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ABSTRACT 

 

 

 

This thesis discusses the application of Real Time Optimisation (RTO) in 

improving process plant profitability.  The RTO cycle consisting of five major 

components, namely, plant model in steady state and dynamic modes, steady state 

detection, data reconciliation, gross error detection and economic optimisation 

routines were developed and tested on a selected base–case operating condition of a 

fatty acid fractionation (FAF) process.  The cycle of RTO implementation began 

with collection of selected process data from the plant, represented by a dynamic 

simulation model developed using HYSYS.PlantTM version 2.4.  The measured data 

were then evaluated by the steady state detection mechanism to ascertain that the 

process had reached steady state operating condition prior to the evaluation by the 

data reconciliation and gross error detection stages.  Following these data validation 

phases, the search for optimal operating conditions was executed by the 

HYSYS.PlantTM optimiser, facilitated by the steady state model of the plant.  

Successful implementation with profit improvement of 5.61% over the base-case 

condition was obtained.  Larger profitability was difficult to realise due to tight 

constraints imposed on this low pressure fractionation plant.  The RTO scheme was 

then tested for robustness by introducing four types of process uncertainties.  These 

were the variation in product prices, measurement noise, leakage in process streams 

and process disturbances.  In all cases, errors introduced by these uncertainties were 

successfully detected and rectified and successful process optimisations were 

obtained.  The results obtained in this study proved the capability of the RTO scheme 

in improving the profitability of process plant operation.   
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ABSTRAK 

 

 

 

 Tesis ini membincangkan penggunaaan pengoptimuman masa nyata (RTO) 

dalam meningkatkan keuntungan loji proses.  Kitaran RTO yang mempunyai 5 

komponen utama, iaitu model loji dalam bentuk dinamik dan keadaan mantap, 

pengesanan  keadaan mantap, penyesuaian data, pengesanan ralat kasar dan 

pengotimuman ekonomi telah dibangun dan diuji ke atas loji asid lelemak pada 

keadaan operasi kes asas yang dipilih.  Pelaksanaan kitaran RTO bermula dengan 

pengumpulan data pembolehubah yang dipilih dari loji yang diwakili oleh model 

penyelakuan dinamik yang dibangunkan menggunakan perisian HYSYS.PlantTM 

versi 2.4.  Data yang diukur ini dinilai oleh pengesan keadaan mantap bagi 

memastikan proses telah mencapai keadaan mantap sebelum penyesuaian data dan 

pengesanan ralat kasar dilaksanakan.  Ekoran daripada fasa validasi data ini, 

pencarian keadaan optimum dilaksanakan dengan pengoptimum HYSYS.PlantTM 

dengan dibantu oleh model kedaan mantap.  Kejayaan dicapai dalam perlaksanaan 

tersebut dan peningkatan keuntungan sebanyak 5.61% daripada operasi keadaan asas 

telah dicapai.  Keuntungan yang lebih besar sukar untuk dicapai kerana loji 

pemecahan asid lelemak ini beroperasi pada tekanan rendah dan tertakluk kepada 

kekangan yang ketat.  Seterusnya, ketegapan skim RTO ini diuji dengan 

memperkenalkan 4 jenis ketidakpastian proses yang terdiri daripada variasi dalam 

harga produk, hingar pengukuran, kebocoran dalam aliran proses, dan gangguan 

proses.  Dalam semua kes, ralat yang dihasilkan oleh ketidakpastian proses berjaya 

dikenalpasti dan pengoptimuman proses berjaya dicapai.  Keputusan yang terhasil 

dalam kajian ini telah membuktikan keupayaan skim RTO dalam meningkatkan 

keuntungan operasi loji proses.    
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Challenges in Plant Operations 

 

Process industries have been undergoing substantial changes in order to cope 

with new challenges resulting from high energy and manpower costs, strict safety 

and environmental regulations, stringent product specification and scarcity of 

reduced variation feedstock as well as stiff competition from new players.  The 

challenge is particularly serious for plants producing intermediate products where the 

overall economic potentials are low with small differences between products and raw 

materials pricing.  An increase in raw materials prices and utility costs can 

sometimes push the plant to operate at a very slim profit margin which may in turn, 

lead to overall losses if not properly managed.  

 

The situation is further exacerbated by the fact that most of these large scale 

chemical processes are time–varying in nature.  Process changes such as heat 

exchanger fouling, reactor catalyst decay and feedstock composition variations 

contribute to the complexity of the process characteristics.  Consequently, process 

plants of this nature are often operated near various constraints governed by 

limitations of process units as well as the dynamics of the process involved.  It is also 

quite common for a process plant operating in the vicinity of intersections among 

constraints in order to push for higher economic returns.  Such practices impart 

serious intricacies to plant operators as dealing with simultaneous multiple 

constraints is not easy to realise.  This demands better practices in plant operations.  



 2

Along with the development of computer and software technologies, 

advanced process control (APC) and real-time optimisation (RTO) have been 

brought forward for chemical industries as potential solutions to the increasingly 

intense production challenges.  Whilst APC software concentrate on solving difficult 

control problems, RTO packages focus on the improvement of the overall economy 

of plant operations.  The aim of RTO is to search for optimal operating conditions so 

that the plant profitability is increased by reducing the operating costs.  Marlin and 

Hrymak (1997) listed the features of process plants that favour the application of 

RTO as follows: 

 Adjustable optimisation variables exist after higher priority safety, quality 

and production rate objectivities have been achieved. 

 Profit changes significantly as values of the optimisation variables are 

changed. 

 Disturbances occur frequently. 

 Determination of the proper values for the optimisation variables is too 

complex to be achieved by selecting from several standard operating 

procedures. 

 

RTO is also useful as it provides detailed operation information that can be 

highly valuable for plant improvement efforts especially during process 

debottlenecking and troubleshooting.  Abnormalities detected by the gross error 

detection mechanism, which is a part of the RTO package, may serve as a guide to 

the process and instruments engineers to troubleshoot the plant errors.  Process 

parameters estimated from the parameter estimation package facilitate process 

engineers to evaluate equipment conditions and to identify sources of problems.  

Based on these insights, maintenance can be planned and upgrading can be proposed. 

 

RTO moves processes from one steady state operating condition to another 

setting that are more profitable.  During operation, the RTO software runs a steady 

state model of the plant based on the current operating conditions to detect the 

desired steady state values of the process responses.  These, along with the actual 

operation data are used by the steady state detection mechanism to check whether or 

not the plant is at steady state.  This is then followed by two other data validation 
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stages known as data reconciliation and gross error detection where adjustment of 

measurements and rectification of gross errors are performed.  To facilitate the 

system to cope with changing operating conditions, the software is also supported by 

parameter estimation package that updates the model parameters.  All these features 

assist to achieve proper conditions required for economic optimisation to be 

executed.  When these are established, the optimisation algorithm then searches for 

the optimal operating setpoints to be implemented by the plant control system. 

 

 

 

1.2 Problem Statement 

 

In this research, a fatty acid fractionation (FAF) process in a local 

oleochemical plant located in Pasir Gudang, Johor is considered.  The plant produces 

various grades of fatty acids from palm kernel oil and palm hydrogenated stearine.  

Similar to other plants producing intermediate products, the profit margin is fairly 

small.  The use of multiple feedstock as well as fluctuations in raw material costs and 

product prices qualify the plant as a candidate for RTO implementations.  Here, the 

aim is to periodically push the plant profit to the most optimal operating zones so 

that overall profitability is periodically increased.    

 

 

 

1.3 Objectives and Scope of Work 

 

This research addresses issues relevant to the implementation of Real Time 

Optimisation (RTO) to the FAF process aiming at improving the plant economy.  

The scope of work covers:   

i. Development of steady state model of FAF process using HYSY.PlantTM 

software to support various aspects of RTO implementations.  

ii. Development of dynamic model of the FAF process using HYSY.PlantTM 

software to represent the process throughout the study. 
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iii. Development of steady state detection using the mathematical theory of 

evidence.   

iv. Development of data reconciliation using the weighted least square 

technique to ensure the measurements are consistent with the material and 

energy balances.   

v. Development of gross error detection using the Measurement Test (MT) 

method to eliminate gross error from the measurement.    

vi. Development of economic optimisation scheme based on the profit 

objective function to generate the optimal setpoints for the controllers. 

HYSYS.PlantTM optimiser is used and sequential quadratic programming 

(SQP) is chosen to solve the optimisation problem.   

 

In addition to HYSYS.Plant software used to generate both the dynamic and 

steady state plant operation data, MATLAB software is used for data validation 

stages. The required software integration can be implemented with the availability of 

specially built software interface drivers. 

 

 

 

1.4 Contribution of the Thesis 

 

This work addresses the development of real time optimisation (RTO) cycle 

for a tight profit margin process.  The cycle that consists of 5 major components, 

namely steady state and dynamic models, steady state detection, data reconciliation, 

gross error detection and economic optimisation was tested on a fatty acid 

fractionation plant, a process with some tight constraints and low operating pressure.  

Dynamic model was used to represent the real plant.  This is thought to be better than 

the typical strategy of using steady state model with noise added; to represent actual 

plant condition.  The performances of this RTO methodology were further tested by 

introducing some uncertainties that normally happen in the plant were studied. These 

include the measurement noises, process disturbances, process leakages and changes 

of product prices.    
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1.5 Layout of This Thesis  

 

The thesis is organised as follows.  Chapter 2 presents the theoretical 

foundations of various topics related to the research.  Chapter 3 discusses the 

development of the plant simulation and optimisation model of the FAF process.  

Chapter 4 describes the development of RTO components, which include the steady 

state detection, data reconciliation, gross error detection and the economic 

optimisation.  This is then followed by further discussions on the performance of 

RTO cycle when subjected to the uncertainties such as product price variation, 

measurement noises, and the process disturbances.  Finally, in Chapter 6 overall 

findings of the research are summarised, conclusions are drawn and recommended 

further works are listed. 
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