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ABSTRACT

The focus of this research is in the area of fuzzy time series. Such a

study is important in order to improve the forecasting performance. The research

approach adopted in this thesis includes introducing polynomial fuzzy time series,

differential fuzzy logic relationships model, multi-layer stock forecasting model,

data pre-processing approach, and k-step-ahead forecasting. The findings from

this research provide evidence that integration of the polynomial concept and non-

linear optimization transfer the fuzzy time series to a parametric model. By using

polynomial fuzzy time series, 83% of experiments were improved significantly.

Differential fuzzy logical relationships were defined to be used for establishing

differential fuzzy logical relationship groups. By utilizing differential fuzzy time

series in Taiwan Capitalization Weighted Stock Index (TAIEX) datasets, 90%

of the results were improved and as for enrollment datasets this statistic was

100%. Data pre-processing approach managed to reduce the negative effects of

noisy data by transforming the data into a new domain. By applying integrated

data pre-processing fuzzy time series algorithm to short term load data and

TAIEX, the average of Mean Absolute Percentage Errors (MAPEs) and Root

Mean Square Errors (RMSEs) were reduced by 12.05 and 1.98, respectively.

The multi-layer forecasting model enhances the performance of stock forecast

values. Many experiments that were carried out on the forty years’ stock data

indicated that multi-layer fuzzy time series model could be considered as an

advanced model for stock market forecasting. The one-day ahead forecasting was

successfully employed to England and France 2006 half-hourly load data. The

main conclusion drawn from this study suggests that the proposed methods were

accurate compared to their counterparts. In addition, the functionality of the

proposed methods was enhanced through the proposed algorithms which were

tested to be robust and reliable. All of these findings were confirmed through

various tests of the proposed methods on numerous case studies. The thesis also

recommends that the fuzzy time series model should be considered in forecasting

alongside with classical approaches.
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ABSTRAK

Fokus kajian ini adalah dalam bidang siri masa kabur. Kajian sedemikian

adalah penting dalam usaha untuk meningkatkan prestasi ramalan. Pendekatan

penyelidikan yang disesuaikan dalam kajian ini termasuk memperkenalkan siri

masa kabur polinomial, model hubungan perbezaan logik kabur, model ramalan

saham pelbagai lapisan, pendekatan pra-pemprosesan data, dan ramalan k-

langkah hadapan. Dapatan kajian ini memberikan bukti bahawa integrasi

pengoptimuman polinomial konsep dan bukan linear memberi skim parametrik

kepada model. Dengan menggunakan siri masa kabur polinomial, 83% daripada

eksperimen telah meningkat dengan ketara. Perhubungan logik terbitan kabur

telah ditakrifkan untuk digunakan bagi mewujudkan kumpulan hubungan

kebezaan logik kabur. Dengan menggunakan perbezaan siri masa kabur dalam

dataset TAIEX, 90% keputusan telah diperbaiki dan untuk dataset enrolmen,

statistik ini adalah 100%. Data pendekatan pra-pemprosesan berjaya untuk

mengurangkan kesan negatif data bising dengan mengubah data ke domain

baru. Dengan menggunakan data bersepadu pra-pemprosesan siri masa kabur

algoritma data beban jangka pendek dan TAIEX, peratusan ralat min mutlak

(MAPEs) dan ralat min punca kuasa dua (RMSEs) masing-masing berkurang

sebanyak 12.05 dan 1.98. Model ramalan pelbagai lapisan meningkatkan prestasi

nilai ramalan saham. Banyak eksperimen telah dijalankan ke atas data saham

untuk empat puluh tahun menunjukkan yang bahawa pelbagai lapisan model

siri masa kabur boleh dianggap sebagai model lanjutan untuk ramalan pasaran

saham. Ramalan satu hari ke hadapan telah berjaya digunakan untuk data

beban setiap setengah jam England dan Perancis untuk tahun 2006. Kesimpulan

utama yang dapat dibuat daripada kajian ini adalah kaedah yang dicadangkan

lebih tepat berbanding dengan kaedah daripada kaedah lain yang setanding

dengannya. Selain itu, fungsi kaedah yang dicadangkan ini telah dipertingkatkan

melalui algoritma yang dicadangkan yang telah diuji kukuh dan boleh dipercayai.

Semua penemuan ini telah disahkan melalui pelbagai ujian terhadap kaedah yang

dicadangkan ke atas pelbagai kajian kes. Tesis ini juga mencadangkan bahawa

model siri masa kabur perlu dipertimbangkan bersama-sama dengan pendekatan

klasik dalam membuat ramalan.
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CHAPTER 1

INTRODUCTION

1.1 The Background of Study

Time series are one of the efficient forecasting models among others which

are tremendously used in real world applications. By emerging fast computers

with high capacity memories and improving programming languages, however,

there is a positive attitude toward using algorithm-based time series model (Gu

et al., 2011; Liao et al., 2011; Ou, 2012; Wang et al., 2012). In fact the algorithms

could be transferred to computer codes easily. Additionally, the algorithm’s

performance itself could be in more convenient ways enhanced by researches in

compared with classic time series models. Consequently, forecast accuracy is

promoted by upgrading algorithms. However, Fuzzy Time Series (FTS) is one of

the most important algorithm-based forecasting models. There is a large volume

of published studies about FTS. Certain domains have applied FTS models to

forecast events, including university enrollment (Chen, 2002; Jeng-Ren et al.,

1998a), stock index forecasting (Chen et al., 2007; Huarng, 2001; Huarng and Yu,

2005; Kunhuang, 2001), and temperature prediction (Hsu et al., 2010; Wang and

Chen, 2009). There are considerable variations in the pattern of FTS algorithms

in recent years. Since every FTS model is algorithm-based, the performance

of FTS can be affected by the improvement of their steps. For instance, after

proposing first definitions and algorithm by Song and Chissom (1994, 1993),

later Shyi-Ming (1996) proposed a novel algorithm by revision of certain steps

of Song and Chissom model. Subsequently, Huarng (2001) refined Chen’s model

to produce more accurate forecasts. From FTS studies it was concluded that

attempts for enhancing performance of FTS algorithms could be classified in five

groups. The first group which is also included major studies are concentrated to

enhancing certain steps of FTS. In common the every FTS algorithm must include

at least six steps. First section is about to define the universe of discourse and

portioning universes of discourse, the second is defining fuzzy sets, the third
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one is fuzzifying observed values, the fourth one is establishing fuzzy logical

relationships and fuzzy logical relationship groups, the fifth one is forecasting

and the last section is defuzzifying forecasts. However, the main concerns have

been about first step i.e. defining the universe of discourse and portioning it

(Huarng, 2001; Yolcu et al., 2009). Huarng showed in his study that the different

length of intervals produced different forecasts. So, he concluded that the effective

length of intervals must be recognized. Therefore, in this step the main problem

is how it is possible to portion universe of discourse to reflect the relationship

of data further and consequently promote a better forecast. Certain studies

also focused on enhancing defuzzification and forecasting steps. For instance

(Yu, 2005) proposed weighted FTS models to give more weight to the recent

observations during forecast step. The second group is related to forecasting

when data have trend with no specific pattern. Just few studies have been found

in this issue (Cheng et al., 2006b). These models follow the trend inside data.

Data which includes upward mutations and downward mutation trends were

supposed to be settled with his type of models. The forecasts when applying

for instance conventional FTS model which is proposed by Chen’s always lie

inside the universe of discourse, therefore, Chen’s algorithm is not suitable for

forecasting trend data. Since, for trend data it is sometimes expected that forecast

lie apart from the universe of discourse, proposing advanced FTS algorithm to

be suitable for this kind of data is required. The third attempt for enhancing

FTS algorithms is a hybridization of other techniques with FTS algorithms.

For instance, certain studies in this field employed NN inside FTS algorithm

(Egrioglu et al., 2012) or utilized GA for enhancing FTS algorithm performance

(Ou, 2012; Chen and Chung, 2006). According to a review of literature about

24% of important FTS studies were connected to this approach. The fourth

groups tried to propose a specific FTS algorithm to be more suitable for specific

applications. For instance, for stock market forecasting, there are specific FTS

algorithm. For stock market forecasting, since the pattern of stock market

forecasting was different with other type of data, the difference must be reflected

in their algorithms. Thus, the author proposed a FTS algorithm which includes

the adaptive expectation model into forecasting processes to adjust forecasting

errors (Cheng et al., 2008a; Chen et al., 2007). The last group effort is restricted

to proposing computational procedures rather than pure algorithm. That means

they propose the such algorithm to be more appropriate to transfer to computer

programs. Then these models could be used in the real world in a conventional

way. For instance, a computational method of predicting based on FTS had been

advanced to offer improved forecasting results to contend with difficulties up the

situation containing higher uncertainty due to large noisy in consecutive year’s
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values in the time series data and having no imagining of trend or periodicity

(S.R, 2008).

1.2 Problem Statement

As it was noted in the former section, FTS is an algorithm-based model

which can be improved by modification in its steps. While different basic

approaches were made by researchers to enhance FTS algorithms, still there are

other serious problems about enhancing FTS algorithms. By resolving these

shortcomings it is possible to propose new refined FTS algorithms. However due

to limitation in space, the author limits his concern just into five major recognized

problems as follows: The first recognized problem was about the role of Fuzzy

Logical Relationship Groups (FLRGs) in fuzzy time series algorithm. To date, for

establishing FLRGs, partial information from historical datasets had been used

and there had been little effort for using thorough information that hides inside

a historical data for establishing them. To reconcile this problem author was

thinking about using optimization approaches within FTS algorithm. However,

in most FTS studies, the optimization approach which is integrated with FTS was

mainly concentrated on finding optimal length by minimizing error between fitting

and actual values in the training set (Hsu et al., 2010; Yolcu et al., 2009; Egrioglu

et al., 2010). Therefore, to enhance the role of FLRGs through forecasting process

it was needed to give a parametric scheme to FTS algorithms then by minimizing

error between fitting and actual values in training dataset and estimating related

parameters the goal was achieved. The output of this attempt was proposed by

the author as polynomial FTS which is discussed in the methodology chapter by

details. One of the limitations with using fuzzy time series models was present

here is dealing with the trend of the data. In this case, the key problem with

using fuzzy time series was that they failed to take the pattern of trend data

into account in the forecasting process. Although there were few studies about

this issue (Cheng et al., 2008a; Ching-Hsue and You-Shyang, 2007) , their works

would have been far more persuasive if the results were more accurate and their

methodology was more applicable. Because applicants and people in the mission

area who are involved in business, investing or other relevant fields expect a

new trend FTS algorithm if applicable. These methods must produce further

precise results and promote quick-outcome and include straightforward concepts

to understand. To reconcile this shortcoming, this study proposes a different

fuzzy time series algorithm for data with various increasing or decreasing trends,
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which are appearing between dataset. Therefore, in this case, a new algorithm

will be proposed in the methodology chapter by details. Data pre-processing is a

preference, which contributes to remove certain negative effects of noisy data and

fluctuation in time series. So far, different techniques of data pre-processing,

which are utilized in time series area of study e.g. seasonality differencing,

data normalization, data transformation, data cleaning, data smoothing, and

other techniques, have been introduced. For instance, for detrendization of

data, researchers apply some order of difference on data(Gonedes and Roberts,

1977a). Likewise, Nelson and Granger(1979) used variable transformation to

remove trend, non-stationery patterns, seasonality and other features that make

the analysis of data problematic. In the same venue, certain research has been

conducted to propose specific data pre-processing to carry out accurate prediction

in particular application(Cannas et al., 2006; Cao and Cao, 2006). Although there

has recently been an increasing interest in using Fuzzy Time Series in several

applications, far too little attention has been paid to propose an appropriate

data pre-processing whereby FTS promotes better forecasts. Considering our

pervious unpublished works and experiences on improving FTS performance and

having a huge volume of experiments, in this thesis, the author presents a kind

of proper seasonal data pre-processing technique together with a simple formula

to recognize appropriate length of the intervals to improve FTS algorithm for

noisy data. Considering the reviewed studies, in stock market forecasting which

were almost included in half of all case studies in this field, most of forecasting

literature to date have focused on the proposing new algorithms. In this way,

one criticism of much of the literature on using fuzzy time series algorithms was

the absence of any standard model to facilitate making a forecasting system,

however, in this research, the approach differs from those earlier studies were tied

to propose a particular algorithm. However, here, the aim is not just to propose a

new algorithm; instead, a systematic, descriptive and well-structured framework

model, which is constructed of some meaningful layers that play an independent

role throughout the forecast process will be proposed. Perhaps the most serious

disadvantage of fuzzy time series methods is that they were not designed for

k-step-ahead forecasting. Up to date every FTS model just discussed for one-

step-ahead forecasting purposes, since the nature of FTS is different with other

type of time series, because of using fuzzy logic, it is not very easy for users to

convert FTS algorithm for k-step-ahead forecasting usage. Therefore, the lack of

such models is a serious problem. Here a kind of computational FTS algorithm

called k-step-ahead FTS forecaster is introduced whereby every FTS algorithm

can be transformed to be suitable for k-step-ahead forecasting.
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1.3 The Significance of the Research

By this research some refined algorithms were proposed. Since in each

proposed algorithm the main aim has improved forecast accuracy then it is

justifiable for who which looking for more forecast accuracy to apply these

refined algorithms. In particular, in this section the importance of each refined

algorithm discusses one by one. The importance of the first proposed algorithm

i.e. polynomial fuzzy time series is highlighted when training dataset is huge.

Always the optimization can find the best weights in this method in training,

therefore, forecast will be accurate. In the case that noisy data are employed,

this method will not produce good results. If this method combined with k-step-

ahead forecaster algorithm can be useful for power managers when STLF is in the

case. Concerning differential fuzzy time series, this method work on trend data

well. For instance, the application like financial time series that contain differently

upwards and downwards trends through their life cycle can be forecasted by this

method well. It is good to use by financial managers to predict financial time

series. The reputation of third method i.e. revised fuzzy time series model for

noisy data will be appearing when a data contains a seasonality pattern with

noise. In stock market for prediction, this method will promise the accurate

forecast. The application of this method is tested on stock amount forecasting

and STLF. Multilayer forecasting model, which is a fourth refined method in

this thesis, is very used full typically for stock market and financial time series

forecasting. In this study the performance of this method is tested in frothy stock

market case studies. It’s also very elastic and can be combined with other FTS

algorithms to be better. Finally, k-step-ahead forecaster is useful for when in FTS

applications, k-step-ahead forecast is required. The algorithm is generalized and

tested for STLF but not limit too. Any application which required to perform

k-step-ahead forecasting using fuzzy time series can use this method.

1.4 Research question

The objectives of this study are to determine five gaps in fuzzy time series

literature, to propose and improve novel algorithms which deal appropriately with

these shortcomings and to evaluate and validate the performance of the proposing

algorithms by applying different appropriate case studies.
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1.5 Objective of study

The main goal of this research is to enhance the fuzzy time series algorithm

by revision techniques through new algorithms. In order to attain research aim

the following research objectives are recognized:

1. To propose polynomial fuzzy time series, to enrich the role of FLRGs in

fuzzy time series algorithms.

2. To propose differential fuzzy time series to deal with trend of data

appropriately.

3. To present revised fuzzy time series model for noisy data to propose the way

of integrating fuzzy time series model together with data pre-processing.

4. To propose a multi-layer fuzzy time series model for stock market

forecasting. While forecasting the stock market was one of the main

application in fuzzy time series researches, absence of any standard model

to facilitate making a stock forecast system was a considerable problem.

5. To propose a modified fuzzy time series model for k-step-ahead forecasting.

6. To validate the performance of proposed methods and algorithms by

evaluating the results which are obtained by different experiments.

1.6 Scope of study

This study is limited to resolving five shortcomings in univariate fuzzy time

series by revising certain steps of basic algorithms or proposing new approaches.

The datasets that used through this research for validation of the proposed

models are half-hourly load data of different sources i.e. France, England, and

Malaysia, and stock data such as forty years of Taiwan Capitalization Weighted

Stock Index (TAIEX), National Association of Securities Dealers Automated

Quotations (NASDAQ), Dow Jones Industrial Average (DJI) and S&P500. In

addition, a benchmark dataset in fuzzy time series studies, namely the number

of enrollments of Alabama University is also applied.
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