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ABSTRACT

Water vapor plays an important role in weather forecasting and climate
monitoring, particularly in low-latitude regions which contain large amount and
inhomogeneous water vapor. The Global Positioning System (GPS) has the ability to
provide observations of water vapor continuously and more frequently for wide areas
with high accuracy in all weather conditions. The GPS continuously operating
reference station (CORS) data processing allows the estimation of zenith path delay
(ZPD) from the GPS CORS network and will be further processed into integrated
water vapor (IWV) using surface meteorological data. This research aims to study
the potential of using the GPS for meteorology applications in low-latitude regions.
In this study, the ZPD values from Australia and Peninsular Malaysia were derived
in order to investigate the variability of water vapor in these two regions. Besides,
the continuous result of the GPS-derived IWV assessment with radiosonde-derived
IWV for one year data in Peninsular Malaysia are also discussed. Based on the
analysis of the ZPD from the two regions, the water vapor is high and its change is
rapid in Peninsular Malaysia. The quality of the ZPD obtained was compared to the
International GNSS Service (IGS) troposphere products; the root mean square
(RMS) errors of the GPS-derived ZPD are in the range of 4 to 12 mm. Meanwhile,
the large amount of IWV and its variability in Peninsular Malaysia shows a close
relationship with the monsoon seasons in this area. Four GPS stations close to
radiosonde stations were assessed; the RMS errors of the GPS-derived IWV are
3.447 kg/m2, 3.786 kg/m2, 4.122 kg/m2 and 4.253kg/m2 and their linear correlation
coefficients are 0.877, 0.797, 0.851 and 0.849, respectively. This strong correlation
shows that there is potential to develop a real-time GPS IWV system in Peninsular
Malaysia. This study also reports on an initial development of real-time GPS IWV
system known as UTM GPS-MET which was designed starting from data collection,
data processing and results dissemination. Several tests on this initial system found
that the total time delay in UTM GPS-MET from data collection until the result
dissemination is within one minute and 37 seconds, the time period which can
support the real-time GPS IWV application.
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ABSTRAK

Wap air memainkan peranan sangat penting dalam peramalan cuaca dan
pemantauan iklim, terutama di kawasan latitud rendah yang mengandungi wap air
yang tinggi dan tidak seragam. Sistem Penentududukan Global (GPS) mempunyai
keupayaan mencerap wap air secara berterusan dengan lebih kerap bagi kawasan
yang luas dengan ketepatan yang tinggi dalam semua keadaan cuaca. Pemprosesan
data GPS dari stesen rujukan yang beroperasi secara terus (CORS) membolehkan
penganggaran lewatan laluan zenith (ZPD) dari rangkaian GPS CORS seterusnya
diproses untuk mendapatkan integrasi kandungan wap air (IWV) menggunakan data
meteorologi permukaan. Penyelidikan ini bertujuan mengkaji potensi penggunaan
GPS untuk aplikasi meteorologi di kawasan latitud rendah. Dalam kajian ini, nilai
ZPD dari Australia dan Semenanjung Malaysia telah diperoleh bagi mengkaji
perubahan wap air di kedua-dua rantau ini. Selain itu, hasil penilaian GPS IWV
dengan belon kaji cuaca IWV secara berterusan bagi tempoh setahun di
Semenanjung Malaysia turut dibincangkan. Berdasarkan analisis ZPD dari kedua-dua
rantau ini, wap air adalah tinggi dan perubahannya adalah pantas di Semenanjung
Malaysia. Kualiti ZPD yang diperoleh telah dibandingkan dengan ZPD daripada
International GNSS Service (IGS); ralat punca min kuasa dua (RMS) untuk GPS
ZPD yang diperoleh adalah dalam lingkungan 4 mm hingga 12 mm. Sementara itu,
jumlah IWV yang tinggi serta perubahannya di Semenanjung Malaysia telah
menunjukkan hubungan yang rapat dengan musim monsun di kawasan ini. Empat
stesen GPS yang berdekatan dengan stesen belon kaji cuaca telah dinilai; ralat RMS
untuk GPS IWV yang diperoleh adalah 3.447 kg/m2, 3.786 kg/m2, 4.122 kg/m2 dan
4.253 kg/m2 dengan pekali korelasi linear masing-masing ialah 0.877, 0.797, 0.851
dan 0.849. Korelasi yang tinggi ini menunjukkan terdapat potensi untuk
membangunkan sistem GPS IWV dalam masa hakiki di Semenanjung
Malaysia. Kajian ini juga melaporkan pembangunan awalan sistem GPS IWV dalam
masa hakiki dikenali sebagai sistem UTM GPS-MET yang direkabentuk bermula
dari pengumpulan data, pemprosesan data dan penyebaran hasil. Beberapa ujian ke
atas sistem awalan ini mendapati bahawa jumlah lewatan masa sistem UTM GPS-
MET dari proses pengumpulan data sehingga penyebaran hasil adalah dalam jangka
masa 1 minit 37 saat, iaitu tempoh masa yang dapat menyokong aplikasi GPS IWV
dalam masa hakiki.
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CHAPTER 1

INTRODUCTION

1.1 Atmospheric Water Vapor: Distribution & Measurement Techniques

Water vapor plays an important role in meteorological processes that act over a

wide range of spatial and temporal scales of the Earth water cycle or hydrological cycle.

In the hydrological cycle, the movement of water vapor from the sea and land to the

atmosphere leads to the formation of clouds. From cloud, precipitation such as rain or

snow falls back to the Earth’s surface, thus supplying rivers which flow back to the sea

(Moran et al., 1997). The water vapor is a dominant greenhouse gases in the atmosphere.

Greenhouse gases absorb or trap more of the heat energy from sunlight that escapes

from the Earth. Hence, it creates more warming to the Earth’s surface. This is known as

the Greenhouse Effect.

The Earth’s weather and climate is heavily influenced by the amount of water

vapor in the lower part of the (neutral) atmosphere known as the troposphere. Nearly all

atmospheric water vapor is concentrated in the troposphere (Buchdahl and Hare, 2000).

Approximately, more than 90% of the water vapor is contained in the lower 5 km and

less than 6% of the water vapor is contained above 5 km of the troposphere, and only
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less than 1% is in the stratosphere (Tao, 2008). The global distribution of water vapor

has a significant latitudinal dependence (see Figure 1.1). Large amount of water vapor is

concentrated in low-latitude region (red areas) and it decreases towards high latitude

region (blue areas). This is due to low-latitude region that gains more solar radiation,

especially in the tropical area, which causes the temperature increases compared to the

high latitude region. Therefore, it often gets heavy rainfall. The minimum annual

precipitation is normally around 2,000 mm and the relative humidity frequently exceeds

70%.

Figure 1.1: The global distribution of water vapor derived from the NASA water vapor

project

(Source: CIRA’s, 2011).

Malaysia is located in the low-latitude region. As a tropical country, the area has

a large amount of water vapor in the atmosphere. Moreover, the high amount (and

variation) of atmospheric water vapor in Malaysia shows a close relationship with its

unique monsoon seasons (Musa, 2007). The monsoons often bring large amount of

rainfall over a very short period of time. This condition sometimes leads to flash

flooding (see Figure 1.2) in the eastern part of the Malaysian Peninsula and west coast of

Sabah and Sarawak especially during the Northeast monsoon. The flash flood produces a

lot of damage to public and private goods, infrastructure, agriculture, environmental,

industry and also sometimes loss of lives.
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In contrast, abundant water and sunlight in Malaysia help the tropical ecosystem

to hold the largest biodiversity of all biomes which is an important basis for socio-

economic development, natural resource management and conservation. In fact, the

understanding of the dynamics of the tropical atmospheric water vapor directly benefits

to the study of global warming, tropical epidemiology, energy and water safety, tropical

medicine, tropical rainforest biodiversity and food production. Malaysian should take a

leading role in research and development (R&D), locally and internationally, to sustain

the biodiversity and its tropical properties with much of concern on the dynamics of the

atmospheric water vapor.

Figure 1.2: An example of major flood in Kelantan

(Source: BERNAMA, 2012)

Water Vapor Measurement Techniques

Conventional observing techniques for the measurement of the vertical and

horizontal distribution of water vapor can be categorized as: (i) in-situ measurements,

i.e., radiosondes, (ii) remote sensing from the ground, i.e., ground-based upward looking

radiometry, and (iii) remote sensing from space, i.e., satellite-based downward looking

radiometry (Bevis et al., 1992).
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Radiosondes are instruments to measure pressure, temperature, dew point

temperature as well as wind speed and direction through a profile of the Earth’s

atmosphere up to the altitudes of approximately 30 km (see Figure 1.3). These

instruments are usually carried into the atmosphere by a balloon filled with helium or

hydrogen (Agustan, 2004). A radio transmitter attached with the instruments package

transmits the observed meteorological data to the ground station by radio signal.

Although, radiosonde provides high vertical resolution profiles of water vapor, but it has

limited in terms of spatial coverage, expensive to operate and is only launched twice-

daily (Geurova, 2003). A further physical limitation of the radiosonde is the accuracy of

the humidity sensor, which suffers from three types of errors: systematic observational

error, spatial and temporal inhomogeneity, and diurnal and spatial sampling errors

(Wang and Zhang, 2008). Although the radiosonde has limitations, it is still one of the

major meteorological measurement techniques worldwide (Dodson et al., 2001).

Figure 1.3: Radiosondes instruments

(Source: Dabberdt et al., 2003)

The ground-based, upward-looking water vapor radiometer (WVR) provides

measurement of integrated water vapor (IWV) along a given line of sight through the

Earth’s atmosphere (see Figure 1.4). It measures the sky emission at two frequencies.
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One channel is at 23.8 GHz and the other is at 31.4 GHz. The sky emission is caused by

the amounts of water vapor, liquid water and oxygen in the atmosphere. By measuring

the sky brightness temperature which depends on the surface temperature, sky

temperature and surface dielectric constant (index of refraction), water vapor can be

observed (Agustan, 2004). The ground-based WVR provides high temporal resolution of

water vapor, but low in spatial resolution, requires frequent calibration, affected by rain

and clouds with additional constraints on high instrument cost (Geurova, 2003).

Figure 1.4: Water vapor radiometer

(Source: http://sky.ccny.cuny.edu/wc/radiometer2.html)

The satellite-based, downward-looking WVR measures microwave emissions

from the atmosphere and underlying Earth's surface (see Figure 1.5). The recovery of

IWV by downward-looking WVR is greatly affected by large variability in the surface

brightness temperature and the results are reliable only in cloud-free regions. For this

reason, satellite-based radiometry tends to be more reliable over the oceans than over

land regions. Moreover, although the satellite-based WVR provides good spatial

coverage, it exhibits poor temporal resolution (Agustan, 2004).
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Figure 1.5: Electro-L weather satellite

(Source: Tiger, 2011)

Opportunities for atmospheric sensing using GPS technique

The Global Positioning System (GPS) signals travelling from satellite to receiver

propagate through the troposphere layer. The signals experience a propagation delay due

to the amount of a mixture dry gases and water vapor in the troposphere layer. This

increases the time of delay for the signal when it travels through this layer. The effects

of the time delay due to the troposphere are called tropospheric refraction, tropospheric

path delay or simply tropospheric delay (Hofmann-Wellenhof et al., 2001). The total

tropospheric delay in the GPS signal is known as slant path delay, or in zenith direction

is known as tropospheric zenith total delay (ZTD) or tropospheric zenith path delay

(ZPD). The ZPD can be estimated from a network of GPS continuously operating

reference station (CORS), resulting in a time series of ZPD at each station. Together

with surface pressure and temperature data at the location of the GPS CORS, the IWV or

equivalently precipitable water vapor (PWV) can be inferred, and it is realized as a

useful quantity for meteorological applications (Bevis et al., 1992). This technique of

sensing water vapor in the atmosphere often referred as ‘GPS meteorology’.

Many studies have been carried out to prove the accuracy of the GPS

meteorology compared to the conventional observing techniques. Rocken et al. (1995)

has demonstrated the proof of concept of GPS meteorology in a GPS/STORM project in
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United States (US). They found that the GPS-derived IWV and WVR-derived IWV

exhibit the same level of accuracy with RMS of 1 to 2 kg/m2. Tregoning et al. (1998)

further demonstrated the IWV estimates using GPS, radiosonde and WVR in Australia.

Based on two months of data processing, they found that the RMS of GPS and

radiosonde, also the GPS and WVR estimates of IWV are 1.52 kg/m2 and 1.42 kg/m2,

respectively. Smith et al. (2000) showed that the potential use of real-time GPS IWV

estimates in numerical weather prediction (NWP) model in order to improve the

accuracy of short term precipitation forecasts. Jin and Luo (2009) looked at the long

term (13 years) GPS IWV estimates using globally distributed 155 IGS stations to

investigate water vapor for climate study. They found that GPS IWV changes with

seasonal cycles, annual and diurnal (24 hours) variations.

1.2 Problem Statement

Water vapor is very important in operational weather forecasting and climate

monitoring. They are severely limited to do so by the lacking of accurate, dense and

continuous observation of water vapor in the atmosphere (Wolfe and Gutman, 2000). As

being mentioned, conventional water vapor observing techniques are radiosondes, WVR

and weather satellites. The three techniques have several drawbacks as the following;

 Radiosondes measurement are limited in terms of spatial coverage, expensive to

operate in terms of material and labour, and are only launched twice-daily.

 WVR are affected by rain and clouds, and they present very low spatial

resolution of water vapor due to additional constraint of high instrument cost.
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 Weather satellites have limited over the land because of the variable surface

brightness temperature and also have limited temporal resolution because they

must rotate in their own orbit with a fixed time frame.

GPS can be utilized as a tool to complement the limitations of the three existing

techniques described above. The GPS provides a better spatial-temporal resolution, low

cost system, global coverage and all weather condition (not affected by rain and clouds).

Since 1990’s, many researches around the world especially in the mid-latitude and

near tropic areas have already utilized the applications of the GPS CORS to support

many meteorological activities for example in the US, Japan and Europe (Haan, 2006).

Aside from the above efforts, only little study was conducted in the low-latitude areas.

This could be explained by the lacking of GPS CORS infrastructures and non-existing of

surface meteorological sensors at the GPS stations in this area. This situation is rather

unfortunate due to the wide range of spatial and temporal conditions of the Earth

atmospheric water vapor happens in the low-latitude areas.

Many studies were reported that the variability of the estimated IWV between

GPS and WVR ranges from 1 to 2 kg/m2 (Rocken et al., 1995; Tregoning et al., 1998).

However, these studies were conducted at the mid- or high-latitude region where the

atmosphere has a water vapor burden smaller than 20 kg/m2 on the average. Currently,

only few studies have taken advantage to investigate the accuracy of GPS-derived IWV

in low-latitude region. Therefore, further study on the accuracy of the GPS-derived IWV

in low-latitude region needs to be conducted.

The establishment of a real-time GPS IWV system can be used to augment the

operational weather monitoring and forecasting. The scientific challenges of a real-time

GPS IWV system require GPS observation, orbit correction and surface meteorological

data to be available with a nominal latency of several minutes. Furthermore, the large

amount of GPS observation data needs to be processed as fast as possible but to maintain

high quality of the GPS IWV is difficult. These processes are difficult to balance in GPS
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data processing as an increasing number of GPS stations or higher quality of IWV

solution inherently takes longer time to process. Therefore, a study is required to tackle

these challenges in the development of a real-time GPS IWV system.

1.3 Research Objectives

The main aim of this research is to investigate the potential use of GPS

meteorology in the low-latitude region.

In order to support the aim, there are three main objectives as follows:

1. To estimate the ZPD and IWV from the network of GPS stations

The ZPD is the direct product from the GPS data processing. The ZPD can be estimated

after resolve or model the orbital parameters of the satellites, the receiver positions,

ionospheric delays and phase cycle ambiguities. By using the additional surface

meteorological data, the estimated ZPD can be further processed into IWV.

2. To assess the estimated ZPD and IWV

Two aspects of the GPS meteorology technique can be assessed. Firstly is on the quality

of ZPD estimation and secondly is on the quality of IWV estimates. The quality of ZPD

estimation can be assessed in comparison with the IGS ZPD. Besides, in order to prove

the quality of GPS IWV estimation, its validity can be determined by using the nearest

radiosonde data.
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3. To design a real-time GPS IWV system

The design gives end-to-end of the real-time GPS IWV system, including all of the steps

from the data acquisition up to the results dissemination. Several experiments and tests

can be performed in order to investigate the design of the real-time GPS IWV system.

1.4 Research Scopes

The scope of this research includes:

1. Primarily, the study area focuses on the water vapor distribution in Peninsular

Malaysia which is located in the low-latitude region. However, this study is extended to

Australia which is located in the mid-latitude region, in order to investigate the

horizontal distribution of atmospheric water vapor across the two regions.

2. There are currently two primary techniques for sensing atmospheric water vapor

by using GPS; space-based and ground-based techniques. This study concentrates on

water vapor estimation using a ground-based technique.

3. The Malaysia Real-Time Kinematic GNSS Network (MyRTKnet) currently

consists of 58 GPS stations in Peninsular Malaysia. However, only four of these stations

are selected for GPS IWV estimation. This limited selection of GPS stations is due to the

availability of meteorological stations adjacent to the GPS stations. In the case of GPS

ZPD estimation, the GPS network coverage is extended to include few existing stations

from International GNSS Service (IGS) in the low-latitude region.

4. The double difference (DD) ionosphere free linear combination or L3 is used to

eliminate the ionopsheric errors and as the fundamental measurements for the GPS ZPD

estimation process in this study. These L3 measurements may contain residual errors due
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to the imperfect mapping function and multipath model that may be absorbed into the

ZPD estimation. However, these residuals errors are not further modelled in the final

results since it is beyond the scopes of this study.

5. The GPS network provides an important data source to study water vapor.

However, the amount of water vapor cannot be directly derived and evaluated from the

GPS network observations without collocated meteorological data. Therefore, it is

necessary to take advantages of meteorological data from the existing weather stations

closely located to the corresponding individual GPS stations.

6. This study also covers the design and initial development of real-time GPS IWV

estimation system. However, due to the lack of the real-time surface meteorological and

the real-time GPS data in Peninsular Malaysia (i.e., MyRTKnet), the system can only

simulate real-time ZPD computation. This simulation makes use of three GPS CORS

distributed over the metro-area of Iskandar Malaysia, known as ISKANDARnet GPS

network, as a test-bed for the system. In addition, few IGS stations in South-East Asia,

India and Australia were also included to the simulation process.

1.5 Significant of Research

The significant of this research can be summarized as follows:

1. It is a special interest of positioning communities and meteorologist to explore

the benefits of GPS meteorology. The ability of GPS of estimating the amount of water

vapor in the atmosphere will help to investigate a range of questions about the rainfall

and monsoon seasons in Peninsular Malaysia.
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2. The initial goal of GPS CORS MyRTKnet and ISKANDARnet is for positioning

and geodetic applications. However, this research extends the applications of these

CORS infrastructures to be used as a water vapor observation system.

3. This study has developed procedures to allow the estimation of GPS IWV in

Peninsular Malaysia by using surface meteorological data collected adjacent to the GPS

stations. This study also demonstrates the feasibility of ground-based GPS network and

interpolated surface meteorological data for GPS IWV estimation process.

4. This study indicates that GPS has a potential to complement existing water vapor

observation techniques in Peninsular Malaysia. A knowledge and the existing

infrastructures of real-time GPS network can be utilized to augment water vapor

observation system and climate study in this area.

5. This study has put an initiative to design and conduct an initial development of

real-time GPS IWV in Peninsular Malaysia. The combination of the best strategy of

ZPD and IWV estimates obtained from this study could be useful for full

implementation of real-time GPS IWV for Peninsular Malaysia in the near future.

1.6 Organization of the Thesis

This thesis is organized into 6 chapters as follows:

Chapter 1 describes about the background, problem statements, objectives, scopes and

significances of the study.
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Chapter 2 provides fundamental GPS theory and GPS signal propagation delay. The

chapter also puts an effort to explain on the concept of GPS meteorology.

Chapter 3 presents the results of the estimated ZPD from MyRTKnet and Australian

Regional GNSS Network (ARGN) CORS. This chapter also presents the quality of the

estimated ZPD by comparing the results with IGS final ZPD products.

Chapter 4 presents the results of the estimated IWV in Peninsular Malaysia. This

chapter also presents the quality of the GPS-derived IWV by comparing it with

radiosonde-derived IWV. The relation of GPS IWV with monsoon seasons, rainfall and

geographical location of the GPS CORS in Peninsular Malaysia is also discussed.

Chapter 5 starts with some reviews on existing real-time GPS IWV system. Next, the

initial design of real-time IWV system in Peninsular Malaysia based on simulation

works of ISKANDARnet GPS network as a test-bed is also presented. The simulation of

this real-time IWV system includes several tests and data processing strategies.

Chapter 6 summarizes the main findings of this study as well as recommendations for

future research works.
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