MECHANICAL, THERMAL AND PROCESSING PROPERTIES OF OIL PALM EMPTY FRUIT BUNCH-FILLED IMPACT MODIFIED UNPLASTICISED POLY (VINYL CHLORIDE) COMPOSITES

AZNIZAM BIN ABU BAKAR

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

Faculty of Chemical and Natural Resources Engineering Universiti Teknologi Malaysia

JANUARY 2006

ABSTRACT

The main objective of this study is to investigate the effects of EFB filler and two types of impact modifiers on mechanical and thermal properties, and processability of PVC-U composites. Two methods were used to prepare the samples, i.e., compression moulding and single screw extrusion. A torque rheometer was used to determine the fusion characteristics of PVC. EFB increased the flexural modulus of 22 % but decreased the impact strength and flexural strength of 20 % and 18 % of PVC, respectively, as the filler contents increased. Increasing the impact modifiers contents, on the other hand, improved the impact strength but slightly decreased the flexural modulus and flexural strength. Acrylic impact modifier performed better than CPE in producing composites with balanced properties of toughness and stiffness. The use of Prosil 9234 coupling agent for filler surface treatment proved to be more reliable compared to NZ 44 in providing better filler-matrix interaction. The TGA study showed that both the EFB filler and acrylic impact modifier decreased the PVC thermal stability. Oil residues in the EFB did not influence the mechanical properties of PVC-U composites. The fusion time also decreased significantly with the addition of acrylic. Both the temperature and screw speed significantly influenced the fusion level of PVC, hence the mechanical properties of the extrudates. Overall, the study showed that EFB has the potential to be used as filler for PVC-U composites.

ABSTRAK

Objektif utama kajian ini ialah untuk menyelidik kesan pengisi EFB dan pengubahsuai hentaman terhadap sifat mekanikal, terma dan kebolehanproses komposit PVC-U. Dua kaedah telah digunakan untuk penyediaan sampel, iaitu pengacuan mampatan dan penyemperitan berskru tunggal. Reometer tork telah digunakan untuk menentukan ciri-ciri pelakuran PVC. EFB telah meningkatkan modulus lenturan sebanyak 22 % tetapi telah mengurangkan kekuatan hentaman PVC sebanyak 20 % dan kekuatan lenturan sebanyak 18 % apabila meningkatnya kandungan pengisi. Peningkatan kandungan pengubahsuai hentaman sebaliknya telah meningkatkan kekuatan hentaman tetapi mengurangkan sedikit modulus lenturan dan kekuatan lenturan. Pengubahsuai hentaman akrilik telah menunjukkan prestasi yang lebih baik dalam menghasilkan komposit bersifat kekukuhan dan kekakuan yang seimbang berbanding CPE. Penggunaan agen gandingan Prosil 9234 untuk rawatan permukaan pengisi telah menghasilkan interaksi pengisi-matrik yang lebih baik berbanding dengan NZ 44. Kajian TGA menunjukkan bahawa pengisi EFB dan pengubahsuai hentaman akrilik telah mengurangkan kestabilan terma PVC. Sisa minyak pada EFB didapati kurang mempengaruhi sifat-sifat mekanikal komposit PVC-U. Masa pelakuran juga telah menurun dengan penambahan kandungan akrilik. Suhu dan laju skru telah mempengaruhi tahap lakuran PVC begitu juga sifat-sifat mekanikal ekstrudat. Keseluruhannya kajian menunjukkan bahawa EFB berpotensi digunakan sebagai pengisi di dalam komposit PVC.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE

TITI	LE PAGE	i
DEC	LARATION	ii
DED	ICATION	iii
ACK	NOWLEDGEMENT	iv
ABS'	TRACT	v
ABS'	ТКАК	vi
ТАВ	LE OF CONTENTS	vii
LIST	COF TABLES	xiii
LIST	COF FIGURES	xvii
LIST	T OF SYMBOLS	XXV
INTI	RODUCTION	1
1.1	Overview	1
1.2	Significance of Study	4
1.3	Objectives of Study	6
1.4	Outline of Thesis	7
LITI	ERATURE REVIEW	9
2.1	Poly (vinyl chloride)	9
	2.1.1 Definitions and General Feature Properties	9
	2.1.2 PVC Polymerisation	11
	2.1.3 Morphology of PVC	13

1

2

	2.1.4	PVC Fusion	16
		2.1.4.1 Mechanisms of Fusion	17
		2.1.4.2 Fusion Level Assessment:	
		Differential Scanning Calorimetry	19
		2.1.4.3 Interrelation between Fusion and	
		Properties	21
2.2	PVC a	and Additives	24
	2.2.1	Stabilizer	24
	2.2.2	Lubricants	26
	2.2.3	Processing Aid	32
	2.2.4	Pigment	34
	2.2.5	Impact Modifier	35
2.3	Impac	et Modification	38
	2.3.1	Theory of Impact Modification	38
	2.3.2	Impact Modified PVC	40
2.4	Filled	PVC Composites	42
	2.4.1	Composites: Definitions and Categories	42
	2.4.2	Filler and Reinforcement	44
		2.4.2.1 Mineral Fillers	46
		2.4.2.2 Organic Fillers	47
	2.4.3	Filler-Matrix Interface	50
		2.4.3.1 Coupling Agent and Surface	
		Modification	51
2.5	Oil Pa	alm Empty Fruit Bunch-Polymer Composites	54
	2.5.1	Oil Palm Empty Fruit Bunch and its	
		Chemical Composition	55
	2.5.2	Utilization of EFB Fibre in Polymer	
		Composites	56
2.6	Theor	y of Mechanical Properties of Filled	
		Composites	59
2.7	Recen	nt Studies on Impact Modified PVC-U by	
	UTM	researchers	63

MECHANICAL PROPERTIES OF COMPRESSION			
MOUI	LDED I	PVC-U COMPOSITES	65
3.1	Introdu	action	65
3.2	Experi	mental	67
	3.2.1	Materials	67
	3.2.2	Filler Preparations	69
	3.2.3	Coupling Agent Treatment of Filler	71
	3.2.4	Blend Formulations	72
	3.2.5	Dry Blending	82
	3.2.6	Two Roll Milling	82
	3.2.7	Compression Moulding	84
	3.2.8	Density Determination	85
	3.2.9	Impact Testing	87
	3.2.10	Flexural Testing	87
	3.2.11	Accelerated Weathering Testing	88
	3.2.12	Water Absorption Testing	89
	3.2.13	Scanning Electron Microscopy Study	89
	3.2.14	Fourier Transform Infra-Red Analysis	90
3.3	Results	s and Discussion	90
	3.3.1	Density of the Filler and EFB-filled PVC-U	
		Composites	90
	3.3.2	Mechanical Properties	92
		3.3.2.1 Notched Izod Impact Strength	92
		3.3.2.2 Flexural Properties	108
		3.3.2.3 EFB-Filled Acrylic-Impact Modified	
		PVC-U Composites Treated with	
		Coupling Agents	120
		3.3.2.4 Effect of Accelerated Weathering on	
		the Impact and Flexural Properties	137
		3.3.2.5 Effect of NPCC on the Impact and	
		Flexural Properties	153
		3.3.2.6 Effect of Extracted Filler on the	
		Impact and Flexural Properties	159

		3.3.2.7 Water Absorption	162
3.4	Concl	usions	167
THE	RMAL	PROPERTIES OF COMPRESSION	
ΜΟ	U LDED	PVC-U COMPOSITES	169
4.1	Introd	luction	169
4.2	Exper	imental	171
	4.2.1	Materials, Filler Preparation and Blend	
		Formulations	172
	4.2.2	Sample Preparation	172
	4.2.3	Heat Deflection Temperature Testing	172
	4.2.4	Differential Scanning Calorimetry Study	173
	4.2.5	Thermogravimetric Analysis	173
4.3	Result	ts and Discussion	174
	4.3.1	Heat Deflection Temperature	174
	4.3.2	Glass Transition Temperature	177
	4.3.3	Thermal Degradation Temperature	178
4.4	Concl	usions	190
PRO	CESSA	BILITY STUDIES OF PVC-U	
COM	IPOUN	DS	192
5.1	Introd	luction	192
5.2	Exper	imental	195
	5.2.1	Materials and Blend Formulations	195
	5.2.2	Filler Preparation	195
		5.2.2.1 EFB Oil Extraction	195
	5.2.3	Dry Blending	197
	5.2.4	Processability Study	198
	5.2.5	Fourier Transform Infra-Red Analysis	198
	5.2.6	Scanning Electron Microscopy Study	199
5.3	Result	ts and Discussion	199
	5.3.1	Fusion Characteristics	199

4

5

- 5.3.1.1 Effect of EFB Filler201
- 5.3.1.2 Effect of Acrylic Impact Modifier203

Х

		5.3.1.3 Effect of CPE Impact Modifier	207
		5.3.1.4 Effect of Temperature	212
	5.3.2	Postulated Lubrication Mechanisms	214
	5.3.3	Effect of Extracted EFB Filler on the	
		Processability of PVC-U Compound	219
		5.3.3.1 Extractives Removal	219
		5.3.3.2 FTIR Spectra	219
		5.3.3.3 Extracted Filler Surface	222
		5.3.3.4 Fusion Characteristics of Extracted	
		EFB-Filled PVC-U Compound	223
5.4	Concl	usions	225
ЕХТ	RUSIO	N PROCESS AND MECHANICAL	
PRO	PERTI	ES OF EXTRUDATES	227
6.1	Introd	luction	227
6.2	Exper	imental	229
	6.2.1	Materials	229
	6.2.2	Dry Blending	230
	6.2.3	Extrusion Process	230
	6.2.4	Izod Impact and Flexural Testing	231
	6.2.5	Tensile Testing	232
	6.2.6	Differential Scanning Calorimetry Study	232
6.3	Resul	ts and Discussion	232
	6.3.1	Extrudates Characteristics	233
	6.3.2	Differential Scanning Calorimetry	238
	6.3.3	Impact Strength	240
		6.3.3.1 Effect of Processing Temperature	240
		6.3.3.2 Effect of Screw Speed	244
	6.3.4	Flexural Properties	246
		6.3.4.1 Effect of Processing Temperature	246
		6.3.4.2 Effect of Screw Speed	248
	6.3.5	Tensile Properties	249
	6.3.6	Yield Stress Analysis	255
	6.3.7	General Discussion	258

6

	6.4	Conclusions	260
7	CON	ICLUSIONS AND SUGGESTIONS	
	FOR	R FUTURE WORK	262
	7.1	Conclusions	262
	7.2	Suggestions for Future Work	264
REFEREN	NCES		266-282

xii

LIST OF TABLES

TABLE NO.

TITLE

PAGE

11 15
15
55
68
68
73
94
101
107
ct
114
114

	increased from 0 to 12 phr	118
3.10	Percentage of flexural strength reduction for EFB-filled	
	impact modified composites as the impact modifier	
	increased from 0 to 12 phr	118
3.11	Impact strength of EFB-filled acrylic-impact modified	
	composites treated with Prosil 9234 and NZ 44	126
3.12	Flexural modulus of EFB-filled acrylic-impact modified	
	composites treated with Prosil 9234 and NZ 44	130
3.13	Flexural strength of EFB-filled acrylic-impact modified	
	composites treated with Prosil 9234 and NZ 44	130
3.14	Comparison between the predicted and the experimental	
	of relative modulus of composites	131
3.15	Comparison between the predicted and the experimental	
	of relative modulus of filled acrylic-impact modified composites	
	at 3 phr of acrylic	132
3.16	Comparison between the predicted and the experimental	
	of relative modulus of filled acrylic-impact modified	
	composites at 6 phr of acrylic	132
3.17	Comparison between the predicted and the experimental	
	of relative modulus of filled acrylic-impact modified composites	
	at 9 phr of acrylic	132
3.18	Comparison between the predicted and the experimental relative	
	flexural modulus of filled acrylic-impact modified composites at	
	12 phr of acrylic	133
3.19	Impact strength reduction for impact-modified compounds after	
	accelerated weathering for 504 hours	139
3.20	Percentage of impact strength reduction for filled impact modified	
	composites after weathered for 504 hours	142
3.21	Percentage of flexural modulus reduction and percentage of	
	flexural strength increment of the impact-modified compounds	
	after 504 hours exposure to accelerated weathering	146
3.22	Percentage of flexural modulus reduction and percentage	
	of flexural strength increment of the filled composites and filled	
	impact-modified composites after 504 hours exposure	

	to accelerated weathering	146
3.23	Percentage of water absorption of impact modified	
	compounds and EFB-filled composites	163
3.24	Percentage of water absorption of impact modified	
	compounds and impact modified treated composites	166
4.1	HDT of acrylic-impact modified and CPE-impact	
	modified PVC-U compounds	175
4.2	HDT of EFB-filled PVC-U composites	176
4.3	HDT of EFB-filled acrylic-impact modified and	
	EFB-filled CPE-impact modified PVC-U composites	176
4.4	T _g of EFB-filled PVC-U composites	177
4.5	$T_{\rm g}$ of EFB-filled acrylic-impact modified and EFB-filled	
	CPE-impact modified PVC-U composites	178
4.6	Degradation temperature of neat components obtained	
	from TG and DTG curves	180
4.7	Degradation temperature of EFB-filled PVC-U	
	composites obtained from TG and DTG curves	185
4.8	Degradation temperature of EFB-filled CPE-impact	
	modified PVC-U composites	187
4.9	Degradation temperature of EFB-filled acrylic-impact	
	modified PVC-U composites obtained from TG and DTG	
	curves	189
5.1	Fusion characteristics of EFB-filled compounds at	
	50 rpm and 80 °C	202
5.2	Fusion characteristics of acrylic-impact modified	
	compounds at 50 rpm and 180 $^{\circ}\text{C}$	204
5.3	Fusion characteristics of EFB-filled acrylic-impact	
	modified compounds added with 9 phr of acrylic at	
	50 rpm and 180 °C	205
5.4	Fusion characteristics of EFB-filled acrylic-impact	
	modified compounds filled with 20 phr of filler at	
	50 rpm and 180 °C	206
5.5	Fusion characteristics of CPE-impact modified	
	compounds at 50 rpm and 180 °C	208

5.6	Fusion characteristics of EFB-filled CPE-impact modified	
	compounds added with 9 phr CPE at 50 rpm and 180 $^{\circ}$ C	210
5.7	Fusion characteristics of EFB-filled CPE-impact modified	
	compounds filled with 20 phr of EFB at 50 rpm and 180 $^{\circ}C$	211
5.8	Fusion time of PVC-U compounds at different processing	
	temperatures and constant rotor speed of 50 rpm	212
5.9	End torque of PVC-U compounds and composites at	
	different processing temperatures and constant rotor speed	
	of 50 rpm	214
5.10	Fusion characteristics of extracted EFB-filled PVC-U	
	compounds at 50 rpm and 180 °C.	224
6.1	The conditions of extrusion processing	231
6.2	Residence time of extrudates at constant die temperature	237
6.3	Residence time of extrudates at constant screw speed of 60 rpm	238
6.4	Heat of fusion of extrudates at screw speed of 60 rpm	240
6.5	Effect of processing temperatures on the fracture properties	
	of unfilled and filled extrudates	241
6.6	Effect of processing temperatures on the heat of fusion and	
	impact strength of unfilled extrudates	241
6.7	Effect of processing temperatures on the heat of fusion and	
	impact strength of filled extrudates	243
6.8	Effect of screw speeds on the fracture properties of unfilled	
	and filled extrudates	244
6.9	Effect of screw speeds on the impact strength of unfilled	
	and filled extrudates	244
6.10	Effect of processing temperatures on the flexural modulus	
	of unfilled extrudates	246
6.11	Effect of processing temperatures on the flexural modulus of	
	filled extrudates	247
6.12	Effect of processing temperatures on the flexural strength of	
	unfilled and filled extrudates	247
6.13	Effect of screw speeds on the flexural modulus of unfilled	
	and filled extrudates	249
6.14	Effect of screw speeds on the flexural strength of unfilled	

	and filled extrudates	249
6.15	Effect of processing temperatures on the yield stress of	
	unfilled extrudates at screw speed of 60 rpm	250
6.16	Effect of processing temperature on the yield stress of	
	filled extrudates at screw speed of 60 rpm	251
6.17	Effect of screw speeds on the yield stress of extrudates	
	at die temperature of 180 °C	251
6.18	Effect of processing temperature on the percentage strain	
	at break of unfilled extrudates at screw speed of 60 rpm	254
6.19	Effect of processing temperature on the percentage strain	
	at break of filled extrudates at screw speed of 60 rpm	254
6.20	Effect of screw speed on the percentage strain at break at die	
	temperature of 180 °C	255
6.21	Effect of strain rate on the yield stress of unfilled and filled	
	extrudates	255
6.22	Predicted yield stress of extrudates at 3 m/s, die temperature	
	of 180 °C and screw speed of 60 rpm	258
6.23	Predicted yield stress of extrudates at 3 m/s, die temperature	
	of 190 °C and screw speed of 60 rpm	258
6.24	Impact strength, yield stress and strain at break at die	
	temperature 180 °C and 190 °C	259

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
2.1	The chemistry of vinyl chloride monomer production	12

2.2	PVC particle morphology	15
2.3	Mechanism of fusion during processing extruder	18
2.4	Schematic presentation of fusion process for	19
2.5	DuPont thermal analysis of PVC-U compound	
	compression moulded at different temperatures	20
2.6	Zip-elimination of HCl from PVC and simultaneous	
	formation of sequences containing conjugated	
	double bonds (polyenes) in the chain during degradation	25
2.7	A model of PVC lubrication (not to scale) showing metal	
	lubrication and lubrication between PVC primary particle	
	flow units for (a) no lubricant; (b) calcium stearate ;	
	(c) for paraffin ; and (d) calcium stearate and paraffin	29
2.8	Lubrication mechanism, showing metal lubrication	
	and lubrication between PVC micro particles flow units	
	of PVC/CPE, PVC/OPE and PVC/CPE/OPE compounds	31
2.9	Stress distribution in polymer matrix surrounding	
	a rubbery impact modifier particle	37
2.10	Aspect ratio calculation	46
2.11	Cellulose molecular structure	48
2.12	Bonding mechanism of silane coupling agent to filler's surface	52
3.1	Chemical structure of (a) Prosil 9234 (b) NZ 44	69
3.2	EFB fillers distribution	70

3.3	Morphology of EFB fillers (Magnification of 600x)	70
3.4	Two roll milling of PVC-U dry blend at 165 °C	83
3.5	Two-roll milled composite sheet	83
3.6	A mould with five cavities placed in between the hot platens	
	before compression	84
3.7	The theoretical and experimental densities of EFB-filled	
	composites $(S_9 - S_{12})$ with respect to EFB filler contents	91
3.8	SEM micrograph of impact-fractured surface of S_{11}	
	(Magnification 2000x)	92
3.9	Hinge breaks of impact-modified PVC-U samples (S ₃)	95
3.10	SEM micrograph of impact-fractured surface of S_0	
	(Magnification 200x)	96
3.11	SEM micrograph of impact-fractured surface of S_3	
	(Magnification 200x)	96
3.12	SEM micrograph of impact-fractured surface of S7	
	(Magnification 200x)	97
3.13	Effect of filler content on the impact strength of EFB-filled	
	composites (S_9-S_{12}) and EFB-filled acrylic-impact modified	
	composites $(S_{13}-S_{28})$	98
3.14	Effect of filler content on the impact strength of EFB-filled	
	composites (S_9-S_{12}) and EFB-filled CPE-impact modified	
	composite (S_{29} - S_{44})	98
3.15	SEM micrograph of the impact-fracture surface of composite	
	incorporated with 10 phr filler (Magnification 500x)	99
3.16	SEM micrograph of the impact-fracture surface of composite	
	incorporated with 20 phr filler(Magnification 500x)	99
3.17	SEM micrograph of the impact-fractured surface of composite	
	incorporated with 30 phr filler (Magnification 500x)	100
3.18	SEM micrograph of the impact-fractured surface of composite	
	incorporated with 40 phr filler (Magnification 500x)	100
3.19	Polar-polar interaction between PVC molecule and	
	cellulose molecule.	102
3.20	SEM micrograph of filler debonding on the impact-fractured	

	surface of composite incorporated with 30 phr filler	
	(Magnification 900x)	103
3.21	SEM micrograph of filler bundles pulled-out area on the impact-	
	fractured surface composite incorporated with 30 phr filler of S_{11}	
	(Magnification 1000x)	104
3.22	Effect of acrylic content on the impact strength of EFB-filled	
	acrylic-impact modified composites (S_0 - S_4 and S_9 - S_{28}).	105
3.23	Effect of CPE impact modifier content on the impact	
	strength of EFB-filled CPE-impact modified composites	
	$(S_5 - S_8 \text{ and } S_{29} - S_{44})$	105
3.24	Effect of acrylic and CPE impact modifier on the impact	
	strength of EFB-filled impact-modified composites	107
3.25	Effect of impact modifiers content on the flexural modulus	
	of impact modified compounds (S ₀ -S ₈)	109
3.26	Effect of impact modifiers content on the flexural strength	
	of impact modified compounds (S_0-S_8) .	109
3.27	Effect of filler and acrylic content on the flexural modulus	
	of EFB-filled acrylic-impact modified composites (S_9-S_{28})	111
3.28	Effect of filler and acrylic content on the flexural strength of	
	EFB-filled acrylic-impact modified composites (S ₉ -S ₂₈)	112
3.29	Effect of filler and CPE content on the flexural modulus of	
	EFB-filled CPE-impact modified composites $(S_{29}-S_{44})$	112
3.30	Effect of filler and CPE content on the flexural strength of	
	EFB-filled CPE-impact modified composites $(S_{29}-S_{44})$	113
3.31	Effect of filler and acrylic content on the flexural modulus of	
	EFB-filled acrylic-impact modified composites $(S_{13}-S_{28})$	115
3.32	Effect of filler and acrylic content on the flexural strength of	
	EFB-filled acrylic-impact modified composites $(S_{13}-S_{28})$	116
3.33	Effect of filler and CPE content on the flexural modulus of	
	EFB-filled CPE-impact modified composites $(S_{29} - S_{44})$	116
3.34	Effect of filler and CPE content on the flexural strength of	
	EFB-filled CPE-impact modified composites (S_{29} - S_{44})	117
3.35	Effect of acrylic and CPE impact modifier on the flexural	

	modulus of EFB-filled impact modified composites	119
3.36	Effect of acrylic and CPE impact modifier on the flexural	
	strength of EFB-filled impact modified composites	119
3.37	Effect of EFB filler and acrylic content on the impact strength	
	of EFB-filled acrylic-impact modified composites treated	
	with Prosil 9234 (S_{49} - S_{68})	121
3.38	Effect of EFB filler and acrylic content on the impact strength	
	of EFB-filled acrylic-impact modified composites treated	
	with NZ 44 (S ₆₉ -S ₈₈)	121
3.39	Bonding mechanism of NZ 44 coupling agent to	
	the filler's surface	122
3.40	SEM micrographs of the impact fractured-surface of composites	
	(a) Prosil 9234 treatment (S_{51}) (Magnification 100x) (b) S_{51}	
	(Magnification 2000x) (c) NZ 44 treatment (S ₇₁)	
	(Magnification 500x) and (d) S_{71} (Magnification 2000x)	125
3.41	Effect of EFB filler and acrylic contents on the flexural modulus	
	of EFB-filled acrylic-impact modified composites treated with	
	Prosil 9234 (S ₉ -S ₂₈ and S ₄₉ -S ₆₈)	127
3.42	Effect of EFB filler and acrylic contents on the flexural strength	
	of EFB-filled acrylic-impact modified composites treated with	
	Prosil 9234 (S ₉ -S ₂₈ and S ₄₉ -S ₆₈)	128
3.43	Effect of EFB filler and acrylic contents on the flexural modulus	
	of EFB-filled acrylic-impact modified composites treated with	
	NZ 44 (S_9 - S_{28} and S_{69} - S_{88})	128
3.44	Effect of EFB filler and acrylic content on the flexural strength	
	of EFB-filled acrylic-impact modified composites treated with	
	NZ 44 (S ₉ -S ₂₈ and S ₆₉ -S ₈₈)	129
3.45	FTIR spectra of (a) PVC-U compound (S_0) (b) composite (S_{11})	135
3.46	FTIR spectra of (a) filled composite (S_{11}) (b) Prosil 9234-treated	
	filled composite (S_{51}) (c) NZ 44-treated filled PVC-U	
	composite (S ₇₁).	137
3.47	Impact strength of unweathered and weathered impact modified	
	compounds	138
3.48	Impact strength of unweathered and weathered EFB filled	

	composites	140
3.49	Suggested reaction scheme for the accelerated photo-oxidation	
	degradation	141
3.50	Impact strength of unweathered and weathered EFB-filled	
	impact modified PVC-U composites	143
3.51	Flexural modulus of unweathered and weathered impact	
	compounds	145
3.52	Flexural strength of unweathered and weathered impact	
	modified compounds	145
3.53	Flexural modulus of unweathered and weathered EFB-filled	
	PVC-U composites	147
3.54	Flexural strength of unweathered and weathered EFB-filled	
	composites	147
3.55	Flexural modulus of unweathered and weathered EFB-filled	
	impact modified composites	148
3.56	Flexural strength of unweathered and weathered EFB-filled	
	impact modified composites	148
3.57	Appearance of some samples surface before and after exposed	
	to UV irradiation for 504 hours	149
3.58	FTIR spectra of (a) unweathered and (b) weathered PVC-U	
	compounds	151
3.59	FTIR spectra of (a) unweathered and (b) weathered-EFB-filled	
	composites	152
3.60	FTIR spectra of (a) unweathered and (b) weathered-acrylic	
	impact modified composites	152
3.61	FTIR spectra of unweathered and weathered-acrylic-impact	
	modified composites	153
3.62	Effects of EFB filler and NPCC on the impact strength of	
	composites	154
3.63	Effects of 10 phr NPCC, 20 phr NPCC, 3 phr acrylic and	
	3 phr CPE on the impact strength of EFB-filled composites	155
3.64	Effects of EFB (S_9 - S_{12}) and NPCC (S_{89} - S_{91}) on the flexural	
	modulus of composites	156
3.65	Effects of EFB (S_9-S_{12}) and NPCC $(S_{89}-S_{91})$ on the flexural	

	modulus of composites	157
3.66	Effects of 10 phr NPCC, 20 phr NPCC, 3 phr acrylic and	
	3 phr CPE on the flexural modulus of the EFB-filled composites	158
3.67	Effects of 10 phr NPCC, 20 phr NPCC, 3 phr acrylic and	
	3 phr CPE on the flexural strength of the EFB-filled composites	159
3.68	Effect of unextracted and extracted EFB filler on the impact	
	strength of composites at filler content of 30 phr	160
3.69	Effect of unextracted and extracted EFB filler on the flexural	
	modulus of composites at filler content of 30 phr	161
3.70	Effect of unextracted and extracted EFB filler on the flexural	
	strength of composites at filler content of 30 phr	162
3.71	Effects of impact modifier content on water absorption of	
	acrylic-impact modified (S_1-S_4) and CPE-impact modified	
	compounds (S_5-S_8)	163
3.72	Effect of EFB filler content on the water absorption of	
	unmodified and modified composites	164
3.73	Effect of coupling agents on the water absorption of treated	
	unmodified composites	165
3.74	Effect of coupling agents on the water absorption of treated	
	acrylic-impact modified composites	166
4.1	(a) TG and (b) DTG curves for neat components	179
4.2	DSC trace of EFB filler	181
4.3	(a) TG and (b) DTG curves of unmodified filled PVC-U	
	composites	184
4.4	Polar-polar interaction between H ₂ 0 and PVC molecules	185
4.5	(a) TG and (b) DTG curves for EFB-filled CPE-impact	
	modified PVC-U composites	187
4.6	(a) TG and (b) DTG curves for EFB filled acrylic-impact PVC-U	188
4.7	Polar interaction between MMA and HCl	189
5.1	Rigid PVC fusion mechanism in the Torque Rheometer	193
5.2	Soxhlet extraction apparatus	197
5.3	A typical temperature and torque curves of PVC-U	
	compound (S_0) blended in the Brabender Torque Rheometer	200

5.4	A typical temperature and torque curves of EFB-filled PVC-U		
	composite (S_0) blended in the Brabender Torque Rheometer	201	
5.5	Postulated lubrication mechanism of among PVC micro-particles		
	flow units, EFB fillers and acrylic impact modifiers	217	
5.6	Postulated lubrication mechanism of among PVC micro-particles		
	flow units, EFB fillers and CPE impact modifiers	218	
5.6	FTIR spectra: a) EFB filler b) extracted EFB filler	220	
5.7	FTIR spectra (a) solvents mixture condensate		
	(b) concentrated extract	221	
5.8	Palm oil molecular structure	222	
5.9	SEM Micrograph for EFB Filler (Magnification 3000x)	223	
5.10	SEM micrograph for extracted EFB filler (Magnification 1000x)	223	
6.1	Extrudates of S_0 , S_3 , S_7 , S_9 and S_{21} at die temperature of 185 °C,		
	and extrudate of S_{37} at die temperature of 190 $^{\circ}C$	233	
6.2	Shape difference between the die and extrudate	234	
6.3	Filled extrudates of S_{37} at die temperature of 180 °C and 185 °C		
	and at constant screw speed of 60 rpm	235	
6.4	Filled extrudate of S ₉ with air bubbles on surface	236	
6.5	Filled extrudates of S_{10} , S_{22} and S_{38} at die temperature of 195 $^{\circ}C$	237	
6.6	A typical DSC thermogram of S_0 at different processing		
	temperatures	239	
6.7	A typical stress-strain graph of tensile for extrudates at 60 rpm		
	and 180 °C	253	
6.8	Predicted yield stress values at 3 m/s for S ₀	257	

LIST OF SYMBOLS

b	-	width
d	-	thickness
CPE	-	chlorinated polyethylene
EFB	-	oil palm empty fruit bunch
Ec	-	flexural modulus of composite
Ep	-	flexural modulus of polymer
G_{f}	-	shear modulus of filler
G _p	-	shear modulus of polymer
HDT	-	heat deflection temperature
k	-	Boltzmann's constant
L	-	span
M _t	-	water absorption at time t
NPCC	-	nano-precipitated calcium carbonate
NZ 44	-	zirconate based coupling agent
Prosil 9234	-	silane based coupling agent
PVC-U	-	unplasticised poly (vinyl chloride)
S	-	sample
Tg	-	glass transition temperature
TG	-	thermogravimetric curve
DTG	-	differential thermogravimetric curve
v	-	velocity
$V_{\rm f}$	-	volume of filler
V_p	-	volume pyknometer
V _w	-	volume of water
W	-	failure load

Wadditives	-	weight fraction of additives
\mathbf{W}_{d}	-	dry weight
W_{f}	-	weight fraction of filler
W _{pvc}	-	weight fraction of poly (vinyl chloride)
W_{w}	-	weight after immersed into water
ΔΗ	-	activation energy
ΔS	-	deflection increment
ΔW	-	load increment
3	-	strain rate
ε _c	-	elongation at break of composite
ε _p	-	elongation at break of polymer
$\varphi_{\rm f}$	-	volume fraction of filler
ϕ_{m}	-	maximum packing fraction
γ	-	stress concentration factor
ν	-	activation volume
ν_p	-	Poisson's ratio of polymer
$\rho_{additives}$	-	density of additives
ρ _c	-	density of composite
$ ho_{\rm f}$	-	density of filler
$ ho_{ m w}$	-	density of water
σ_{c}	-	strength of composite
σ_p	-	strength of polymer
σ_y	-	yield stress
Ψ	-	reduced concentration term

CHAPTER 1

INTRODUCTION

1.1 Overview

Poly (vinyl chloride) has grown into one of the major thermoplastics material since it was first produced in the 1930's. More than one-half of the PVC produced is used in the building industry (Mengeloglu, 2001). Because of its blending versatility (ability to be modified through the introduction of various additives) and cost-effectiveness, PVC is one of the most worldwide used thermoplastics and it plays an important role in the plastic industry as a major component of composite manufacturing (Wenguang and La Mantia, 1996).

Cost reduction is achieved when fillers are incorporated into the PVC matrix. In addition to reducing cost, other typical reasons for using fillers are stiffness enhancement and thermal properties alteration of vinyl products. Currently, the most important fillers for PVC are inorganic materials such as glass fibre, calcium carbonate, agalmatolite, talc (Saad *et al.*, 1999; Wee, 2001; Pedro *et al.*, 2001; Xie *et al.*, 2001). These fillers are high-density materials (Mengeloglu, 2001). While they offer wide property changes in the composites, their use is not cost effective on a volumetric basis (Titow and Lanham, 1975). In addition, these inorganic fillers cause

wear of equipment during processing. Therefore the use of natural fillers such as wood has been suggested as an alternative to mineral materials (Nabi Saheb and Jog, 1999).

Interest in the use of natural fillers has grown during the last decade and most of the natural fibres used in thermoplastics composites are derived from wood. The use of natural fillers in USA plastic industry in 2000 was estimated 0.4 billion pounds or 7 % (Gurram *et al.*, 2002). In fact, industry experts believe that the demand for natural fillers for plastics composite applications will grow at least six-fold in the next 5 to 7 years (Stokke, 2002). The rationale behind this interest is that the use of natural fibres offers several benefits, including lower cost, less abrasiveness to equipment, high specific properties such as higher specific modulus (modulus/specific gravity), renewable nature and biodegradability (Nabi Saheb and Jog, 1999).

Even though natural fibres offer several advantages, certain drawbacks such as incompatibility of fibre with the thermoplastics matrix, the tendency to form aggregates, and poor resistance to moisture greatly reduce the potential of these fibres to be used as reinforcement. All these drawbacks, especially incompatibility, lead to low fibre-matrix interfacial bonding strength and poor wetting of the fibres by the matrix resin, which can cause reduction in mechanical performance of the composites. Therefore, surface modification by the use of coupling agents is commonly suggested as solution to overcome the drawbacks of lowered strength property. These chemical reagents convert the hydrophilic surface of cellulosic fibres to hydrophobic one. As a result, the fibre-fibre hydrogen bonds is reduced and the adhesion is also improved via the mechanism such as formation of chemical bonds between treated fibres and polymer matrix (Xanthos, 1983; Raj *et al.*, 1989, 1989, 1990; Maldas and Kokta, 1990,1990,1991; Myres *et al.*, 1991; Maiti and Subbarao, 1991; Ahmad Fuad *et al.*, 1994,1997; Sivaneswaran, 2002; Baiardo *et al.*, 2002; Fabbri *et al.*, 2004).

One of the natural fillers that have been tried was oil palm empty fruit bunch (EFB). EFB is one of the natural fillers obtained from oil palm. The incorporation of

EFB as a reinforcing component in the polymer composites has received much attention (Sareekala *et al.*, 1996/97; Rozman *et al.*, 1998, 2001, 2001; Sarani *et al.*, 2001; Abdul Khalil *et al.*, 2001). Most of the research works on EFB so far dealt with polymers such as polypropylene, polyester, polystyrene and phenol-formaldehyde resin. The researchers focused on the effect of filler loading, filler particle size distributions and filler treatment on the mechanical properties of the composites. Like other natural fillers, many issues have been identified in the processing of the composites. These include low compatibility between EFB fibre and polymer matrix, higher moisture intake, poor distribution of the fibre in the matrix and effect of oil residue on mechanical properties.

Although EFB has been useful as fillers in various polymers mentioned above, the use of EFB filler in PVC has not been studied extensively. Most of the researchers have used wood flour, wood sawdust and rice husk ash as fillers in PVC matrix (Matuana *et al.*, 1998, 2001; Sivaneswaran, 2002; Sombatsompop *et al.*, 2003). The use of these fibres in the PVC matrix produces products that are more brittle than neat PVC. The incorporation of the natural fibres alters the ductile mode of failure of the matrix. The brittleness of PVC/wood fibre composite compared to the unfilled PVC may prevent this emerging class of materials from capturing their full market potential in applications such as door and window frames (Mengelollu, 2001).

One of the most important aspects in the development of PVC compound by using fillers is to achieve a good combination of properties and processability at a moderate cost. As far as mechanical properties are concerned, the main target is to strike a balance of stiffness, strength and toughness (Mohd Ishak *et al.*, 2000). The incorporation of filler in thermoplastic such as PVC is associated with an enhancement in stiffness and strength but a decrease in toughness. The incorporation of impact modifiers in PVC, on the other hand will result in a significant improvement in toughness at the expense of stiffness and strength. The enhancement of impact properties of PVC-U by introduction of a rubbery phase is a well-known phenomenon which has been widely exploited commercially. Among those which have extensively used are chlorinated polyethylene (CPE) and various modified acrylic. Hiltner *et al.* (1984) reported that CPE modifier formed a network enclosing PVC primary particles in order to develop the desired impact strength whereas Robinovic (1983) found that acrylic modifier formed a distinct dispersed phase in the continuous PVC phase. The dispersed rubber particles of acrylic were independent of the processing time and temperature, whereas the CPE network structure was dependent of those factors.

The studies have concluded that the function of the impact modifiers (whether in the form of discrete phase or network structure) was to increase the toughness of PVC by facilitating the ability of PVC matrix to shear yield and/or craze. This means that the PVC would deform rather than fracture when subjected to a sudden load (Petrich, 1973; Lutz, 1993). Meanwhile, Stevenson (1995) has pointed out that the impact modifiers can also be used to correct the detrimental effects of other additives such as fillers by boosting the impact performance of the material.

1.2 Significance of Study

Based on the previous findings mentioned above, no study has been reported on the use of EFB fibre in the PVC matrix. Most studies involved investigation of the mechanical properties of natural fibre polymer composites in terms of natural fibre content, various treatments of the fibre, whereas very few have investigated processability and thermal stability of the composites. According to Sombatsompop *et al.* (2003), the area for PVC/wood fibre composites are still actively pursued, especially in areas of processability and thermal stability-related mechanical properties of the composites. With the rising environmental issues in the limelight and the need for new applications of agricultural by-products such as EFB to be more useful in order to minimize industrial waste, therefore agricultural by-products seem attractive enough to be use as reinforcement filler alternative for filled thermoplastics composites. Since oil palm has now become a major cash crop and is cultivated commercially in Malaysia, many million tons of EFB on dry weight basis are produced annually throughout the world. EFB is an agricultural waste, which is left unutilized after the removal of the oil seeds for oil extraction. In order to minimize the abundance of this waste and environmental problems, therefore new applications are urgently required for EFB to be more useful (Sreekala *et al.*, 1996/97). The utilization of this EFB as a reinforcement in polymers has some economical as well as ecological importance.

PVC is basically a rigid thermoplastic. It is inherently ductile because of the polarity and low-temperature molecular relaxation. However, it is brittle at high deformation rate and under concentrated stress, and PVC is known as a notch-sensitive polymer (Wimolmala *et al.*, 2001). Previous studies have also shown that the impact strength reduces drastically with addition of natural fillers (Nabi Saheb and Jog, 1999; Mengeloglu, 2001). Impact modifier is therefore added to increase the ductility and toughness of PVC. Although ductility increases, the impact modifier used is costly and tends to decrease the PVC-U stiffness. In this study, the strategies to use EFB fillers together with impact modifier in PVC-U are deliberately done to develop PVC-U composites with good stiffness without sacrificing both desirable toughness and cost effectiveness.

Therefore, in order to understand the properties of the newly developed of PVC-U composites, the effects of filler and impact modifier contents, and filler treatment on the mechanical and thermal properties, processability and extrusion process on the PVC-U composites are investigated.

1.3 Objectives of Study

The main objective of the study is to produce EFB-filled PVC-U composites. To achieve the objectives, the following stages have been carried out:

- (a) To determine the effect of EFB filler, acrylic and CPE content on the impact strength and flexural properties of the compression moulded composites. The influence of EFB filler, acrylic and CPE content on the thermal properties such as heat deflection temperature, thermal degradation temperature and glass transition temperature are also investigated. In addition, composites accelerated weathering and water absorption properties rare also determined.
- (b) To study the effect of silane (Prosil 9234) and zirconate (NZ 44) coupling agents on the impact and flexural properties and water absorption of the compression moulded composites. From this study, the most suitable coupling agent is determined.
- (c) To determine the effect of EFB filler, acrylic and CPE content on the fusion characteristics of PVC-U compounds. The effect of different processing temperatures on the composites is also studied.
- (d) To determine the effect of processing temperatures and screw speeds on the impact, tensile and flexural properties of extrudates. The influence of processing temperatures on fusion level of extrudates is also determined.

1.4 Outline of Thesis

Chapter 1 presents the overview of the previous research works that has been conducted by other researchers who used either EFB fibres as reinforcement or PVC as matrix in their studies. Both the advantages and disadvantages of natural fibres are also reported as well as the role of impact modifier in the PVC. The significance of the study, the objectives of study and the layout of research are presented.

Chapter 2 begins with some definitions and general feature properties of PVC. Several theories on PVC such as impact modification and fusion mechanism, and the function of additives are described. The definitions and categories of composites and the properties of EFB filler are also described. Literature survey on PVC filled composites is also reported, followed by reviews on the application of various coupling agents and the application of EFB as a reinforcement filler or fibre in the thermoplastics composites systems. Several theories that have been used to predict the relative modulus of filled composites are also reviewed.

Chapter 3 mainly describes the effect of filler content, impact modifier content and coupling agents on the impact strength, flexural properties and water absorption of composites. The effect of filler content on the density of composites, the application of models to predict the relative modulus, and the impact strength and flexural properties of weathered composites are also described. The morphological studies on the impact-fractured surface and the presence of functional groups on the samples investigated using Scanning Electron Microscope (SEM) and Fourier Transform Infra-Red (FTIR), respectively, are also reported.

Chapter 4 reports the thermal properties of the composites. A wide array of thermal analysis techniques such as thermogravimetric analyser (TGA), heat deflection temperature analyser (HDT) and differential scanning calorimetry (DSC) are used to

investigate the thermal degradation temperature, heat deflection temperature and glass transition temperature, respectively.

Chapter 5 reports on the processability of PVC-U compounds. The effects of EFB filler content, extracted EFB filler, CPE and acrylic impact modifier content and mixing temperature are reported. The effect of extracted EFB filler content on the processability is also investigated as a minor part of this study. FTIR is used to identify the related functional groups present in the extractives and the changes in EFB filler surface, followed by morphological study on the extracted EFB filler surface using SEM.

Chapter 6 reports the effect of screw speed and processing temperature of extrusion on the impact strength, flexural properties, tensile properties and fusion level of the composites. The effect of crosshead speed on the tensile properties is studied to predict the yield stress of extrudates. The fusion level of extrudates at different temperatures is also investigated using DSC.

Chapter 7 presents the overall conclusions and suggestions for further work.

REFERENCES

- Abdul Khalil, H.P.S., Ismail, H., Ahmad, M.N., Ariffin, A. and Hassan, K. (2001). The Effect of Various Anhydride Modifications on Mechanical Properties and Water Absorption of Oil Palm Empty Fruit Bunches Reinforced Polyester Composites. *Polymer International*. 50:395-402.
- Ahmad Fuad, M.Y., Yaakob, I., Mohd Ishak, Z.A. and Mohd Omar, K.(1993). Density Measurement of Rice Husk Ash Filler Particles in Polypropylene Composites. *Polymer Testing*.12:107-112.
- Ahmad Fuad, M.Y., Salleh, O., Mohd Ishak, Z.A. and Mohd Omar, A.K.(1994).
 Application of Rice Husk Ash as Fillers in Polypropylene: Effect of Silane
 Coupling Agents. ASEAN Journal of Science Technology Development.11 (1): 115-140.
- Ahmad Fuad, M.Y., Zawawi, M.T., Rahmad, S., Norazlan, R. and Ismail, Z.(1997). Effect of Silane, Titanate and Zirconate Coupling Agents in Polypropylene Composites. *Journal of Industrial Technology*. 6(2): 1-13.
- Allsopp, M.W.(1982). Morphology of PVC. In : Burgress, R.H. *Manufacturing and Processing of PVC*. New York: Applied Science Publishers.215.
- Axtell, F.H., Sophanowong, W. and Rujiranontapong, K.(1994). The Influence of Soft Filler Characteristics and Fusion Level on the Impact Strength of Poly(vinyl chloride). *Plastics, Rubber and Composites Processing and Applications*. 21: 53-61.
- Ash, B.J., Schadler, L.S. and Siegel, R.W.(2002). Glass Transition Behaviour of Alumina/Poly(methyl methacrylate) Nanocomposites. *Materials Letters*. 55: 83-87.

- Azman Hassan (1996). Impact Modification and Properties of Solid and Foamed PVC-U. Loughborough University of Technology, United Kingdom: Ph.D. Thesis.
- Azman Hassan and Kannan, S.K.(2001). Effect of Titanate, Zirconate and Silane Coupling Agents in Rice Husk Ash-Filled PVC-U Composites. *Journal of the Institute of Materials Malaysia*. 2(2): 32-42.
- Azman Hassan and Sivaneswaran, K. (2002). The Effect of Rice Husk Ash on Processability of ABS Impact Modified PVC-U. 3rd National Symposium on Polymeric Materials. December 30-31. Universiti Teknologi Malaysia, 174-179.
- Bairdo, M., Frisoni, G., Scandola, M. and Licciardello, A.(2002). Surface Chemical Modification of Natural Cellulose Fibers. *Journal of Applied Polymer Science*. 83:38-45.
- Beall, F.C. and Eickner, H.W. (1970). Thermal Degradation of Wood Components: A Review of the Literature. USDA Forest Service Research Paper. 1-27.
- Benjamin, P. (1980). Quality and Quality Control of uPVC Pressure Pipe. Plastics and Rubber: Materials & Applications. 5(4):151-160.
- Bohme, K. (1975). Processing Aids. Angew. Makromol. Chem. 47: 243.
- Bower, J.D. (1986). The Function of Lubricants in Processing of Rigid PVC. *Journal* of Vinyl Technology. 8(4):179-182.
- Bucknall, C.B. and Smith, R.R.(1965). Stress-Whitening in High-Impact Polystyrene. *Polymer.* 6:437-446.
- Butters, G.(1982). *Particulate Nature of PVC –Formation, Structure, and Processing*. New York : Marcel Dekker.
- Bystedt, J., Flensjo, M., Svensson, G. and Terselius, B. (1988). The Effect of Shear on Fusion and Mechanical Properties of Rigid PVC Pipes. *Journal of Vinyl Technology*.10(2):100-102.
- Calvert, D.J., Haworth, B. and Stephenson, R.C. (1991). The Use of Fracture Mechanics to describe the Impact Strength of PVC Window Profiles. *Plastics and Rubber : Materials & Applications*. 15(4): 229-242
- Casey, W.J. and Okano, K. (1986). An Investigation of Acrylic Processing Aids for Low Molecular Weight PVC. *Journal of Vinyl Technology*. 8(1): 37-40.

- Chen, C.H, Mao, C.F and Lo, Y.W (2001). Study of Fusion Percolation Thresholds of Rigid PVC Compounds. *Journal of Applied Polymer Science*.81: 3022-3029.
- Chen, C.H, Wesson R.D, Collier, J.R. and Lo,Y.W. (1995). Studies of Rigid PVC Compounds IV: Fusion Characteristics and Morphology Analyses. *Journal of Applied Polymer Science*. 58: 1107-1115.
- Chen, C.H. and Lo. Y.W. (1999). Influences of Chlorinated Polyethylene and Oxidized Polyethylene on the Fusion of Rigid Poly(vinyl chloride) Compounds. *Journal of Applied Polymer Science*.74: 699-705.
- Chen, N., Wan, C., Zhang, Y. and Zhang, Y.(2004).Effect of Nano-CaCO₃ on Mechanical Properties of PVC and PVC/Blendex Blend. *Polymer Testing*. 23: 169-174.
- Chiu, H.T. and Chiu, W.M. (1996). Influence of Mechanical Properties in Carbon Black (CB) Filled Isotactic Polypropylene (iPP) and Propylene-Ethylene Block Copolymer.*Journal of Applied Polymer Science*. 61: 607-612.
- Chiu, H.T. and Chiu, H.T.(1998). The Toughening Behaviour in Propylene-Ethylene
 Block Copolymer Filled with Carbon Black and Styrene-Ethylene Butylenes Styrene Triblock Copolymer. *Materials Chemistry and Physics*. 56: 108-115.
- Coaker, A.W. and Wypart, R.W.(1993). Vinyl Chloride Resins: Suspension, Emulsion,Microsuspension and Bulk(Mass). In: Wickson, E.J. Handbook of Polyvinyl Chloride Formulating. New York: John Wiley and Sons Inc: 15-55.
- Cogswell, F.N., Player, J.M. and Young, R.C. (1984). Influence of Processing Aids on the Extensibility of PVC Melts. *Plastics and Rubber: Processing*. 128-132.
- Collyer, A.A. and Clegg, D.W. (1986). Mechanical Properties of Reinforced Thermoplastics. London : Elsevier Applied Science Publisher.
- Conley, R. (1972). *Infrared Spectroscopy*.2nd Edition. Boston ,USA: Allyn and Bacon Publisher.
- Cora, B., Daumas, B. and Zegres, A. (1999). Impact Strength and Morphology in Poly (vinyl chloride) Window Profiles-Relationship with Gelation Level. *Plastics, Rubber and Composites*. 28(4): 165-169.
- Covas, J.A. (1992). Single Extrusion of PVC: Effect on Fusion & Properties. *Journal* of Vinyl Technology. 32(11): 743-750.

- Covas, J.A and Gilbert, M. (1992). Single Screw Extrusion of Poly (vinyl Chloride): Effect on Fusion and Properties. *Polymer Engineering and Science*. 32(11): 743-750.
- Covas, J.A., Gilbert, M. and Marshall, D.E. (1988).Twin Screw Extrusion of a Rigid PVC Compound-Effect on Fusion and Properties. *Plastics and Rubber Processing and Applications*. 9: 107-116.
- Deanin, R.D. and Chuang, W.Z.L. (1986). ABS and CPE Modifiers in Rigid PVC. ANTEC '86. 1239-1240.
- Dunkelberger, D.L., Lutz, J. and Szamborski, E.C. (1993). Processing Aids. In : Wickson, E.J. *Handbook of Polyvinyl Chloride Formulating*. New York : John Wiley and Sons Inc: 639-647.
- Fabbri, P., Champon, G., Castellano, M., Belgacem, M.N. and Gandini, A.(2004). Rapid Report Reactions of Cellulose and Wood Superficial Hydroxy Groups with Organomettalic Compounds. *Polymer International*. 53: 7-11.
- Faulkner, P.G. (1975). The Use of a Temperature Programmable Brabender Mixing Head for the Evaluation of the Processing Characteristics of PVC. *Journal Macromolecules Science-Physics*. B11(2):251-279.
- Fried, J.R. (2003). *Polymer Science and Technology*, 2nd Edition. USA: Prentice Hall Inc.
- Gardiner, D. Pepperl, G. and Wisse J.D.M. (1997). Natural and Artificial Wethering of White PVC Window Profiles. *Plastics, Rubber and Composites Processing and Applications*. 26 (2): 59-65.
- Geil, P.H. (1977). Morphology-Characterization Terminology. Journal Macromolecules Science-Physics.B14 (1):171.
- Gerlach, D. (1998). CPE as Impact Modifier. Kunststoffe. 88: 1215-1216.
- Gilbert, M. (1985). Fusion of PVC Compounds. *Plastics and Rubber International*. 10(3):16-19.
- Gilbert, M. and Vyoda, J.C. (1981).Thermal Analysis Technique for Investigating Gelation of Rigid PVC Compounds. *Polymer*. 22: 1134-1136.
- Gilbert. M., Hemsley, D.A., and Miadonye, A. (1983). Assessment of Fusion in PVC Compounds. *Plastics and Rubber Processing and Applications*. 3: 343-351.
- Graessley, W.W.(1974). Advanced Polymer Science. In: Terselius and Jansson. (1984).Gelation of PVC-Part 3: Effect on Tensile Properties. 4(4): 291-299.

- Grohman, M. (1994). A Novel Impact Modifier System for Vinyl Siding and Profile Substrate. *Journal of Vinyl Technology*. 16(2): 107-111.
- Gurram, S., Julson, J.L., Muthukuarrapan, K. Stokke, D.D. and Mahapatra, A.K. (2002). Application of Biorenewable Fibers in Composites. ASAE/CSAE North Central Intersectional Conference. Sept. 27-28. University of Saskatchewan, Saskatoon, Canada, 1-20.
- Han, J.S. and Rowell, J.S. (1997). Chemical Composition of Fibers. In Rowell, R.M. Young, R.A. and Rowel, J.K. Paper and Composites from Agro-Based Resources.New York : Lewis Publishers.
- Hattori, T., Tanaka, K. and Matsuo, M.(1972). Fusion of Particulate Structure in PVC During Powder Extrusion. *Polymer Engineering Science*.12: 199.
- Hawkins, T.(1982). Evaluation of PVC Compound on the Brabender Torque Rheometer. *Journal of Vinyl Technology*. 4 (3):110-114.
- Hiltner, A., Siegmann, A. and Baer, E. (1984). Impact Modification of PVC with Chlorinated Polyethylene. *ANTEC* '84. 555-557.
- Hill, C.A.S. and Abdul Khalil, H.P.S.(2000). Effect Fibre Treatments on Mechanical Properties of Coir or Oil Palm Fibre Reinforced Polyester Composites. *Journal of Applied Polymer Science*.78 (9): 1685-1697.
- Ichazo, M.N., Albano, C. and Gonzalez, J.(2000).Behaviour of Polyolefin Blends with Acetylated Sisal Fibres. *Polymer International*. 49: 1409-1416.
- Ismail, H. and Mega, L. (2001). The Effects of Compatibilizer and Silane Coupling Agent on the Mechanical Properties of White Rice Husk Ash Filled Polypropylene/Natural Rubber Blend. *Polymer-Plastics Technology Engineering*. 40(4): 463-478.
- Katz, H.S and Brandmaier, H. (1982). Concise Fundamentals Fibre-Reinforced Composites. In Milewski, J.V and Katz, H.S. (Editors). *Handbook of Reinforcements For Plastics*. New Jersey:Van Nostrand Reinhold Company Inc.
- Kerner, E.H. (1969). In : Maiti and Subbarao (1991). Mechanical Properties of Isotactic Polypropylene/Wood Flour Composites. *International Journal of Polymeric Materials*.15: 1-16.

- Klaric, I., Vrandecic, N.S. and Roje, U. (2000). Effect of Poly(vinyl chloride)/Chlorinated Polyethylene Blend Composition on Thermal Stability. *Journal of Applied Polymer Science*. 79(1):166-172.
- Kokta, B.V., Maldas, D., Daneault, C. and Beland, P.(1990). Composites of Poly(vinyl chloride)-Wood Fibers I. Effect of Isocynate as a Bonding Agent. *Polymer-Plastic Technology and Engineering*. 29(1 and 2): 87-118.
- Kosior, E.I. and Stachurski, Z.H.(1986). Processing Aids: The Effect of Poly(methyl methacrylate) on the Fusion of Rigid Poly(vinyl chloride). *British Polymer Journal*. 18(2): 94-104.
- Kovacic, T., Klaric, I., Nardelli, A. and Baric, B. (1993). Thermal Degradation of Poly(vinyl chloride)/ Poly(a-methylstyrene-acrylonitrile) Blends. *Polymer Degradation and Stability*. 40: 91-96.
- Krzewki, R.J. and Collins E.A. (1981). Rheology of PVC Compounds.I. Effects of Processing Variables on Fusion. J. Macromol. Sci.-Phys. B20 (4): 443-464.
- Kunori, T. and Geil, P.H.(1980). Morphology-Property Realtionships in Polycarbonate-Based Blends. 1. Modulus. J. Macromol. Sci. Phys. B18(1): 93-134.
- Lacatus, E.E, and Rogers, C.E. (1986). The Effect of Fusion and Physical Aging on the Toughness of Poly (vinyl Chloride).*ANTEC 1986*. 1271-1275.
- Leong. Y.W., Abu Bakar, M.B., Mohd Ishak, Z.A. and Ariffin,A.(2003). Mechanical and Morphological Study of Talc/Calcium Carbonate Filled Polypropylene Hybrid Composites Weathered in Tropical Climates. *Jurnal Teknologi*. 39(A): 23-34.
- Liang, J.Z. and Li, R.K.Y. (2000). Rubber Toughening in Polypropylene : A review. *Journal of Applied Polymer Science*.77(2):409-417.
- Lu, J., Wei, G.X., Sue, H.J. and Chu, J.(2000). Toughening Mechanism in Commercial Thermoplastic Polyolefin Blends. *Journal of Applied Polymer Science*.76: 311-319.
- Lutz, J.T. (1993). Impact Modifiers for PVC. *Journal of Vinyl Technology*. 15(2): 82-98.
- Mahmood Husein Datoo (1992). *Mechanics of Fibrous Composite*. London : Elsevier Applied Science.

- Maiti, S.N. and Subbarao, R.(1991). Mechanical Properties of Isotactic Polypropylene/Wood Flour Composites. *Journal of Polymeric Materials*.15: 1-16.
- Maiti, S.N. and Lopez, B.H.(1992). Tensile Properties of Polypropylene/Koalin Composites. *Journal of Applied Polymer Science*. 44: 353-360.
- Maldas, D. and Kokta, B.V. (1990). Effect of Extreme Conditions on the Mechanical Properties of Wood Fiber-Polystyrene Composites.II.Sawdust as a Reinforcing Filler. *Polymer-Plastics Technology and Engineering*. 29(1 and 2): 119-165.
- Maldas, D. and Kokta, B.V. (1990). Influence of Phthalic Anhydride as a Coupling Agent on the Mechanical Behavior of Wood Fiber-Polystyrene Composites. *Journal of Applied Polymer Science*. 41: 185-194.
- Maldas, D. and Kokta, B.V. (1991). Influence of Maleic Anhydride as a Coupling Agent on the Performance of Wood Fiber-Polystyrene Composites. *Polymer Engineering and Science*. 31(18): 1351-1357.
- Marcilla, A. and Beltran, M. (1995). Thermogravitmetric Kinetic Study of Poly(vinyl chloride) Pyrolisis. *Polymer Degradation and Stability*. 48: 219-229.
- Marinda, R., Yang, J., Roy, C. and Vasile, C. (1999). Vacuum Pyrolisis of PVC I. Kinetic Study. *Polymer Degradation and Stability*. 66(1): 127-144.
- Marshall, G.P. (1982). Design for Toughness in Polymers 1-Fracture Mechanics. *Plastics and Rubber Processing and Applications*. 2: 169-182.
- Marshall, D.E., Higgs, R.P. and Obande, O.P. (1983). The Effect of Extrusion Conditions on the Fusion, Structure and Properties of Rigid PVC. *Plastics and Rubber Processing and Applications*. 3: 353-358.
- Marshall, B.I.(1969). Lubrication of Rigid PVC. British Plastics. August: 70-78.
- Mathew, W.R. (1993). Colorants. In Wickson, E.J. *Handbook of Polyvinyl Chloride Formulating*. New York: John Wiley and Sons Inc: 449-473.
- Mathur, K.K and Vanderheiden, D.B. (1982). Precipitated Calcium Carbonate as Ultraviolet Stabilizers and Impact Modifiers in Poly(vinyl chloride) Siding and Profiles. *Proceeding of International Symposium on Polymer Additives*. 371-338.
- Mathur, K.K. and Vanderheiden, D.B.(1986). Fillers: Types, Properties and Performance. In: Kresta, J.E. *Polymer Science and Technology*. New York: Pelnum Press. 503-544

- Matuana, L.M., Park, C.B. and Balatinecz, J.J.(1997). Processing and Cell Morphology Relationships for Microcellular Foamed PVC/Wood-Fiber Composites. *Polymer Engineering and Science*. 37(7): 1137-1147.
- Matuana, L.M., Balatinecz, J.J. and Park, C.B.(1998). Effect of Surface Properties on the Adhesion between PVC and Wood Veneer Laminates. *Polymer Engineering and Science*. 38(5): 765-773.
- Matuana, L.M. Kamdem, D.P. and Jun Zhang (2001). Photoaging and Stabilization of Rigid PVC/Wood Fibers. *Journal of Applied Polymer Science*. 80(11): 1943-1950.
- Manikandan Nair, K.C., Diwan, S.M. and Sabu Thomas. (1996). Tensile Properties of Short Sisal Fiber Reinforced Polystyrene Composites. *Journal of Applied Polymer Science*. 60: 1483-1497.
- Marinda, R., Yang, J., Roy, C. and Vasile, C. (1999). Vacuum Pyrolisis of PVC 1: Kinetic Study. *Polymer Degradation and Stability*. 66(1): 127-144.
- McCrum, Buckley, C.P. and Bucknall, C.B. (1997). Reinforced Polymers in Principles of Polymer Engineering.2nd . London: Edition Oxford Science Publisher.
- McGill, W.J. and Wittstock, T. (1983). Microstructure and Impact Strength of PVC Blends with EVAgPVC. *Plastics and Rubber Processing and Applications*. 3(1): 77-83.
- McGill, W.J., and Wittstock, T. (1987). The Effect of Processing Temperature on the Impact Strength of PVC Blended with a Particulate Acrylic Modifier.*Plastics and Rubber: Processing and Applications*. 7: 185-188.
- McNeill, I.C., Memetea, L. and Cole, W.J. (1995). A Study of the Products of PVC Thermal Degradation. *Polymer Degradation and Stability*. 49: 181-191.
- Mengeloglu, F.(2001). *Rigid Poly(vinyl chloride)/Wood-Flour Composites and Their Foams*. Michigan Technological University: Ph.D. Thesis.
- Menges, G. and Berndsten, N.(1976). Processing Aids. In: Wickson, E.J. Handbook of Polyvinyl Chloride Formulating. New York: John Wiley and Sons Inc: 639-647.
- Mertz, E.H., Cleaver, G.C. and Bear, M.(1956). Studies on Heterogenous Polymeric Systems. *Journal of Polymer Science*. 22: 325-341.
- Miller, E. (1996). Introduction to Plastics and Composites: Mechanical Properties and Engineering Applications. New York:Marcel Dekker,Inc.

- Mohd Ishak, Z.A., Aminullah, A., Ismail, H. and Rozman, H.D.(1998). Effect of Silane Based Coupling Agents and Acrylic Acid Based Compatibilizer on Mechanical Properties of Oil Palm Empty Fruit Bunch Filled High Density Polyethylene Composites. *Journal Applied Polymer Science*. 68: 2189-2203.
- Mohd Ishak, Z.A., Ishiaku, U.S. and Kocsis, J. K. (2000). Hygrothermal Aging and Fracture Behaviour of Short-Glass-Fibre-Reinforced Rubber–Toughened Poly(butylenes terephthalate) Composites. *Composite Science and Technology*. 60: 803-815.
- Montaudo, G. and Puglisi, C. (1991).Evolution of Aromatics in the Thermal Degradation of Poly(vinyl chloride) : A Mechanistic Study. *Polymer Degradation and Stability*. 33: 229-262.
- Morten-Jones, D.H.(1993). Polymer Processing. London : Chapmman & Hall.
- Murphy, J. (2001). *Additives for Plastics Handbook*. 2nd Edition. UK:Elsevier Science Ltd.
- Myers, G.E., Chahyadi, I.S., Coberly, C.A. and Ermer, D.S.(1991). Wood Flour/ Polypropylene Composites: Influence of Maleated Polypropylene and Process and Composition Variables on Mechanical Properties. *International Journal of Polymeric Materials*. 15: 21-44.
- Nabi Saheb. D. and Jog. J.P. (1999). Natural Fibre Polymer Composites: A review. Advances in Polymer Technology. 18(4): 351-363
- Nakamura,Y., Fukuoka,Y., and Iida, T. (1998) . Tensile Test of Poly(vinyl chloride) Filled with Ground Calcium Carbonate Particles. *Journal of Applied Polymer Science*. 70: 311-316.
- Naqvi, M.K. and Sen, A.R. (1991). Thermal Stability and Thermal Characteristics of PVC/cis-PBR Blends. *Polymer Degradation and Stability*. 33: 367-375.
- Newman, S. and Strella, S.(1965).Stress-strain Behaviour of Rubber-Reinforced Glassy Polymers. *Journal of Applied Polymer Science*.9: 2297-2309.
- Nguyen, T., Zavarin, E.and Barrall, E.M. (1981). Thermal Analysis of Lignocellulosic Materials. Part 1. Journal Macromolecular Science- Rev. Macromolecular Chemistry. C20(1): 1-65.
- Nielsen, L.E. (1966). Simple Theory of Stress-Strain Properties of Filled Polymers. Journal of Applied Polymer Science. 10(1): 97-103.
- Nielsen, L.E. (1974). *Mechanical Properties of Polymers and Composites*, Vol 2. New York: Marcel-Dekker.

- Nicolais, L. and Narkis, M.(1971). *Polymer Engineering Science*. 11:194. In : Gupta and Punawar (1984). Tensile Yield Behaviour of PP and SEBS Blends. *Journal of Applied Polymer Science*. 29: 3513-3531.
- Okieimen, F.E. and Eromonsele, O.C. (2000). Thermal Stabilization of PVC with Khaya Seed Oil: Thermogravimetic Studies. *Journal of Applied Polymer Science*. 77(7): 1432-1438.
- Owen, E.D.(1989). *Degradation and Stabilisation of PVC*. New York:Elsevier Applied Science Publisher.
- Parey, J. and Menges, G. (1981). PVC- Gelation Model. *Journal of Vinyl Technology*. 3: 152-156.
- Pavia, D.L., Lampman, G.M. and Kriz, G.S.(1979). Introduction to Spectroscopy: A Guide for Students of Organic Chemistry. Philadelphia: Saunders College Publishing.
- Pavlinec, J., Lazar, M. and Csomorova, K. (1997). Thermal Degradation of Multilayer Methacrylate-Acrylate Perticle-Bead Polymer Powders and Melts. *Polymer Degradation and Stability*. 55: 65-71.
- Pedersen, T.C. (1984). Process and Material Considerations in the Industrial Application of Lubricants in Rigid PVC Extrusion. *Journal of Vinyl Technology*. 6 (3):104-109.
- Pedro, B.M.A, Monteiro, E.E.C. and Dweck, J. (2001). PVC and Agalmatolite Composite Characterization. *Polymer Testing*. 20: 269-273.
- Penn, W.S. (1971). PVC Technology. London : Applied Science Publishers Limited.
- Peng, L.C.(2002). Influence of Process Variables on Totally Chlorine Free Dissolving
 Pulp From Oil Palm Lignocellulosic as Evaluated by Response Surface
 Methodology. Universiti Sains Malaysia. Ph.D. Thesis.
- Peters, B. and Bruch, C. (2001). A Flexible and Stable Numerical Method for Simulating the Thermal Decomposition of Wood Particles. *Chemosphere*. 42: 481-490.
- Petrich, R.P.(1973). Impact Reinforcement of Poly(vinyl chloride). *Polymer Engineering and Science*.13(4): 248-254.
- Pfening, J.L.G. and Dunkelberger, D.L. (1986). Effect of Acrylic Processing Aids on PVC Die Swell. *J. of Vinyl Technology*. 8 (3): 126-131.

- Portingell, G.C. (1982). Processing Properties. In Butters, G. Particulate Nature of PVC –Formation, Structure and Processing. New York : Marcel Dekker. 135-227
- Povolo, F., Schwartz, G. and Hermida, E.B.(1996). Temperature and Strain Rate Dependence of the Tensile Yield Stress of PVC. *Journal of Applied Polymer Science*. 61:109-117.
- Porter, R.S. and Johnson, J.(1966). In : Terselius, B. and Jansson, J.F. (1984).Gelation of PVC, Part 3: Effect on Tensile Properties. *Plastics and Rubber Processing and Applications*. 4(4): 291-299.
- Prasad, S.V., Pavithran, C. and Rohatgi, P.K.(1983). Alkali Treatment of Coir Fibres for Coir-Polyester Composites. *Journal of Materials Science*. 18: 1443-1454.
- Raghi, S.E, Zahran, R.R. and Gebril, B.E.(2000). Effect of Weathering on some Properties of Poly(vinyl chloride)/Lignin Blends. *Materials Letters*.46: 332-342.
- Raj, R.G., Kokta, B.V. Groleau, G. and Daneault, C. (1989). Use of Wood Floor Fiber as a Filler in Polyethylene: Studies on Mechanical Properties. *Plastics and Rubber Processing and Applications*. 11: 215-221.
- Raj, R.G., Kokta, B.V. Groleau, G. and Daneault, C. (1990). The Influence of Coupling Agents on Mechanical Properties of Composites Containing Cellulosic Fillers. *Polymer-Plastics Technology and Engineering*. 29(4):339-353.
- Raj. R.G., Kokta B.V., Maldas, D. and Daneault, C.(1989).Use of Wood Fibers in Thermoplastics.VII. The Effects of Coupling Agents in Polyethylene-Wood Fiber Composites. *Journal of Applied Polymer Science*. 37: 1089-1103.
- Robinovic, I.S. (1983). The Acrylic Weatherable Impact Modifier for PVC, *Journal* of Vinyl Technology. 5(4): 179-182.
- Robinovitch, E.B., Lacatus, E. and Summers, J.W. (1984). The Lubrication Mechanism of Calcium Stearate/Paraffin Wax Systems in PVC Compounds. *Journal of Vinyl Technology*. 6(3): 98-103.
- Rowell, R.M. (1997). Chemical Modification of Agro –Resources for Property Enhancement. In Rowell, R.M., Young, R.A. and Rowell, J.K. Paper and Composites from Agro-Based Resources. London : Lewis Publishers. 351-375.
- Rozman, H.D., Lai C.Y., Ismail, H. and Mohd Ishak, Z.A. (2000). The Effect of Coupling Agents on the Mechanical and Physical Properties of Oil Palm

Empty Fruit Bunch-Polypropylene Composites. *Polymer International*. 49: 1273-1278.

- Rozman, H.D., Peng, G.B. and Mohd Ishak, Z.A. (1998). The Effect of Compounding Techniques on the Mechanical Properties of Oil Palm Fruit Bunch-Polypropylene Composites. *Journal of Applied Polymer Science*. 70: 2647-2655.
- Rozman, H.D., Tan, K.W., Kumar, R.N. and Abu Bakar A. (2001). The Effect of Hexamethhylene Diisocyanate Modified ALCELL Lignin as a Coupling Agent on the Flexural Properties of Oil Palm Empty Fruit Bunch-Polypropylene Composites. *Polymer International*. 50: 561-567.
- Rozman, H.D., Tay, G.S., Kumar, R.N., Abusamah, A., Ismail, H and Mohd Ishak, Z.A.(2001). The Effect of Oil Extraction of the Oil Palm Empty Fruit Bunch on the Mechanical Properties of Polypropylene-Oil Palm Empty Fruit Bunch-Glass Fibre Hybrid Composites. *Polymer-Plastics Technology and Engineering*. 40 (2): 103-115.
- Saad, A.L.G., Sayed, W.M., Ahmed, M.G.M. and Hassan, A.M.(1999). Preparation and Properties of Some Filled Poly (vinyl Chloride) Compositions. *Journal of Applied Polymer Science*.73: 2657-2670.
- Sameni, J.K., Ahmad, S.H. and Zakaria, S.(2003). Performance of Rubberwood Fiber-Thermoplastics Natural Rubber Composites. *Polymer-Plastics Technology* and Engineering. 42(1): 139-152.
- Sanadi, A.R., Young, R.A., Clemons, C. and Rowell, R.M.(1994). Recycled Newspaper Fibres as Reinforcing Fillers in Thermoplastics: Part I-Analysis of Tensile and Impact Properties in Polypropylene. *Journal Reinforced Plastics* and Composites.13:54-67.
- Sapieha, S., Pupo, J.F. and Schreiber, H.P. (1989). Themal Degradation of Cellulose-Containing Composites During Processing. *Journal of Applied Polymer Science*. 37: 233-240.
- Sarani, Z., Hazira, H., July Andrianny, M. and Mohamad, D. (2001). Chemical Modification on Lignocellulosic Polymeric Oil Palm Empty Fruit Bunch for Advanced Material. Advances in Polymer Technology. 20 (4): 289-295.
- Sarmoria, C. and Enrique, V. (2004). Model for a Scission-Crosslinking Process with both H and Y Crosslinks. *Polymer*.44: 5661-5669.

- Sarvetnick, H.A.(1969). *Polyvinyl Chloride*. London: Reinhold Plastics Applications Series.
- Schlumpf, H.P.(1993). Fillers and Reinforcement. In : Wee, Y.J. (2001). Effect of Calcium Carbonate Fillers on Mechanical Properties of Impact-Modified PVC-U. Universiti Teknologi Malaysia : Thesis MSc.
- Schramm, G. (1965). Measuring The Fusion Rate of Rigid PVC Dry Blend. International Plastic Engineering. 1-7.
- Schwartz, W.T. (1987). The Effect of Fillers on the Impact Properties of Oxytuf High Impact PVC. *Journal of Vinyl Technology*. 9 (2): 46-52.
- Shackelford, J.F. (1996). *Introduction to Materials Science for Engineers*. 4th Edition. London: Prentice Hall Inc.
- Siegmann, A. and Hiltner, A.(1984). Impact Modification of Poly(vinyl chloride) with Chlorinated Polyethylene I. Blend Morphology. *Polymer Engineering and Science*. 24(11): 869-876.
- Sivaneswaran, K.K. (2002). Effect of Rice Husk Fillers on Mechanical Properties of ABS Impact Modified PVC-U. Universiti Teknologi Malaysia: Thesis MSc.
- Smith, W.F. (1996). *Principle of Materials Science and Engineering*.3rd Edition. New York: McGraw-Hill, Inc.
- Sombatsompop, N., Chaochanchaikul, K., Phromchirasuk, C. and Thongsang, S.(2003). Effect of Wood Sawdust Content on Rheological and Structural Changes, and Thermo-Mechanical Properties of PVC/Sawdust Composites. *Polymer International.* 52: 1847-1855.
- Sombatsompop, N. and Chaochanchaikul, K. (2004). Effect of Moisture Content on Mechanical Properties, Thermal and Structural Stability and Extrudate Texture of Poly(vinyl chloride)/Wood Sawdust Composites. *Polymer International*. 53: 1210-1218.
- Sombatsompop, N. and Phromchirasuk, C.(2004). Effects of Acrylic-Based Processing Aids on Processibility, Rheology, Thermal and Structural Stability, and Mechanical Properties of PVC/Wood-Sawdust Composites. *Journal of Applied Polymer Science*. 492: 782-790.
- Soni, P.L., Geil, P.H., and Collin E.A. (1981). Microdomain Structure in Plasticized PVC. J. Macromol. Sci.-Phys. B20 (4): 479-482.

- Sreekala, M.S., Thomas, S. and Neelakantan, N.R.(1996/1997). Utilization of Short Oil Palm Empty Fruit Bunch Fiber(OPEFB) as a Reinforcement in Phenol-Formaldehyde Resins: Studies on Mechanical Properties. *Journal of Polymer Engineering*. 16: 265-294.
- Sreekala, M.S. and Thomas, M.S.(2003). Effect of Fibre Surface Modification on Water-Absorption Characteristics of Oil Palm Fibres. *Composites Science and Technology*. 63: 861-869.
- Stark, N.M. and Matuana, L.M.(2004). Surface Chemistry Changes of Weathered HDPE/wood-flour Composites Studied by XPS and FTIR Spectroscopy. *Polymer Degradation and Stability*. 86(1):1-9.
- Stevenson, J.C.(1995). Impact Modifiers: Providing a Boost to Impact Performance. Journal of Vinyl and Additive Technology. 1(1): 41-45.
- Stokke, D.D.(2002). Fibre/Plastics Composite Materials: An Open House Biocomposite Group, Centre for Crops Utilization Research. January 23. Iowa State University, Ames, Iowa.
- Streitwieser, A. and Heathcook, C. (1981). *Introduction to Organic Chemistry*, 2nd Edition. New York:Macmillan Pub. Co., Inc.
- Strong, A.B.(2000). *Plastics-Materials and Processing*. 2nd Edition. London: Prentice Hall.
- Summers, J.W. (1981). The Nature of PVC Crystallinity-the Microdomain Structure. *Journal. of Vinyl Technology*.3(2):107-110.
- Summers, J.W.(1982). Poly(vinyl chloride) Processing Morphology. *ANTEC* 1982:501-503.
- Takase, S. and Shiraishi, N.(1989). Studies Composites from Wood and Polypropylene.II. *Journal of Applied Polymer Science*.37: 64-659.
- Teh., J.W., Rudin, A., Cooper, A.A. and Batisite J.L.H. (1989). Estimation of the Degree of Fusion of Rigid PVC from Thermal Analysis Measurements." *Makrmol. Chem., Macromol. Symp.* 29: 123-132.
- Terselius, B. and Jansson, J.F. (1984). Gelation of PVC, Part 3: Effect on Tensile Properties. *Plastics and Rubber Processing and Applications*. 4: 291-299.
- Terselius, B. and Jansson, J.F. (1985). Gelation of PVC. Part 5 : Effect on Structure and Physical Properties. *Plastics and Rubber Processing and Applications*. 5:193-201.

- Terselius, B. and Jansson, J.F. and Bystedt, J. (1981).Gelation of Rigid PVC-Pipes. J. Macromol. Sci.-Phys. B20: 403-414.
- Terselius, B. and Jansson, J.F.(1984). Gelation of PVC, Part 2 : Effect on Internal Pressure Resistance. *Plastics and Rubber Processing and Applications*. 4: 285-290.
- Terselius, B., Jansson, J.F. and Bystedt, J. (1985). Fracture Toughness of Rubber Modified PMMA.*Plastics and Rubber Processing and Applications*. 5: 1-7.
- Thiebaud, S., Borredon, M.E., Baziard, G. and Senocq, F. (1997). Properties of Wood Esterified by Fatty-Acid Chlorides. *Bioresources Technology*. 59: 103-107.
- Titow,W.V. (1991). *PVC Plastics: Properties, Processing and Applications*. New Yorks: Elsevier Applied Science Publisher.
- Torikai, A. and Hirose, H. (1999). Accelerated Photodegradation of Poly(vinyl chloride). *Polymer Degradation and Stability*.63: 441-445.
- Truss, R.W.(1985). Understanding Brittle Failure of uPVC (Unplasticised Polyvinyl Chloride) pipe. *Pure and Applied Chemistry*. 57(7): 993-1000.
- Uitenham, L.C. and Geil, P.H. (1981). Processing, Morphology and Properties of PVC. *Macromolecules Science*, *Physic*. B20(4): 593-622.
- Varma, A.J., Deshpande, S.V. and Kondapalli, P. (1999). A Comparative Study of the Thermal Behaviour of PVC: A Series of Synthesized Chlorinated Polyethylene and HDPE. *Polymer Degradation and Stability*. 63(1): 1-3.
- Ward, M. (1971). The Yield Behaviour of Polymers. *Journal of Materials Science*. 6. 1397-1417.
- Wan, C., Qiao, X., Zhang, Y. and Zhang, Y.(2003). Effect of Epoxy Resin on Morphology and Physical Properties of PVC/Organophilic Montmorillonite Nanocomposites. *Journal of Applied Polymer Science*. 89: 2184-2191.
- Wan, C., Qiao, X., Zhang, Y. and Zhang, Y.(2003). Effect of Different Clay Treatment on Morphology and Mechanical Properties of PVC-Clay Nanocomposites. *Polymer Testing*. 22: 453-461.
- Wee, Y.J. (2001). Effect of Calcium Carbonate Fillers on Mechanical Properties of Impact-Modified PVC-U. Universiti Teknologi Malaysia : Thesis MSc.
- Wenguang, M. and La Mantia, F.P. (1996). Processing and Mechanical Properties of Recycled PVC and Homopolymer Blends with Virgin PVC. Journal of Applied Polymer Polymer Science. 59(5): 759-767

- Wiebking, H.(1986). *The Use of Mineral Fillers in PVC: A Review of Principles*. Pennsylvania:Pfizer Inc. Easton.155-163.
- Wimolmala, E., Wootthikanokkhan, J. and Sombatsompop, N. (2001). Effects of Composition and Temperature on Extrudate Chracteristics, Morphology, and Tensile Properties of Acrylic Rubber-Blended PVC. *Journal of Applied Polymer Science*. 80: 2523-2534.
- Whelan, T. and Goff, J.(1989). Unplasticised Poly(vinyl Chloride (uPVC; RPVC; PVC-U). British Plastics and Rubber. April 1989: 51-56.
- Woodhams, R.T., Thomas, G. and Rodgers, D.K.(1984). Wood Fibres as Reinforcing Fillers for Polyolefins. *Polymer Engineering and Science*. 24. 1166-1171.
- Wu, J., Yu, D., Chan, C.M., Kim,J. and Mai, Y.W.(2000). Effect of Fibre Pretreatment Condition on the Interfacial Strength and Mechanical Properties of Wood Fibre /PP Composites. *Journal of Applied Polymer Science*.76: 1000-1010.
- Wypych, J.(1985). Polyvinyl Chloride Degradation. New York:Elsevier Science Publishers.
- Xanthos, M. (1983). Processing Conditions and Coupling Agent Effects in PP/Wood Flour Composites. *Plastics and Rubber Processing and Applications*. 3: 223-228.
- Xie, X.L, Li, B.G., Pan, Z.R., Li, R.K.Y. and Tjong, S.C.(2001). Effect of Talc/MMA in situ Polymerization on Mechanical Properties o PVC-Matrix Composites. *Journal of Applied Polymer Science*. 80: 2105-2112.
- Yagoubi, N., Baillet, A., Legendre, B., Raaron, A. and Ferrier, D.(1994). Beta-Radiation Effects on PVC Materials: Methodology for Studying Chemical Modifications. *Journal of Applied Polymer Science*. 54: 1043-1048.
- Yarahmadi, N., Jakubowicz, I. and Gevert, T. (2001). Effects of Repeated Extrusion on the Properties and Durability of Rigid PVC Scrap. *Polymer Degradation and Stability*. 73: 93-99.
- Yap, M.G.S., Que, Y.T., Chia, L.H.L., and Chan, H.S.O.(1991). Thermal Properties of Tropical Wood-Polymer Composites. *Journal of Applied Polymer Science*.43: 2057-2065.
- Zaini, M.J., Ismail, Z., Fuad, M.Y.A. and Mustafah, J.(1994). Application of Oil PalmWood Flour as Fillers in Polypropylene. *Polymer Journal*. 26(5): 637-642.

Zaini, M.J., Fuad, M.Y.A., Ismail, Z., Mansor, M.S., and Mustafah, J. (1996). The Effect of Filler Content and Size on the Mechanical Properties of Polypropylene/Oil Palm Wood Flour Composites. *Polymer International*. 40(1): 51-55.