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ABSTRACT 

The application of carbon nanotubes (CNTs) in innumerable areas of industry 

is increasing day-to-day. One of their most important applications is in composite 

materials as the reinforcing phase. Many researchers studied the behavior of 

composite materials reinforced with short fibers. This paper examines the effect of 

the position of short fibers on the total stiffness of a composite material reinforced 

with carbon nanotubes for various volume fractions. Three different situations have 

been suggested for the position of a CNT fiber with respect to the other fibers in the 

composite: completely separated fibers, fibers with overlap, and fibers connected 

through a shared node (long fibers). Three different cases including a case when just 

overlaps are allowed, a case when just long fibers are allowed and a case when both 

overlaps and long fibers are allowed have been investigated. It has been shown that 

the effect of these cases on the Young’s modulus of the composite is significant and 

that they should be considered for a better understanding of the reinforced 

composites behavior. In addition, it is shown that the effect of the investigated cases 

is more remarkable at higher numbers of randomness values.  
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ABSTRAK 

Penggunaan nanotube karbon (CNTs) di kawasan begitu banyak industri 

semakin meningkat dari hari ke hari. Salah satu aplikasi yang paling penting mereka 

adalah dalam bahan komposit sebagai fasa memperkukuh. Ramai penyelidik 

mengkaji tingkah laku bahan komposit diperkukuhkan dengan gentian pendek. Karya 

ini mengkaji kesan kedudukan gentian pendek kepada jumlah kekukuhan bahan 

komposit diperkukuhkan dengan nanotube karbon untuk pelbagai pecahan 

kelantangan. Tiga situasi yang berbeza telah dicadangkan untuk jawatan serat CNT 

berkenaan dengan gentian lain dalam rencam: serat sepenuhnya dipisahkan, gentian 

dengan pertindihan, dan serat berhubung melalui nod yang dikongsi (serat panjang). 

Tiga kes yang berbeza termasuk kes di mana hanya bertindih dibenarkan, kes apabila 

hanya serat panjang yang dibenarkan dan kes di mana kedua-dua pertindihan dan 

serat panjang dibenarkan telah disiasat. Ia telah menunjukkan bahawa kesan daripada 

kes-kes pada modulus Young rencam adalah penting dan mereka perlu 

dipertimbangkan untuk pemahaman yang lebih baik daripada tingkah laku komposit 

bertetulang. Di samping itu, ia menunjukkan bahawa kesan daripada kes yang 

disiasat adalah lebih luar biasa pada nombor yang lebih tinggi nilai-nilai rawak. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

This chapter consists of several sections which are considered as preparation 

to start the main research on evaluation of the influence of different arrangements of 

carbon nanotube fibers and volume fractions on the mechanical properties of 

composite materials reinforced with carbon nanotubes. The first section is the 

background of the study which contains definitions of some key concepts, the 

objective of the study and finally, the scopes of the research. 

In this study, the mechanical properties of carbon nanotube reinforced 

composites under tensile load are going to be investigated using the finite element 

method provided in the commercial software MSC.Marc. 

1.2 Background of the Study 

1.2.1 Composites 

A composite is a structural material that consists of two or more combined 

constituents that are combined at a macroscopic level and are not soluble in each 

other. One constituent is called the reinforcing phase and the one in which it is 

embedded is called the matrix. The reinforcing phase material may be in the form of 
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fibers, particles, or flakes. The matrix phase materials are generally continuous. 

Examples of composite systems include concrete reinforced with steel and epoxy 

reinforced with graphite fibers, etc.[1]. 

1.2.2 Composites classification 

Composites can be classified based on the geometry of their reinforcements 

and type of their matrix phase. Based on the geometry of the reinforcements, we can 

classify composites as particle composites, flake composites and fiber composites. 

On the other hand, based on the type of matrix, a composite can be a polymer, metal, 

ceramic or carbon composite. 

1.2.3 Fiber Composite 

Composites are classified by the geometry of the reinforcements (particle, 

flake, and fibers) or by the type of matrix (polymer, metal, ceramic, and carbon). 

Fiber composites consist of matrices reinforced by short (discontinuous) or 

long (continuous) fibers. Fibers are generally anisotropic and examples include 

carbon and aramids. Examples of matrices are resins such as epoxy, metals such as 

aluminum, and ceramics such as calcium-alumino silicate [1]. 

1.2.4 Fibers classification/orientation 

The reinforcement phase of a fiber composite may consist of continuous 

(long fibers) and aligned fibers, discontinuous (short fibers) and aligned fibers or 

discontinuous and randomly oriented fibers (Figure 1.1). 
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Figure 1.1Fibers classification/orientation. (a)  continuous (long fiber) and 

aligned fibers, (b) discontinuous (short fiber) and aligned fibers and (c) 

discontinuous and randomly oriented fibers. 

1.2.5 Nanocomposites 

Nanocomposites consist of materials that are of the scale of nanometers (10
-9

 

m). Whenever at least one of the constituents of a composite is less than 100 nm, it 

can be classified as a nanocomposite. At this scale the properties of the materials are 

different from those of the bulk material. Applications of nanocomposites include 

packaging applications for the military in which nanocomposite films show 

improvement in properties such as elastic modulus and transmission rates for water 

vapor, heat distortion, and oxygen[1]. 

1.2.6 Carbon nanotubes 

The modern world desires new technologies which are based on new thoughts 

toward science separated into several categories, for example, from medicine to 

aerospace. These new technologies require new tools created by novel materials; 

these are critical to industry because of some of their outstanding properties. Carbon 

nanotubes (CNTs) are a kind of these novel materials in which their applications are 

emerging day-to-day. CNTs are molecular-scaled cylindrical hollow structures that 

were first discovered by Iijima in 1991 [2]. Lightness, high toughness and strength 

are examples of their superior properties. These properties made them popular and 

they have been used as reinforcements for polymer, ceramic and metal composites. 
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Many researchers have been studying on finding and improving the properties of 

CNTs. Most of these studies predict Young’s modulus of about 1TPa and tensile 

strengths of up to 63 GPafor CNTs [3]. 

 

 

 

Figure 1.2 Carbon nanotube(Artwork by futuretimeline.net) 

There are two kinds of carbon nanotubes, single-walled carbon nanotubes 

(SWCNTs) and multi-walled carbon nanotubes (MWCNTs). Single-walled carbon 

nanotubes can be produced by rolling a graphene sheet to a hollow cylinder or tube 

created from carbon atoms with only one atom in thickness [4, 5], while a multi-

walled carbon nanotube is the result of combination of 2 or more (up to 50) 

concentric and coaxial single-walled carbon nanotubes with an inter-layer spacing of 

0.34 nm[6] (Figure 1.3). 

 

Figure 1.3 (a) Graphene sheet, (b) single-walled carbon nanotube, (c) multi-

walled carbon nanotube [7]. 
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1.2.7 Representative Volume Element 

A representative volume element (RVE) is the smallest material volume 

element of the composite which can represent the behavior of the whole composite 

sufficiently accurate. 

 

 

 

Figure 1.4 Representative Volume Element (RVE) 

1.2.8 Volume Fraction 

Volume fraction is the total volume of all the fibers within a composite 

materialdivided by the total volume of the composite. It can be shown in percentage, 

which means the percentage of the volume of fibers distributed in a composite over 

the total volume of it. 

  ( )  
            
           

     (1-1) 
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Where,   is the volume fraction,             is the total volume of the 

distributed fibers and             is the total composite volume (including the 

fibers and the matrix). 

1.2.9 Position of Fibers 

When distributing parallel nanotubes in a composite, there are three 

possibilities for positioning the nanotubes with respect to each other. They may be 

simply separated from each other, be connected to other nanotubes through a shared 

node (long fiber) or they may have certain overlaps with others (see Figure 1.5). 

 

 

 

Figure 1.5(a) Completely separated fibers, (b) fibers with a shared node 

(connected fibers), (c) overlapping fibers. 

1.2.10 Effective Area 

Effective area is the cross-section area of the composite. Modeling a fiber 

reinforced composite in a FE software requires defining the fibers, for example, as 

rod (2D) elements and the matrix as 3D brick (solid) elements. Figure 1.6 shows a 

RVE with four fibers distributed in it. Since fibers are 2D line elements in our 

approach, they donot have any cross section area that can be seen, but in the pre-

processing section of the FEA program,when introducing the geometry properties of 

these elements, the cross-section area must be defined, so although the cross-section 

area of these elements cannot be seen in the model, it exists and must be considered 

in final calculations. 
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Effective Area = Matrix cross-section area + Fibers cross-section 

area 

(1-2) 

Figure 1.6An RVE with four fibers distributed in it. 

1.2.11 Finite Element Method 

The finite element method (FEM) is one of the most powerful tools among 

the numerical approximate methods. The key idea is to use a finite number of 

elements in order to analyze a problem. The process consists of three main parts. Pre-

processing which involves creating the model, defining the geometric and material 

properties, choosing the appropriate element type based on the problem and the 

desired results, and applying the necessary boundary conditions; the processing 

phase in which the system of equations is solved, and finally, the last step is called 

post-processing. Post-processing refers to all the tools that could be used to export 

the obtained results from the processing step. 

 There are many companies working on developing FEM software packages, 

among them are ANSYS (ANSYS), DassaultSystemes (Catia, Abaqus, …), MSC 

Software (MSC Nastran, MSC Marc, …), etc. 
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1.3 Statement of the Problem 

Since the consideration of materials in nano scale is very difficult and time 

consuming, using a numerical method (finite element) is required. 

The purpose of this study is to simulate the behaviour of composite materials 

reinforced with carbon nanotubes in order to find the mechanical properties of them, 

such as Young’s modulus and Poisson’s ratio. For this, MSC Marc which is a FEA 

software has been used.  

Many researches have been done to anticipate the elastic properties of this 

kind of composite materials (short fiber reinforced composites). The aim of the 

actual research is to continue these works and to offer a more realistic modeling by 

considering three different cases of fiber arrangement: completely separated fibers 

(as in the previous work), fibers with overlap, and fibers connected through a shared 

node (long fibers). This consideration of different fiber positions is much closer to 

real distributions and allows a more accurate prediction of the macroscopic 

properties of the composite material. 

1.4 Objective and Scopes of theStudy 

1.4.1 Objective 

To determine the mechanical properties of CNT reinforced composites for 

different randomness / arrangements of the tubes and volume fractions. 

1.4.2 Scopes of the Study 

 Literature Review of previous studies 

 Generation of appropriate computational model 
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 Simulation of tensile test to predict the Young’s modulus and 

Poisson’s ratio of CNT reinforced composites 

 Evaluation and Documentation 
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