 Research has been done by Colton et al. (1975) to study the solute rejection 

characteristics of a hollow-fiber blood ultrafilter. The following year, Green et al.

(1976) measured the solute rejection for two flat sheet hemodialysis membranes, 

which provided data that guided the design of hemofiltration devices.  Mechanical 

properties of dialysis membranes have also being reported by Klein and co-workers 

(1976). Further investigation on the diffusive and hydraulic permeability of 

commercially available dialysis membrane was carried out by Klein et al. (1977) to 

measure the mass transport properties and to compare amongst manufacturing 

variability of those dialysis membrane. Noda et al. (1979) have shown the feasibility 

of fractionating solutes, the permeabilities of which are relatively close, by using a 

highly selective multi-stage dialysis process.  

Nevertheless, since the late 1980s to recent times, the emphasis had been on 

adsorption, biocompatibility, large molecule flux and convective transport (Koda et 

al., 2001). Biocompatibility describes materials, which cause only minor biochemical 

and biological effects. Research had been carried out to compare the biocompatibility 

of market available dialysis membrane (Boure and Vanhoulder, 2004). Complement 

activation occurs almost universally during clinical hemodialysis with the 

consequential generation of several complement activation products (Hakim et al.,

1984). Products such as anaphylatoxin C3a, anaphylatoxin C5a and beta-2-

microglobulin increases in chronic renal failure and need to be removed during 

hemodialysis process. Amongst the activation products generated, the plasma levels 

of C3a during hemodialysis commonly are used as an index of dialysis membrane 

biocompatibility (Deppisch et al., 1990). Adsorption refers to a characteristic of 

synthetic membranes, which contributes to the removal of noxious compounds such 

as interleukin-1, tumour necrosis factor, peptides, interleukin-6 and β2-microglobulin 

(β2-M) (Bouman et al., 1998). However, adsorption capacity will rapidly be saturated 

due to the restricted surface area of dialysers (Boure and Vanhoulder, 2004). This 

process will lower the diffusive permeability and need to be reduced in order to 

enhance dialysis adequacy of the patients. 
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Several investigators dealt with the problem of inadequate clearance of β2 – 

microglobulin, 11,800 Dalton molecular weight, a middle large molecule that need to 

be removed that is associated with dialysis-amyloidosis to patient. Lornoy et al.

(2000) reported that treatment with on-line hemodialfiltration with highly permeable 

and biocompatible membrane has proven to be an efficient, well-tolerated and safe 

technique that leads to a low prevalence of dialysis amyloidosis. The influence of the 

type of dialysis membrane has also been reported (Strihou et al., 1991; Chanard et 

al., 1989). Gerhard and Karl (2002) also reported the effect of ultra pure dialysate 

and the type dialyzer membrane to the beta-2-microglobulin amlyloidosis. It was 

found that synthetic dialyzer membranes were able to reduce the complications of β2

– microglobulin. 

Dialysis membranes are often classified as either high flux or low flux based on their 

ultrafiltration coefficient (Cheung and Leypoldt, 1997). Considerable struggle has 

been made to improve the clearance of middle large molecules greater than 500 

Dalton. This led to development of high-flux and super-flux synthetic membrane. 

High flux membranes have larger pores and tend to clear middle molecules more 

efficiently, compared with low flux membranes (Leypoldt et al., 1997). The middle 

large molecules concentration significantly decreases during dialysis with super-flux 

membranes. In contrast, the only controlled mortality study, the hemodialysis 

(HEMO) study, failed to document the superiority of high-flux compared with low-

flux membranes (Eknoyan et al., 2002). Therefore, although there might be a trend 

for superiority of high-flux membranes regarding mortality, this finding must be 

confirmed by further studies, before definite conclusions can be drawn (Boure and 

Vanhoulder, 2004). 

1.2 Background of the Problem 

The dialysis membrane is no longer seen as a simple semi-permeable barrier 

for solutes and water, but is considered an important interface with the patients blood 

and subsequently, as an outcome predictor (Koda et al., 2001). There were many 
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attempts to improve the efficiency of dialysis process, not only to the dialysis system 

but also to the properties of the dialysis membrane itself.  Recently, Hayama et al.

(2004) investigated on the biocompatibility of polysulfone dialysis membranes 

containing polyvinylpyrrolidone and found that its biocompatibility is very much 

dependent on the amount of PVP and also its surface structure. Sang et al. (2005) 

modified cellulose acetate hollow fiber membranes with phospholipids polymer to 

improve its biocompatibility. 

Several prospective trials have provided some evidence that membrane 

choice is important in recovery of acute renal failure. Research done by several 

investigators revealed that biocompatible dialysis membranes yielded better 

efficiency of hemodialysis process and showed higher patients survival rate as 

compared to cellulosic cuprophane dialysis membranes (Schiftfl et al., 1994; Parker 

et al., 1996; Kuchle et al., 1996; Himmerlfarb and Hakim, 1997; Hartmann et al.,

1997 and Neveu et al., 1996).   

 However, the results presented in several other reports are completely 

different from those reported by the defenders of biocompatible membranes 

mentioned previously. The non-biocompatible dialysis membranes (cellulosic 

cuprophane) and the so-called biocompatible dialysis membranes (polysulfone, PAN 

and PMMA) give similar patients mortality rate as well as the survival rate. The rate 

and degree of recovery of renal function were similar in all groups and the membrane 

type had no impact on the outcome findings (Hakim et al., 1994; Kurtal et al., 1994; 

Cosentino et al., 1994; Liano et al., 1996 and Valeri et al., 1994). The brief overview 

of these studies mentioned will be discussed more detail during literature review in 

the next chapter. 

There is no doubt that much research has been carried out in improving the 

chronic dialysis process and also in studying the relationships between technologies 

and the patients’ biological and clinical profile. Much work has also been focused in 

highlighting the different results achieved with different type of dialysis membrane 
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and methodologies. The conclusions reached by the various studies are far from 

unanimous and were often markedly discordant (Stefoni et al., 2000). However, most 

of the studies mentioned above had focused solely on well-developed dialysis 

membranes and rarely pin point the self-produced dialysis membranes. Further 

studies are urgently needed to help define the role of the dialysis membranes 

(biocompatible or incompatible) as well as defining optimal intensity of dialysis in 

chronic renal failure (Himmelfarb et al., 1997). Investigation regarding the making 

of dialysis membranes is essential as it is the heart of the any dialysis process or 

hemodialysis devices. Factors such as biocompatibility, flux rate, solute separation 

properties that effecting renal failure recovery can be taken into account when 

fabrication dialysis membranes.

Indeed, numerous parameters can be investigated in order to improve the 

efficiency of membrane separation process such as membrane composition, 

membrane properties and the membrane fabrication process. Nevertheless, most of 

these investigations mentioned involved reverse osmosis, ultrafiltration and gas 

membranes. The effect of additives and non-solvent on the performance of the 

dialysis membrane had not been systematically investigated. Consequently, the 

investigations on the effect of dialysis membrane composition to the membrane 

performance are urgently important.

In 1986, Henne and Dunweg proposed a single or multilayer dialysis 

membrane made of regenerated cuprammonium cellulose. The new membrane was 

prepared by the known cupraamonium process but with the addition of a finely 

ground CuO with a maximum particle size of 20 microns to the standard 

cupraamonium solution. The membrane produced provides significantly higher pore 

volume content. Diamantoglou et al. (1992, 1995) invented a dialysis membrane 

made of polysaccharide ethers, which improve the biocompatibility of the 

membranes. The parameters of biocompatibility in Diamantoglou case are blood 

coagulation, leucopenia and compliment activation. Dunweg et al (1995) reported 

dialysis membrane in the form of hollow fiber with a continuous internal cavity made 

of cellulose acetate or cellulose acetate derivative. The dialysis membrane proposed 
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by Dunweg consist of an organic carboxylic as the solvent with at least one 

modifying agent added. The invention provided a membrane that exhibited low 

albumin loss over a wide range of ultrafiltration rates while exhibit high permeability 

to beta-2-microglobulin in all ranges. The membrane produced was claimed to 

achieve an ultrafiltration rate of 2 to 200 ml/m2 h mm Hg and a maximum sieving 

coefficient of 0.1 for albumin with a molecular weight of 68,000. 

Besides the work of Henne and Dunweg (1986), Diamantoglou et al. (1992, 

1995, 2000), Dunweg et al. (1995) not much has been reported regarding the effect 

of the polymer composition in dialysis membranes. Most of the above mentioned 

works are patents. The parameters affecting the membrane preparation such as 

polymer concentration in the dope had not been systematically investigated. 

Although much research have been carried out on the effect of composition of 

polymer on membrane properties, most of the work involved reverse osmosis, 

ultrafiltration, microfiltration and gas membranes. In recent years, technological 

innovations in dialysis equipment and new modalities have improved the quality of 

dialysis treatment but there are still many acute complications or symptoms that is 

associated with the dialysate composition, type of diffusive treatments and the type 

of dialysis membrane used (Locatelli and Manzoni, 2000). Thus, in this study, 

dialysis membranes were prepared with several variables adjusted to control 

membrane properties. Amongst these variables are the composition of the polymer 

such as the type and concentration of additives used to investigate the factor that 

influenced the quality of dialysis membranes mentioned above.  

1.2 Objectives And Scope 

 Despite the many technical advances in dialysis membrane, its composition 

has always been a trade secret. Locally used membranes must be developed so as to 

gain more insight into its fabrication process and reduce its cost. Unfortunately, the 
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current trend of dialysis technology in Malaysia still solely depends on foreign 

countries. The developments in the field of dialysis for renal failure patients are far 

behind compared to the world latest era. Synthetic membranes are known to be 

highly permeable, have larger pores that provide better convective transport and the 

removal of mid-sized and large molecules. Therefore, the main objective of the study 

is to study the influence of additives particularly PEG and water on the performance 

of dialysis membranes in separating biomolecules such as urea subsequently 

determine the optimum formulation for the dialysis membrane. The performance of 

the hemodialysis membranes were then investigated by determining the molecular 

weight cut off clearance efficiency, permeability and sieving properties. Finally, the 

performance of the membrane produced is evaluated using human blood.  

In order to achieve the objectives mentioned above, response surface method 

(RSM), central composite design (CCD) is used to design a set of experimental trials 

that covers the scope of this study. The scope of this study includes the fabrication of 

flat sheet dialysis membranes using cellulose acetate as the polymer together with 

acetic acid as solvent, water and polyethylene glycol as the non-solvent. The 

formulations were varied based on the solvent/non-solvent ratio, water content and 

the different types of additives used. The performances of the dialysis membrane 

produced were evaluated using different molecular weight substances such as urea, 

bovine serum albumin (BSA) and polyethylene glycol (PEG).  

Upon identifying the influence of the PEG and water based on the design of 

experiments, further experiments were carried out using different types of PEG, 

namely PEG 200, 400 and 600 as the additives. The testing of the dialysis was 

performed on the single and triple membrane dialysis system. The final stage 

involved testing of the best-selected membrane on the single and multi dialysis 

system using human blood. The final structure details of the dialysis membranes 

were correlated with the performance of the membranes produced. The properties of 

the membranes produced such as the diffusive permeability and the solute clearance 

coefficient were also determined using close-loop single-pass flow model (Klein et 
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al., 1976) and mass balance equations approached by Morti and Zydney (1998). 

Figure 1.1 showed an overall view of the summarized experimental methodology. 
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