
A HYBRID PARALLEL GENETIC ALGORITHM FOR SOLVING JOB-SHOP 

SCHEDULING PROBLEMS 

GAN TECK HUI 

A thesis submitted in fulfilment of the 

requirements for the award of the degree of  

Master of Engineering (Electrical) 

Faculty of Electrical Engineering 

Universiti Teknologi Malaysia 

JULY 2005 



A Hybrid Parallel Genetic Algorithm For Solving Job Shop  
Scheduling Problems 

2004/2005

GAN TECK HUI 

V

Taman Megah ,Jalan Perak,C-707
Bukit Beruang ,75450

Melaka

Prof. Dr. Marzuki Khalid 

18 – 07- 2005 18 – 07- 2005 



“We hereby declare that we have read this thesis and in our 

opinion this thesis is sufficient in terms of scope and quality for the 

award of the degree of Master of Engineering (Electrical)” 

Signature     : .... .................................................. 

Name of Supervisor I  : .Prof. Dr. Marzuki Khalid............. 

Date       : .18 – 07 - 2005.............................. 

Signature       : ........................................................ 

Name of Supervisor II : .Prof. Madya. Dr. Rubiyah Yusof.. 

Date        : ..18 – 07 - 2005............................... 



BAHAGIAN A – Pengesahan Kerjasama* 

Adalah disahkan bahawa projek penyelidikan tesis ini telah dilaksanakan melalui 

kerjasama antara _______________________ dengan _______________________ 

Disahkan oleh: 

Tandatangan  : _________________________________  Tarikh :          _____________ 

Nama   : _________________________________ 

Jawatan  : _________________________________ 

(Cop rasmi) 

* Jika penyediaan tesis/projek melibatkan kerjasama. 

BAHAGIAN B – Untuk Kegunaan Pejabat Sekolah Pengajian Siswazah 

Tesis ini telah diperiksa dan diakui oleh: 

Nama dan Alamat Pemeriksa Luar   :.Prof. Dr. Abdul Razak bin Hamdan............     

      ..Jabatan Sains & Pengurusan System,….........  

..Fakulti Teknologi & Pengurusan System  

..UKM, 43600 UKM, Bangi....……………….. 

..Selangor Darul Ehsan......................... 

Nama dan Alamat Pemeriksa Dalam   :.Dr. Hj. Mohamed Khalil bin Hj.Mohd Hani.     

      ..Fakulti Kejuruteraan Elektrik, UTM........... 

..81310 UTM Johor, Malaysia...................... 

Nama Penyelia Lain (jika ada)    :...........................................................................     

      ........................................................................... 

      ........................................................................... 

Disahkan oleh Penolong Pendaftar di SPS: 

Tandatangan : ………………………………………………………. Tarikh :………………. 

Nama           :………………………………………………………..



ii

I declare that this thesis entitled “A Hybrid Parallel Genetic Algorithm for Solving Job-Shop 
Scheduling Problems” is the result of my own research except as cited in the references. The 
thesis has not been accepted for any degree and is not concurrently submitted in candidature 
of any other degree. 

Signature  : .................................................... 
Name    : ..Gan Teck Hui........................... 
Date    : ..18 – 07 - 2005...........................



iii

To My Beloved
Father, mother, brother and sisters 



iv

ACKNOWLEDGEMENT 

 In the preparation of this thesis, many people have contributed towards my 

understanding and thoughts. I wish to express my deepest gratitude to my thesis 

supervisor, Professor Dr. Marzuki Khalid and co-supervisor, Assoc. Prof. Dr. Rubiyah 

Yusof for their encouragement and guidance. I am also thankful to Mr. Tay Cheng San 

and Mr. Haruki Inoue for their valuable suggestions in this thesis. 

 Last but not least, I would like to express my appreciation toward all my family 

members, Ms. Yeo Lee Ling and all my colleagues who have provided assistance and 

showed their support when I needed them most. 



v

ABSTRACT 

The effort of searching an optimal solution for scheduling problems is 
important for real-world industrial applications especially for mission-time critical 
systems.  In such an environment, an optimal result should be obtained within a 
relatively reasonable time. Genetic algorithms (GA) have long been applied to the 
many scheduling problems especially for solving job shop scheduling problems. 
However there are several problems when implementing GA into job shop 
scheduling problem (JSSP) such as slow and premature convergence. GA on one 
single personal computer is very time consuming while harder problems need bigger 
population and this has translate directly into higher computational costs. Therefore, 
this research proposes a different approach in solving JSSP using GA. Instead of 
conventional approach of using “serial” GA on a single PC, this research looks into 
the possibility of using parallel and distributed computing techniques and parallel 
genetic algorithm (PGA) in solving the same problems. Island model is chosen in 
this research to suit the implementation of distributed computing environment. The 
proposed PGA is a combination of both Asynchronous Colony Genetic Algorithm 
(ACGA) and Autonomous Immigration Genetic Algorithm (AIGA). This hybrid 
PGA is originally applied to symmetric multiprocessor machine (SMP) by Haruki 
Inoue. This type of modeling of PGA is based on the biologically reported 
observation that isolated environments, such as islands, often produce animal species 
that are more specifically adapted to the peculiarities of their environments than 
corresponding areas of wider surfaces. This theory also led to the hypothesis that 
several competing subpopulations could be more search-effective than a wider one in 
which all the members are held together. Each “island” is a different type of serial 
GA which represents one PC. Each island is using a combination of different 
crossover operator (GOX, Giffler and Thompson (GT) Crossover) and selection 
method (random selection, roulette wheel selection) into different types of serial GA. 
Every “island” has a certain convergence point where the improvement of the 
population fitness is almost stagnant. Therefore to solve this kind of undesired 
situation; a more sophisticated idea is used in this coarse grained PGA. This model of 
parallelization introduces a migration operator that is used to send some individual 
from one “island” to another “island”. The individual can migrate to any other 
“island” at their own judgment. Communication overhead during migration process 
is reduced by implementing a global mailbox method. Results show that PGA with a 
combination of different types of GA that creates a partially isolated environment for 
each sub demes, allowing a wider and more effective search, has outperformed PGA 
with a single type of GA. This research does not consider network topology in the 
scope as the system is linked via office network. To further improve the robustness 
of the system in the future, functions such as process migration and parallel 
input/output - by migrating intensive I/O processes to file servers (rather than the 
traditional way of bringing data to the processes) should be developed.  



vi

ABSTRAK 

Usaha untuk mendapatkan penyelesaian yang optima untuk masalah 
penjadualan (scheduling) adalah sangat penting di dalam aplikasi dunia industri 
sebenar terutamanya sistem misi kritikal. Dalam situasi tersebut, keputusan yang 
optima sepatutnya dapat diperolehi dalam masa yang singkat. Algoritma Genetik 
(GA) telah lama diaplikasikan dalam banyak penyelesaian masalah penjadualan 
terutamanya untuk menyelesaikan masalah JSSP (job shop scheduling problems).
Walau bagaimanapun, masih terdapat banyak kelemahan apabila mengimplikasikan 
GA dalam JSSP seperti penumpuan (convergence) yang perlahan. Operasi GA 
menggunakan komputer peribadi tunggal memakan masa yang lama manakala 
masalah lebih sukar memerlukan populasi yang lebih kompleks. Oleh itu, 
penyelidikan ini mencadangkan satu pendekatan yang berbeza dalam menyelesaikan 
JSSP dengan menggunakan GA. Tesis ini menyiasat kemungkinan menyelesaikan 
masalah JSSP dengan teknik pemprosesan selari and PGA (parallel genetic 
algorithms). Model pulau (island model) telah dipilih sebagai model utama yang 
bersesuaian dengan teknik pemprosesan selari dalam tesis ini. PGA yang 
dicadangkan adalah merupakan gabungan dari ACGA (asynchronous colony genetic 
algorithm) dan AIGA (autonomous immigration genetic algorithm). PGA hibrid ini 
pernah diimplikasikan oleh Haruki Inoue pada SMP (symmetric multiprocessor 
machine). Model PGA ini adalah berdasarkan kepada pemerhatian biologi yang 
mengatakan bahawa dalam suasana terasing, pulau biasanya menghasilkan spesis 
haiwan yang mempunyai ciri-ciri tertentu yang bersesuaian dengan suasana pulau 
tersebut. Teori yang satu lagi mengatakan bahawa beberapa populasi yang kecil dan 
bersaing adalah lebih baik daripada satu populasi yang besar dalam proses mencari 
penyelesaian. Setiap “pulau” yang dicadangkan dalam penyelidikan ini 
menggunakan jenis GA yang berbeza. Setiap GA terdiri daripada gabungan operator 
pengabungan (crossover), cara pemilihan (selection) dan lain-lain yang berbeza. 
Tiap-tiap “pulau” mempunyai titik penumpuan di mana nilai fitness populasi menjadi 
statik. Oleh itu, untuk menyelesaikan masalah seperti ini, salah satu idea yang lebih 
canggih ialah menggunakan model PGA yang dicadangkan. Model PGA ini 
memperkenalkan satu operator penghijrahan yang digunakan untuk menghantar 
beberapa individu dari satu “pulau” ke “pulau” yang lain. Individu ini akan berhijrah 
ke “pulau” lain bergantung kepada keputusan masing-masing. Kos komunikasi 
semasa migrasi telah dikurangkan dengan satu teknik yang dipanggil “peti surat 
global” (global mail box method) Pengujian dengan konfigurasi PGA seperti 
dikatakan tadi telah mempercepatkan proses GA dan memendekkan masa yang 
diperlukan untuk memperolehi satu penyelesaian yang baik. Prestasi PGA dalam 
menyelesaikan JSSP adalah lebih baik berbanding PGA dengan hanya satu jenis GA.  
Untuk meningkatkan keupayaan system ini, fungsi seperti migrasi proses dan 
masukan/keluaran selari melalui migrasi masukan/keluaran intentif ke “server” fail 
harus dibangunkan. 



vii

TABLE OF CONTENTS 

CHAPTER TITLE PAGE

1 INTRODUCTION

1.1  Introduction 1

1.2  Literature Review 3

1.3  Objectives of Research 9

1.4  Scope of Research 9

1.5  Thesis Layout 9

2 GENETIC ALGORITHMS 

2.1  What are Genetic Algorithms 11

2.2  Basic Structure of a Genetic Algorithm 13

2.3  How Do Genetic Algorithms Work? 15

       2.3.1  Initialization 15

       2.3.2  Selection 16

       2.3.3  Reproduction 18

       2.3.4  Crossover Operator 18

       2.3.5  Inversion 20

       2.3.6  Mutation 20

       2.3.7  Evaluation 21

2.4  A Numerical Demonstration of a Simple Genetic Algorithms 

Example 

22

2.5  Advance Techniques in Genetic Algorithms 26

       2.5.1  Hybridization 27

       2.5.2  Fitness Technique 28



viii

                 2.5.2.1  Linear Scaling 28

                 2.5.2.2  Windowing 29

                 2.5.2.3  Linear Normalization 29

3 JOB SHOP SCHEDULING PROBLEMS 

3.1  General Introduction to Scheduling 31

3.2  Classifications of Scheduling Problems 33

       3.2.1   Single Machine Shop 33

       3.2.2   Parallel Machine Shop 34

       3.2.3   Flow Shop Scheduling 34

       3.2.4   Job Shop Scheduling 35

4 PARALLEL GENETIC ALGORITHMS 

4.1  Introduction to Parallel Genetic Algorithms 40

4.2  Parallel Computers 41

       4.2.1  Types of parallel computers 41

      4.2.1.1  Shared Memory Multiprocessor System  42

      4.2.1.2  Message-Passing Multicomputer 43

      4.2.1.3  Distributed Shared Memory Computer 45

       4.2.2  Programming Model 46

4.3  Classification of PGAs 48

       4.3.1  Global Parallelization 48

       4.3.2  Coarse Grained PGAs 50

       4.3.3   Fine Grained PGAs 55

       4.3.4   Hybrid Algorithms 58

4.4  Underlying Problems 59

       4.4.1  When should migration happen? (A migration 

timescale) 

59

       4.4.2  How often should migration happen? (Migration rate) 59



ix

       4.4.3  What is the best topology? 60

5 IMPLEMENTATION OF SEQUENTIAL GENETIC 

ALGORITHMS TO JOB SHOP SCHEDULING PROBLEMS 

5.1  Introduction 61

5.2  Assumption in JSSP 61

5.3  Applying Sequential Genetic Algorithms to JSSP 62

       5.3.1  Representation 62

       5.3.2  Fitness 63

       5.3.3  Building a Schedule 65

                 5.3.3.1  A Simple Example of Building a Schedule 68

       5.3.4  Selection Method 70

       5.3.5  Crossover Operator 71

                 5.3.5.1  Generalized Order Crossover (GOX) 71

                 5.3.5.2  Giffler and Thompson Algorithm-based 

Crossover (GT) 

73

       5.3.6  Random Number Generator 74

5.4  Types of Sequential GA Developed 74

       5.4.1  Conventional Genetic Algorithm 75

                 5.4.1.1  Combination 1 76

                 5.4.1.2  Combination 2 76

                 5.4.1.3  Combination 3 77

       5.4.2  Micro Genetic Algorithm 78

5.5  Experimental Setup 81

       5.5.1  Calibration Test I – Mutation Rate for Conventional

GA

81

       5.5.2  Calibration Test II – Mutation Rate for Micro GA 83

       5.5.3  Experiments on JSSP – Results and Discussions 85



x

6 IMPLEMENTATION OF PARALLEL GENETIC 

ALGORITHMS TO JOB SHOP SCHEDULING PROBLEMS 

6.1  Applying PGA to JSSP 91

6.2  Asynchronous Colony Genetic Algorithm (ACGA) 92

6.3  Autonomous Immigration Genetic  Algorithm (AIGA) 93

6.4  Hybrid PGA Model 95

6.5  Migration in Parallel Genetic Algorithms 98

6.6  Software Applied in Proposal PGA Implementation 98

6.7  Creating the Global Mailbox 99

6.8  Spawning 101

6.9  Message Passing Communication 101

6.10  Monitoring Program 102

6.11  PGA implementation – Experiments, Results and 

Discussions

103

         6.11.1  Experiment 1 – Effect of Migration Rates 104

         6.11.2  Experiment 2 – Comparing the performance on PGA 
and Sequential GA 

107

         6.11.3  Experiment 3 - Number of Running Sub-GAs 110

         6.11.4  Experiment 4- PGA with multiple combination of  

sub-GAs

111

7 CONCLUSION AND FUTURE WORKS 

7.1  Conclusion 113

7.2  Future Works 114

REFERENCES 116

Appendix A 124



xi

LIST OF TABLES 

TABLE NO. TITLE PAGE

2.1 Corresponding Term between Natural and Artificial 
Terminology. 

13

2.2 List of generated individuals 23

2.3 Evaluation results 23

2.4 Reproduction results 24

2.5 Reproduction results after mutation 26

2.6 Comparison of fitness values from the various techniques  30

3.1 Example of 3x3 JSSP 36

5.1 Basic structure of gene representation 63

5.2  Example of a 3 x 2 chromosome 65

5.3 List of dispatching rules 68

5.4 2x3 JSSP example 69

5.5 List of schedulable operation 69

5.6 List of dispatching rules 69

5.7 Conventional GA – combination 1 76

5.8 Conventional GA – combination 2 77

5.9 Conventional GA – combination 3 77



xii

5.10 Micro-GA – combination 1 80

5.11 Micro-GA – combination 2 80

5.12 Micro-GA – combination 3 80

5.13 Results for different combination of GA operator on 
conventional GA 

86

5.14 Results for different combination of GA operator on Micro- 
GA

87

6.1 Results for multiple migration rate 105



xiii

LIST OF FIGURES 

FIGURE NO. TITLE PAGE

1.1 Example of Disjunctive Graph Representation 4

2.1 Pseudo code of a simple genetic algorithm 13

3.1 Single Machine Shop 33

3.2 Parallel Machine Shop 34

3.3 Gantt chart for Machines 37

3.4 Gantt chart for Jobs 38

3.5 Venn Diagram 39

4.1 Conventional computer having a single processor and 
memory 

42

4.2 Traditional shared memory multiprocessor model 43

4.3 Message passing multiprocessor model  44

4.4 Shared memory multiprocessor implementation 46

4.5 MPMD structure 47

5.1 Flow chart of random schedule builder 66

5.2 Flow chart of schedule builder with heuristic 67

5.2 Parent 1 after step 1 71

5.4 Parent 2 after step 1 71



xiv

5.5 Parent 2 after step 2 71

5.6 Parent 1 marked for delete after step 3 72

5.7 Offspring produced after step 4 72

5.8 Offspring repaired after step 5 72

5.9 Parent 2 in case 2 72

5.10 Parent 1 marked for delete in case 2 72

5.11 Offspring produced in case 2 72

5.12 Flow chart of a conventional GA 75

5.13 Flow chart of implemented Micro-GA 79

5.14 Calibration test I result for conventional GA –
combination 1 

82

5.15 Calibration test I result for conventional GA –
combination 2 

82

5.16 Calibration test I result for conventional GA –
combination 3 

83

5.17 Calibration test II result for micro-GA –  
combination 1 

84

5.18 Calibration test II result for micro-GA –  
combination 2 

84

5.19 Calibration test II result for micro-GA –  
combination 3 

85

5.20 Differences between best and average results for 
combination (1) [conventional GA] 

88

5.21 Differences between best and average results for 
combination (2) [conventional GA] 

88

5.22 Differences between best and average results for 
combination (3) [conventional GA] 

89

5.23 Differences between best and average results for 
combination (1) [micro-GA] 

89



xv

5.24 Differences between best and average results for 
combination (2) [micro-GA] 

90

5.25 Differences between best and average results for 
combination (3) [micro-GA] 

90

6.1 Illustration of ACGA 93

6.2 AIGA structure 94

6.3 Hybrid PGA 96

6.4 Flow chart of hybrid PGA 97

6.5 Receive mail from global mailbox. 100

6.6 Delete and send mail to global mailbox 100

6.7 Retrieve information on the whole mailbox 101

6.8 Example of pvm_spawn function 101

6.9 Sending initialization process. 102

6.10 Example of receiving and unpacking the string function. 102

6.11 Process monitoring screen shot 103

6.12 Graphical monitoring program screen shot 103

6.13 Results of multiple migration rate on data sets 106

6.14 Experiments results on Ft10 107

6.15 Experiment results on La02 108

6.16 Experiment results on La03 109

6.17 Experiment results on La05 109

6.18 Experiment results of having multiple GAs on a single PC 110

6.19 Comparing results for PGA on Ft10 111

6.20 Comparing results for PGA on La02 112



xvi

6.21 Comparing results for PGA on La03 112



xvii

LIST OF SYMBOLS 

ACGA  - Asynchronous colony genetic algorithm 

AIGA   - Autonomous immigration genetic algorithm 

DNA   -  Deoxyribonucleic acid 

EDD   -  Earliest due date 

FCFS    -  First come first serve 

FIFO   -  First in first out 

GA   -  Genetic algorithms 

GOX   -  Generalized order crossover 

GT   - Giffler and Thompson based crossover 

GTA   -  Genetic tree algorithms 

JSS   - Job shop scheduling 

JSSP   -  Job shop scheduling problems 

LAN   - Local area network 

LOR   -  Least operation remaining 

LPT  - Longest processing time 

LWR    - Least work remaining 

MIMD  - Multiple inputs multiple data 

MOR   -  Most operation remaining 

MPI   - Message passing interface 

MPMD  -  Multiple programs multiple data 

MT   - Mersenne Twister 

MWR    -  Most work remaining 

NP   - Non-polynomial 

OR   -  Operation research 



xviii

PC   - Personal computer 

PGA   -  Parallel genetic algorithms 

PPSN   -  Parallel Problem Solving from Nature workshop 

PVM   - Parallel virtual machine 

RAM   - Random access memory 

RNA   -  Ribonucleic acid 

SMP  -  Symmetrical multiprocessors machine 

SPMD   -  Single program multiple data 

SPT   -  Shortest processing time 

maxC    -  Makespan 

avgf   -  Fitness average 

maxf   -  Fitness maximum 

minf   -  Fitness minimum 



CHAPTER 1 

INTRODUCTION

1.1 Introduction 

When the manufacturing world grows more sophisticated, the problems 

involved seem to be getting harder to solve as well. Many applications appear on the 

market as the need to use material and human resources more efficiently and 

effectively arise. The job shop scheduling problem (JSSP) is a notoriously difficult 

NP-hard combinatorial optimization problem. Similar to the process of the 

manufacturing world, it is consequently used as one benchmark for determining the 

effectiveness of local search algorithms. Each word in job shop scheduling has its 

own definition. Job is a piece of work that goes through a series of operations. Shop 

is a place for manufacturing or repairing of goods or machinery and scheduling is 

defined as a decision process aiming to deduce the order of processing. In short, job 

shop scheduling means an activity to allocate share resources over time to competing 

activities. 

In today competitive environment where speed and efficiency are the main 

factors, conventional search algorithms are no longer adequate in solving 

manufacturing problems such as flow-shop scheduling and job-shop scheduling 

effectively. Traditional methods lack intelligence, robustness and flexibility to solve 

these problems. As a result, researches are looking into the possibility of applying 

artificial intelligence (AI) techniques for such problems. Two prominent fields arose, 

connectionism (neural networking, parallel processing) and evolutionary computing. 

Both of these major fields are more well-known as artificial intelligence. An AI 

system usually is capable of doing three things: 1) stores knowledge; 2) applies the 



2

knowledge stored to solve problems; and 3) acquires new knowledge through 

experience (Haykin, 1994). AI can be categorized into many areas such as fuzzy 

logic, artificial neural networks, expert system, genetic algorithms, chaos theory, 

natural language system, etc. However, this thesis will only consider the area of 

evolutionary computing which is more well-known as genetic algorithms and genetic 

programming. 

Genetic algorithms are among the techniques that is getting a lot of attention 

from researchers in many fields of engineering and manufacturing especially in the 

area of scheduling. Genetic algorithms are basically algorithms based on natural 

biological evolution. The architecture of systems that implement genetic algorithms 

(GA) is more capable of adapting to a wide range of problems. Generally, a GA 

functions by generating a large set of possible solutions to a given problem. It then 

evaluates each of the solutions, and decides on a "fitness level” for each solution set. 

These solutions then breed new solutions. The parent solutions that were more "fit" 

are more likely to reproduce, while those that were less "fit" are more unlikely to do 

so. In essence, solutions are evolved over time.  

Genetic algorithms have been implemented successfully for many scheduling 

problems such as timetabling, one machine scheduling, job shop scheduling and so 

on. GA is preferred because of their capability of producing a good solution without 

searching through the whole search space by brute force like traditional method 

which might take a long time to reach an optimal solution with current computer 

power.

In some scheduling problems, especially in manufacturing industries, time 

taken to reach an optimal solution is a crucial factor. Therefore, it is essential to find 

ways of decreasing the processing time in finding the solution. One of the ways of 

achieving this requirement has led to the exploration of parallel genetic algorithms.  

Parallel genetic algorithm is another popular area of genetic algorithms. When we 

speak of parallel genetic algorithms, naturally it involves parallel computers as a 

mean of implementing the algorithms. Many types of parallel architectures have been 

introduced and employed by researchers. While some of the works use explicitly 



3

parallelization of the genetic algorithms (much like the parallelization of any 

algorithm), some introduce changes to the architectural composition the way genetic 

algorithms function. While parallelizing the genetic operations (e.g. crossover, 

mutation, evaluation) over the population is an example to the efforts of the first 

kind, population migration is a good example to the second kind. (Onur, 2002).  

1.2 Literature Review 

From our review, many methods have been used to solve JSSP. For example, 

mathematical programming has long been applied extensively to job shop scheduling 

problems. Problems are normally formulated using integer programming, mixed-

integer programming, linear programming and dynamic programming. However, the 

use of these approaches has been limited because scheduling problems belong to the 

class of NP-complete problems.  

According to Balas (1969) and Roy et al (1964) the JSSP can be represented 

with a disjunctive graph. The disjunctive graph G = (N, A, E) is defined as follows: 

N contains nodes representing all operations, A contains arcs connecting consecutive 

operations of the same job, and E contains disjunctive arcs connecting operations to 

be processed by the same machine. A disjunctive arc can be settled by either of its 

two possible orientations. The construction of a schedule will settle the orientation of 

all disjunctive arcs so as to determine the sequences of operation on same machines. 

Once a sequence is determine for a machine, the disjunctive arcs connecting 

operations to be processed by the machine will be replaced by the usual (oriented) 

precedence arrow, or conjunctive arc. Figure 1.1 illustrates the disjunctive graph for 

a three-job three machine instance, where each job consists of three operations. 

Since the job shop scheduling problem is to find the order of the operations 

on each machine that is, to settle the orientation of the disjunctive arcs such that the 

resulting graph is acyclic (there are no precedence conflicts between operations ) and 

that the length of the maximum weight path between the start and end nodes is 



4

minimal. The length of a maximum weight (or longest) path determines the 

makespan. However, when come to flexibility and practicability, this method has 

some disadvantages as the data in each node of the arc is fix and cannot be change 

thus making it not flexible enough for real world application.

0 4 5 6

321

7 8 9

1
0

 Figure 1.1 Example of disjunctive graph representation 

Using heuristic rules in solving JSSP is not new. The heuristic procedures for 

a job-shop problem can be roughly classified into two classes: one pass heuristic and 

multi-pass heuristic. Base on priority dispatching rules, one pass heuristic builds up a 

single complete solution by fixing one operation at a time in the schedule. This type 

of conventional heuristic is fast and usually is used to find solutions that are not too 

difficult. While multi-pass heuristic is simply the combination of multiple one pass 

heuristics in order to obtain better schedules at some extra computational cost. 

On the other hand, dispatching rules have been applied consistently to 

scheduling problems. They are procedures designed to provide good solutions to 

complex problems in real-time. The terms such as dispatching rule, scheduling rule, 

sequencing rule, or heuristic are often used synonymously in this area of research (J. 

Blackstone et al, 1982). Dispatching rules are named according to their performance 

criteria. D. Wu (1987) categorized dispatching rules into 3 classes. Class 1 contains 

simple priority rules, which are based on information related to the jobs. Class 2 

consists of combinations of rules from class one. The particular rule that is 



5

implemented can now depend on the situation that exists on the shop floor. Class 3 

contains rules that are commonly referred to as Weight Priority Indexes. This 

heuristic is applied in this thesis. 

The algorithms of Giffler and Thompson (1960) can be considered as basic of 

all priority rules based heuristics. Giffler and Thompson have proposed algorithms 

for active and non-delay schedules generation. The algorithms are based on a tree-

structured approach. The nodes in the tree correspond to partial schedules, the arcs 

represent the possible choices and the leaves of the tree are the set of enumerated 

schedules. The algorithm essentially identifies all processing conflicts when a partial 

schedule first generated and an enumeration procedure is used to resolve the conflicts 

in all possible ways at each consecutive stage. By contrast, heuristic resolve there 

conflicts with priority dispatching rules; that is they specify a priority rule for 

selecting one operation among the conflicting operations. At each stage, a list of 

schedulable operations is generated. The list of operations is determined from the 

precedence structure. The valid operations (schedulable operations) are the 

operations with immediately scheduled predecessors which can be simply 

determined from the precedence structure. An extensive summary and discussion is 

being published by Panwalkar and Iskander (1977) and Haupt (1989).

Randomized heuristic as what it sounds like is based on the idea of randomly 

selecting a dispatching rule from a family of heuristic at each stage. At each selection 

of an operation, this algorithm will choose a dispatching rule randomly throughout an 

entire schedule generation. This algorithm is an early attempt to provide more 

accurate solution (Baker, 1974). Morton and Pentico (1993) proposed a guided 

random approach that used an excellent heuristic to explore the problem and provide 

good guidance as to where to search.

For NP-hard problem such as JSSP, neighborhood search methods are very 

popular. Neighborhood search methods have been proven to provide good solutions 

and have the potential to be enhanced when combined with other heuristics. One of 

the first neighborhood procedures was developed by L. Wilkerson and J. Irwin 

(1971). This method iteratively added small changes (“perturbations”) to an initial 



6

schedule. Having the similar concept with hill climbing, these techniques continue to 

perturb and evaluate schedules until the termination condition is reached. Popular 

techniques such as Tabu search, simulated annealing, and genetic algorithms belong 

to this family. 

The concept of Tabu search (F. Glover, 1996) is to explore the search space 

of all feasible scheduling solutions by a sequence of moves. Similar to gradient-

based techniques, this method performs its search by moving from one schedule to 

another schedule, evaluating all candidates and selecting the best available. Those 

moves that trap the search at a local optimum, or lead to cycling (repeating part of 

the search) are classified as tabu (forbidden). These moves are put on the Tabu List 

that built up from the history of moves used during the search. Exploration of new 

search space is forced by these tabu moves until the old solution area (e.g., local 

optimum) is left behind. Another essential element in tabu search is that of freeing 

the search by a short term memory function that provides “strategic forgetting”. 

Adaptive Memory Programming (AMP) is the more advanced framework of the 

Tabu search methods. Tabu search methods have been applied successfully to 

scheduling problems and as solvers of mixed integer programming problems. Tabu 

search has difficulty in satisfying JSSP problem with high constraints and large 

neighborhood.

Simulated annealing is based on the analogy to the physical process of 

cooling and recrystalization of metals. Simulated annealing has three key elements: 

current state of the thermodynamic system, energy equation and ground state. These 

three elements are analogous to current scheduling solution, objective function, and 

the global optimum respectively. In addition to the global energy J, there is a global 

temperature T, which is lowered as the iterations progress. Using this analogy, the 

technique randomly generates new schedules by sampling the probability distribution 

of the system [S. Kirkpatrick et al, 1983]. Since increases of energy can be accepted, 

the algorithm is able to escape local minima. Simulated annealing has been applied 

effectively to scheduling problems. A. Vakharia and Y. Chang (1990) developed a 

scheduling system based on simulated annealing for manufacturing cells.  



7

Fuzzy set theory being useful in modeling and solving problem with 

uncertainty has been used to solve job shop scheduling problem with uncertain 

processing time, constraint and setup time. The uncertainties in the problems are 

represented by fuzzy memberships that are described by using the concept of an 

interval of confidence. Fuzzy logic techniques are usually integrated with other 

methodologies (e.g., search procedures, constraint relaxation) in solving problems.  

J. Krucky (1994) solved the problem of minimizing setup times of mix 

product production line using fuzzy logic. The heuristic that incorporated fuzzy logic 

into the algorithm assists in setup time minimization process by clustering assemblies 

into families of products that share the same setup by balancing a product’s 

placement time between multiple-high-speed placement process steps. On the other 

hand, Y. Tsujimura et al (1993) developed a hybrid system that uses fuzzy set theory 

to model the processing times of a flow shop scheduling facility. These processing 

times are represented by Triangular Fuzzy Numbers (TFNs). Each job is defined by a 

lower bound and an upper bound TFNs. Minimization of makespan is done with a 

branch and bound procedure.

Reactive scheduling is generally defined as the ability to revise or repair a 

complete schedule that has been "overtaken" by events such as rush orders, excessive 

delays, and broken resources on the shop floor  (K. Kempf, 1995). Scheduling 

system using the reactive repair waits until an event has occurred before it attempts 

to recover from that event. Proactive adjustment requires a capability to monitor the 

system continuously, predict the future evolution of the system, do an emergency 

planning for likely events, and generate new schedules, all during the execution time 

of the current schedule. R. Wysk et al (1986) , W. Davis and A. Jones (1988) are 

three researchers that study knowledge of this category. Approaches that are more 

recent utilize artificial intelligence and knowledge-based methodologies (S. Smith, 

1995). Still most of the AI approaches propose a quasi-deterministic view of the 

system, i.e., a stochastic system featuring implicit and/or explicit causal rules. The 

problem formulation used does not recognize the physical environment of the shop 

floor domain where interference not only leads to readjustment of schedules but also 

imposes physical actions to minimize them.  



8

T. Starkweather et al (1993) were the first researchers to implement genetic 

algorithms to a dual-criteria job shop scheduling problem in a real production 

facility. Both of the criteria were the minimization of inventory and the minimization 

of waiting time for an order to be selected. These criteria are inversely related (The 

smaller the inventory, the longer the wait, larger the inventory, the shorter the wait). 

A symbolic coding was used for each member (chromosome) of the 

population to represent the production or shipping optimization problem. The 

Genetic Algorithm used to solve this problem was based on a modification to the 

blind recombinant operator described above. This recombination operator 

emphasized information about the relative order of the elements in the permutation, 

because this impacts both inventory and waiting time. A single evaluation function (a 

weighted sum of the two criteria) was utilized to rank each member of the 

population. That ranking was based on an on-line simulation of the plant operations. 

This approach generates schedules that produced inventory levels and waiting times 

that were acceptable to the plant manager. In addition, the integration of the genetic 

algorithm with the on-line simulation made it possible to react to system dynamics. 

These applications have emphasized the utilization of genetic algorithms as a "solo" 

technique. This has limited the level of complexity of the problems solved and their 

success. Recent research publications have demonstrated the sensitivity of genetic 

algorithms to the initial population. When the initial population is generated 

randomly, genetic algorithms are shown to be less efficient that the annealing-type 

algorithms, but better than the heuristic methods alone. However, if the initial 

population is generated by a heuristic, the genetic algorithms become as good as, or 

better than the annealing-type algorithms. In addition, integration with other search 

procedures (e.g., tabu search) has enhanced the capabilities of both. This result is not 

surprising, as it is consistent with results from non-linear optimization.  



9

1.3 Objectives of Research 

The objective of this research is to propose a new hybrid parallel genetic 

algorithm (PGA) for application in job shop scheduling problems. This objective is 

broken down to the following sub-objectives: 

1. To investigate the performance of the proposed parallel genetic algorithm and 

compare with existing techniques.  

2. To compare the performance of sequential GA and PGA under different 

combination of GA operators. 

3. Reduce the communication overheads of the parallel computing (message 

passing) that contribute to more effective use of parallel computer power.  

1.4 Scope of Research 

The scope of research includes the following: 

1. A comparative study of 6 combinations of GA operators using 20 benchmark 

data sets. 

2. Investigate the performance of the 4 configurations of the parallel GA. 

3. Investigating the effectiveness of a new hybrid parallel GA. 

4. This research only concentrate on static job shop scheduling problem.  

5. This thesis does not consider the network topology of a PGA into the 

research.

1.5 Thesis Layout 

Chapter 2 introduces genetic algorithms. Each element in the structure of 

genetic algorithms is briefly described. This is followed by chapter 3 that provides an 



10

introduction to job shop scheduling problems with a simple example of job shop 

scheduling problem. 

Chapter 4 provides an overview of the parallel computer structure and model. 

A brief survey on available parallel genetic algorithms is discussed. Three classes of 

approaches are included, (i) global parallelization, (ii) coarse grained parallelization 

and (iii) fine grained parallelization.

Chapter 5 describes the implementation of sequential genetic algorithms 

developed in this research to solve JSSP with comparative results and discussions 

presented on various experiments.  

Chapter 6 describes the implementation of proposed parallel genetic 

algorithms along with results and discussions on various experiments such as 

migration rate and migration interval.  

Chapter 7 summarizes this research, discusses the outcome of experiment and 

proposed methods. Recommendations on future development are included in this 

chapter.


