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ABSTRACT 

 

 

 

 

Hydrogen is recognized as a sustainable and renewable energy carrier for 

transportation.  The development of environmental friendly and cost effective 

hydrogen producing become the main challenge in this area.  This work, catalytic 

steam reforming of acetic acid over bimetallic Nickel-Cobalt (Ni-Co) supported on 

Lanthanum (III) Oxide (La2O3) was studied.   The objectives of this study are to 

obtain a highest hydrogen production and to study the effects of reaction condition 

such as reaction temperature; pressure and effect the quantity of catalyst to the 

hydrogen production. Also, to study the effect of Silicon Carbide (SiC) dilution with 

catalyst at different temperature. The catalysts are prepared by impregnation method.  

The catalyst performance tests are carried out in a fixed bed reactor at atmospheric 

pressure and temperature from 500°C to 700°C at increment of 50°C, flow rate 

range between 0.1 to 0.49 mL/min, acetic acid concentration in range of 10 to 40 wt. 

% and the weight of catalyst between 0.1 to 0.3 g. It was found that the hydrogen 

production dropped by increasing of acetic acid concentration and the optimum 

condition is at temperature of 550 
o
C and 0.25 g catalyst whereas 600 

o
C while the 

SiC was used as a catalyst dilution and achieved 98.89% acetic acid conversion. A 

series of acetic acid flow rate and a series of amount of catalyst supported on La2O3 

with and without SiC dilution have been investigated at 600 
o
C, 1 atm and 10 wt.% 

of acetic acid. Catalyst at 0.25 gr and 0.36 mL/min of acetic acid flow rate exhibits 

the best performance; it is given of 0.61 mole fraction of hydrogen. 
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ABSTRAK 

 

 

 

 

Hydrogen dikenali sebagai sumber tenaga boleh diperbaharui yang mampan 

kepada pengangkutan. Pembangunan pengeluaran hydorogen yang mesra alam 

dengan kos yang efektif kini menjadi cabaran penting kepada pengkaji. Kajian ini 

dijalankan melalui reformasi stim dwilogam diantara acetic mengatasi Nickel-Cobalt 

(Ni-C0) dan Lanthanum (III) Oxide (La2O3). Objektif  kajian ini adalah untuk 

mendapatkan pengeluaran tertinggi hydrogen  dan juga bagi mengkaji kesan 

sampingan dari pencairan  Silicon Carbide (SiC) pada tahap suhu yang berbeza. 

Pemangkin dibuat dengan kaedah impreganasi, manakala kaedah ujian pemangkin 

dijalankan dalam kaedah wap tetap pada tekanan suhu diantara,  500 
o
C dan 700

o
C 

dan aliran kitaran elektrikal 0.1 – 0.49 mL/minit, konsentrasi asetat diantara 10 

sehingga 40 wt% dengan berat pemangkin diantara 0.1 dan 0.3 gram.  Hasil kajian 

mendapati peningkatan hasil hydrogen diperolehi dengan mempertingkatkan 

konsentrasi asid asetat pada keadaan suhu optimum iaitu 550 
o
C, sementara 600 

o
C 

SiC diaplikasikan dan berfungsi sebagai pencairan pemangkin. Aliran asis asetat 

dengan ini disokong pada La2O3, atau ketiadaan SiC juga dijakaji pada suhu 600 
o
C, 

1 atm dan 10 wt% dari asid asetat. Dapatan kajian juga menunjukkan pemangkin 

pada 0.25 gram dan 0.36 mL/minit kelajuan aliran asid asetat adalah merupakan 

pencapaian terbaik seandainya  0.61 fraksi mol hydorogen diberikan. 
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CHAPTER 1 

 

 

 

 

 INTRODUTION 

 

 

 

 

 

 

 

The dependence of world’s energy consumption on fossil fuels, especially in 

the transportation sector leads to a serious energy tension as the increasing energy 

demand speeds up the drain of the fossil fuel which is finite. Furthermore, 

combustion of fossil fuel causes the environmental problems. Some problems that 

have known the most publicity recently are the "greenhouse effect," which is 

changing the Earth's climate; acid rain that is destroying forests and killing fish; and 

air pollution that making tens of millions ill and degrading the quality of life in other 

ways (Mohammed et al., 2011). In order to prevent these dangers, utilization of an 

alternative source for fossil fuel will be the main focus in this work. 

 

 

Currently, there is an increasing interest in the use of hydrogen to substitute 

fossil fuel in the energy business. Hydrogen is a promising energy that potentially 

plays an important role in future energy systems and replace fossil energy because of 

its clean burning qualities, its potential for domestic production and the fuel cell 

vehicles potential for high efficiency. Hence, hydrogen production is a matter of 

great importance, both in clean fuel production and refinery recently. Therefore for 

1.1 Background of Study 
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internal combustion engines, hydrogen can be good fuel cells, good possibility fuel 

and other applications (Yazhong and Hengyong, 2006; Wanga and Cheng, 2012). 

 

 

Pure hydrogen gas does not exist as a natural resource like oil. It cannot drill 

for hydrogen or discover it anywhere as a pure gas. Therefore, today hydrogen 

produced is extracted from natural resources like water, coal gasification, natural 

gas, acetic acid, glycerol, butanol, ethanol, methane, naphtha catalytic steam 

reforming and bio-oil. In order to extract hydrogen from these existing resources, 

energy must be spent. Bio-oil is a preferred hydrogen resource because of its 

renewable and has environmental benefit characteristics. In the present study, only 

the main unwanted component of bio-oil which is acetic acid as a source of 

hydrogen production is chosen (Czernik et al., 2002; Hu and Lu, 2010).  

 

 

Acetic acid as a source of hydrogen production has been chosen because is 

one of the major components in bio-oil up to 32 wt.% and a safe hydrogen carrier 

due to its non-inflammable nature. It is a waste product which is one of the most 

representative constituents of the water-soluble fraction of bio-oil. Furthermore, the 

acidity of bio-oil is not suitable for engine fuel because one of the major problems as 

corrosive resistant materials for engine fuel. In order to solve this problem, the acetic 

acid in the bio-oil can be separated out and added value in others usage. For 

example, acetic acid becomes a source in the catalytic steam reforming (SR) for 

hydrogen production. Hydrogen can be obtained using several technologies such as 

steam reforming SR, coal gasification, auto-thermal reforming (ATR), dry reforming 

(DR), partial oxidation (POX), thermolysis and electrolysis (Dahl and Weimer, 

2004; Takanabe et al., 2004; Medrano et al., 2008; Neiva et al., 2010). 

 

 

The proposed method that has chosen for hydrogen production in this study 

is acetic acid steam reforming. The advantage of this concept is that the steam 

reforming is the dominant and simple technology for hydrogen production. 
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Furthermore, steam reforming needs lowest process temperature and higher H2/CO2 

ratio compare with coal gasification, partial oxidation (POX) and dry reforming 

(DR). The Nickel/Cobalt supported on Lanthanum (III) Oxide is used inside the 

reformer to increase the reaction rate because it has been found out that Ni and noble 

based catalysts were more active and selective towards hydrogen production and 

gives good hydrogen yields in acetic acid stem reforming. Also, Ni catalysts are 

promising and not expensive catalysts for bio-oil and biomass gasification. The 

reactions which may happen during the acetic acid steam reforming are ketonization, 

methanation, water shift reaction, and thermal decomposition reaction which 

mentioned in the second chapter of this research (Fatsikostas et al., 2002; 

Basagiannis and Verykios, 2006; Bulushev and Ross, 2011).   

 

 

 

 

 

 

 

Acetic acid constitutes of about 30% of unwanted waste product from bio-oil 

production. It is an attractive feedstock for hydrogen production as it is non-

inflammable in nature and also water-soluble. Thus, hydrogen production from 

acetic acid steam reforming over bimetallic catalyst has been chosen. However there 

are some obstacles and difficulties that will be faced during this process. One of 

these problems is that during steam reforming process, the high temperature (700 to 

1000 
o
C) needs to use toward high hydrogen production and high acetic acid 

conversion. Another problem is the high cost of catalyst due to huge amount usage 

of catalyst to increase the steam reforming reaction rate. Hence, the selection of low 

cost catalyst is important for economic process while to ensure the maximum and 

stability of hydrogen production (Czernik et al., 2002; Takanabe et al., 2004; 

Medrano et al., 2008). 

 

 

 

1.2 Problem Statement 
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The objective of the study is to: 

 

i. evaluate the reaction activity of bimetallic nickel (5 wt. %) and Cobalt (5% wt.) 

supported on Lanthanum (III) oxide on the acetic acid reforming and maximize 

the hydrogen production at various reaction condition; 

 

ii. study the performance of catalyst on the hydrogen production on the acetic acid 

steam reforming; 

 

iii. study the effect of reaction catalyst on hydrogen production; 

 

iv. evaluate the effect of silicone Carbide (SiC) as a catalyst dilution on hydrogen 

production; and 

 

v. compare the experimental analysis result with the thermodynamic analysis 

results in term of effect of temperature on hydrogen production from the acetic 

acid steam reforming.  

 

 

 

 

 

 

 

The overall scope of this work includes to study the effect of reaction 

parameter such as temperature (500 
o
C to 700 

o
C), acetic acid concentration (5 wt.% 

to 40 wt.%), amount of catalyst (0.1 to 0.3 g), acetic acid flow rate (0.1 to 0.49 

mL/min) and stability of catalyst against reaction time (40 to 240 min) on the acetic 

acid reforming. The reaction conditions used in this work were 1 atm of pressure, 30 

mL/min of flow rate of input gas and 600 
o
C of temperature. 

1.3 Objective of This Work  

1.4 Scope of Study 
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Generally, most of the previous works discussed in detail on the effects of 

operating parameters on acetic acid reforming reactions using two bimetallic 

catalysts such as Fe-Co and Ni-Co. Whereas in this study, the catalytic estates of 

La2O3-supported Ni and Co catalysts in acetic acid reforming reactions will be 

studied. The catalytic behavior between Ni-Co/La2O3 and silicone carbide (SiC) as a 

dilution catalyst were focused. Cobalt and nickel were the widest used transition 

metals for various steam reforming reactions, and both of them were suggested as 

appropriate materials because of their maximum catalytic performances. However, 

the detailed comparisons of Co and Ni catalysts in terms of catalytic behaviors in 

acetic acid reforming reactions have not yet been recorded. Besides, to our 

knowledge, the catalytic performances of Ni/La2O3 and Co/La2O3 catalysts in acetic 

acid reforming reaction have not been reported in detail. Thus, catalytic behaviors of 

this La2O3-supported transition metals catalyst in steam reforming of acetic acid 

were aimed in this study. 

 

 

The study would benefit in a number of particular areas in terms of 

processing, such as a reduction of energy consumption and expenses of the catalyst, 

as well as the feed usage. First of all, the study would be able to benefit the 

minimizing of the energy that used during steam reforming. As mentioned in the 

problem statement, to increase the hydrogen rate during the steam reforming 

process, the temperature must be increased, while in this research, the minimum heat 

(550 
o
C) was used during the steam reforming for highest hydrogen yield and 

highest acetic acid conversion, compare than typical temperature of 700 to 1000 
o
C. 

Also, this research is in significance when using one of the cheapest catalysts which 

is Nickel and Cobalt supported on Lanthanum (III) Oxide and the less amount of it 

in terms of highest hydrogen production and acetic acid conversion. Another benefit 

of this study was to the minimum feed (acetic acid) flow rate was applied toward 

maximum hydrogen production and acetic acid conversion. The research would be 

1.5 Significant of Research 
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able to provide an idea on diluting the catalyst to increase the hydrogen production 

as well as acetic acid conversion.  
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