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ABSTRACT 

 

 

 

The objective of this study is to develop a systematic method for estimating 

fugitive emission from storage tank and wastewater treatment (WWT) units. Fugitive 

emission is the unintentional release of chemical vapors or gases that occur whenever 

there are discontinuities in the solid barrier maintaining the containment. While the 

amount released is very small, continuous exposure to chemical substances due to 

emission may adversely affect workers’ health. To achieve the objectives, a 

comprehensive review is conducted on currently available fugitive emission 

estimation methods. A combination of emission factor, equation and software 

techniques is chosen as the methodology to study fugitive emission from storage tank 

and WWT units. A total of eleven horizontal and vertical tanks as well as nine WWT 

units are selected in this study. The results are presented as precalculated fugitive 

emission database for storage tank and WWT units. Dimensions data for storage tank 

and WWT units are also compiled from various sources for estimating chemical 

concentration. Three examples are given to demonstrate the application of the 

precalculated fugitive emission database in estimating fugitive emission and 

concentration from storage tank and WWT units. To calculate the other losses (e.g. 

working loss and evaporation loss), TANKS 4.09d software and evaporation loss 

equation are used. The typical range of fugitive emission individual stream value for 

both storage tank and WWT units are found to be within 0.01-0.20 kg/h. Calculation 

using the EPA emission factor leads to higher emission estimates compared to using 

the controlled emission value. Evaporation loss is found to be the largest source of 

emission loss from storage tank and WWT compared to fugitive emission, working 

and breathing losses. 
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ABSTRAK 

 

 

 

Objektif kajian ini adalah untuk membangunkan satu metodologi bagi 

menganggar pelepasan fugitif dari tangki simpanan dan unit rawatan kumbahan 

(WWT). Pengeluaran fugitif ialah pembebasan wap atau gas kimia secara tidak 

sengaja yang berlaku bila-bila masa apabila terdapat ketidaksinambungan dalam 

pembendungan. Walaupun jumlah pelepasan adalah kecil, pendedahan secara 

berterusan kepada bahan kimia disebabkan pengeluaran fugitif akan mengakibatkan 

kesan buruk terhadap kesihatan pekerja. Bagi mencapai objektif ini, satu kajian 

literatur telah dijalankan dengan mendalam untuk memahami kaedah penganggaran 

pelepasan fugitif yang sedia ada. Kombinasi faktor pancaran, persamaan dan perisian 

telah digunakan sebagai kaedah untuk mengkaji pelepasan fugitif dari tangki 

simpanan dan unit rawatan kumbahan. Sejumlah sebelas tangki simpanan serta 

sembilan unit WWT telah dipilih sebagai kajian. Keputusan kajian dipersembahkan 

sebagai ‘precalculated emission database’. Data dimensi telah dikumpul daripada 

pelbagai sumber dan disenaraikan. Tiga contoh diberi untuk mendemonstrasikan 

penggunaan ‘precalculated emission database’ dalam menganggarkan pelepasan 

fugitif. Bagi mengira kehilangan sejatan dan kehilangan lain, TANKS 4.09d and 

persamaan sejatan telah digunakan. Secara umum, nilai aliran individu pengeluaran 

fugitif bagi tangki and unit WWT didapati berada di dalam lingkungan 0.01-0.20 

kg/h. Penggunaan faktor pelepasan EPA didapati menghasilkan nilai jangkaan 

pelepasan fugitif yang lebih besar berbanding penggunaan nilai perlepasan terkawal. 

Didapati kehilangan sejatan merupakan sumber pengeluaran terbesar dalam tangki 

simpanan dan unit WWT berbanding punca kehilangan lain dan pengeluaran fugitif.     
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CHAPTER 1 

 

 

 

 

1 INTRODUCTION 

 

 

 

 

1.1 Inherent safety concept 

 

 

Modern chemical process industry is complex due to technological 

advancement such as the adoption of extreme operating conditions (i.e. higher 

operating temperature and pressure) which is not possible in the past due to 

technological restriction (Crowl and Louvar, 2002). The higher the complexity of a 

process, the more sophisticated safety and health measures are required to safeguard 

the workers. 

 

 

In the 19th centuries, there are many notable accidents that occurred in 

chemical industry leading to significant development of chemical process safety. 

Several accidents with devastating impacts are often used as educational case studies 

for teaching safety and health courses e.g. Flixborough, 1974 and Bhopal, 1984 

(Crowl and Louvar, 2002).   

 

 

 Basically, there are many existing safety and health measures and among the 

common ones are such as alarm system, process control, and personal protective 

equipment. However, these measures are not able to reduce or eliminate the hazard 
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itself but rather serve to control or manage the existing hazard. Since the hazard is 

still present within the process, accident will occurs upon failure of any of the 

measures. 

 

 

 In 1978 a concept to eliminate hazard rather than to contain them was 

introduced by Trevor Kletz in an article entitled “What You Don’t Have, Can’t Leak” 

(Kletz, 1978). The concept is named inherent safety based on a book written by Kletz 

later on (Kletz, 1984). This book undergoes major revision in later years although the 

main principles are still basically the same. His work received support from 

researchers in the same field and was incorporated in many chemical industries. As it 

is not possible to achieve a perfect safety, the researchers usually called it inherent 

safer design or simply ISD (Bollinger et al., 1996). 

 

 

An inherent safer plant relies on fundamental theories, chemistry and physics 

to prevent accidents rather than control interlocks, control systems, alarms and etc. 

(Crowl and Louvar, 2002). The plant is tolerant of errors and is often more cost 

effective due to waste reduction, smaller equipment, energy and raw materials 

conservation. The plant is also easier to operate as it does not require any 

sophisticated system thus reducing potential operators’ error.  

 

 

The major approach to an inherent safer design is based on four principles 

which are: 

 

 

• Minimize 

• Substitute 

• Moderate 

• Simplify 
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For minimize, hazard is reduced by decreasing the amount of hazardous 

chemical used in the process (Crowl and Louvar, 2002). It can also be interpreted as 

the reduction of transporting and storing hazardous intermediate chemical by 

producing them “in-situ” which means producing within the process itself. 

 

 

In most cases, minimization can only be performed until certain extend and 

the hazard can no longer decrease. The next step would be to substitute the hazardous 

chemical to a non-hazardous or least hazardous chemical. The concept also applies to 

replace less safer equipment e.g. flanged pipe to a safer one e.g. welded pipe (Crowl 

and Louvar, 2002). It is also possible to consider alternatives for the entire process 

itself. 

 

 

 After performing all possible substitution, next is to consider moderation. 

Moderation is to employ less hazardous process operating condition (Crowl and 

Louvar, 2002). Some examples are such as operating process at a temperature and 

pressure where reactor runaway is not possible and diluting hazardous chemical with 

inert solution to prevent over-reaction. 

 

 

 Finally the last strategy concerns with reducing the complexity of the plant. A 

simpler plant is easier to operate than a complex plant since there are fewer devices, 

systems, equipment to operate and thus less opportunity for errors to occur (Crowl 

and Louvar, 2002). Some examples given are to design piping system in well-

ordered and easy to monitor, delegate manual control to automated control if possible 

and reduce the amount of buttons on the control panels. 
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1.2 ISD in process lifecycle 

 

 

A typical process lifecycle stage starts from research and development, 

design, construction, operation, retrofitting and maintenance, and finally ends at 

decommissioning. It is possible to further classify the design stage into preliminary 

design, basic engineering and detailed engineering (Hassim and Hurme, 2010). 

Preliminary design deals with the process chemistry, reactions, heat and mass 

balances and flow sheet while basic engineering covers the process piping and 

instrumentation diagram. In detailed engineering, detailed documents and drawings 

for construction and procurement are prepared.   

 

 

It is logical that inherent safer design should be incorporated starting from 

process development. The ideal approach would probably be during research and 

development (R&D) stage where the design is not yet finalized and still a concept. 

Whatever decision been made within the R&D stage would affects greatly the 

subsequent development lifecycle. This could be from using alternative process and 

reaction to modifying an existing process so that it is safer and healthier. Early 

design stage offers the highest degree of freedom for engineers to fulfill ISD and 

government policies (Hassim and Hurme, 2010).  

 

 

Other advantage of applying ISD in earlier stage is due to the cost affiliated. 

According to Kletz, it is much more economical to fix a problem during conceptual 

stage as oppose to cleaning up the mess after an accident occurs (Kletz, 1991). A 

pyramid triangle is shown in Figure 1.1 illustrating this statement. Note that the 

values shown are only relative values associated with each stage and not the actual 

cost.  
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Figure 1.1: Cost to fix problem in various stage (Kletz, 1991) 

 

 

Although R&D stage seems to be the best stage to apply ISD concept, it is 

known that R&D stage is also the one with the least amount of information available. 

Many engineers would argue that without much information, it would be difficult to 

assess their plant potential hazard and to reduce them using ISD. This concept is 

known as “design paradox” (Hassim and Hurme, 2010).  

 

 

A summary of design stages involved, cost associated to incorporate safety 

feature and the amount of information available can be seen in the graph below. 

Based on Figure 1.2, an intersection point at pre-engineering stage (also known as 

preliminary design stage) provide a good starting point to conduct ISD as the amount 

of information available is enough to provide opportunity for installing inherently 

safer features as early as possible. The earlier the design incorporate ISD the lesser 

the cost needed and safer plant. 

 

 

Conceptual 
- $1

Flowsheet -
$10

Line diagram - $100

After construction - $1,000

Clean-up accident - $10,000
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Figure 1.2: Design paradox and ISD (Hurme and Rahman, 2005) 

 

 

 

 

1.3 Research background 

 

 

In process development and design stage, engineers usually need to identify 

all the emissions from their process based on studies, literatures and simulations. 

Steps and measures are then taken to reduce the emissions or eliminating them 

through process simplification, optimization or integration. Many of the emissions 

are the results of actual process streams from daily operations and can be controlled 

using various equipment such as scrubber or special recovery system. However, there 

is often significant amount of not anticipated, spurious leak which is referred to as 

fugitive emission (Onat, 2006).  

 

 

Fugitive emission, as defined by various authors, can be summarized as the 

unintentional release of individual chemical or chemical mixtures, in any physical 

form (liquid, gas, and solid) in industrial plant (Ellis, 1997; ESA / FSA, 1998; Onat, 
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2006). Fugitive emission can occurs whenever there are discontinuities in the solid 

barrier that maintains containment e.g. pump seals, valves, flanges and etc. (Hassim 

et al., 2010). The amount of fugitive emission released at individual leak points is 

often very small. Nevertheless, considering the entire plant summing up every leak 

sources available, fugitive emission can cause a significant impact towards 

environment and human health (Smith et al., 2007). In the UK, it is estimated that 

there are over 7,000 deaths associated to work-related carcinogens exposure which 

accounts for 4.9% of total cancer death (Cherrie, 2009).  

 

 

Yet, fugitive emission impact is not only limited to environment and health 

issues but also includes economy. Fugitive emission denotes a major financial 

burden on the industry due to plant inefficiency, substantial loss of potential products 

and raw materials and many other invisible costs (Szweda, 2000). Figure 1.3 below 

shows a graphical representation of the cost associated with fugitive emission. Based 

on the figure alone, it is clear that the effect of invisible cost is much significant 

compared to visible cost as it is hard to predict how much economy damage the 

invisible cost can caused. 

 

 

 

Figure 1.3: Simple diagram relating cost with fugitive emission (Szweda, 2000) 

 

 

Figure 1.4 shows an example distribution of fugitive emission in an oil 

refinery. According to Lakhapate (2010), the main sources of fugitive emission are 

valves (75%) followed by tanks (10%), rotary equipment (10%) and flanges (5%). 
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Based on this data, we can assume that majority of fugitive emission originated from 

piping components but there is also significant emission from storage tank which 

should also be considered. The author did mentioned that fugitive emission in the 

U.S. had been estimated to be around 300,000 tons per year accounting for around 

one third of total organic emission from chemical plants and the same situation is 

occurring in Europe (Lakhapate, 2010).   

 

 

 

Figure 1.4: Distribution of fugitive emission in oil refinery (Lakhapate, 2010) 

 

 

 

 

1.4 Problem statement 

 

 

A complete plant fugitive emission study requires the study of both inside 

battery limit (ISBL) and outside battery limit (OSBL) units. Hassim et al. (2010) 

introduced a simple yet reliable method to estimate fugitive emission during design 

stage for various unit operations also known as process module. However, their work 

focuses only on process units (ISBL) such as reactor, distillation column, absorber, 

flash column and etc. They did not include a study for OSBL unit such as storage 

tank and wastewater treatment units which are also major fugitive emission 

contributors.  
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There are various methods developed by different organization to estimate 

fugitive emission from storage tank and wastewater treatment units. However, many 

of these methods suffer from certain weaknesses. Among some of the weaknesses 

identified are such: 

 

 

• The methods require many data which are not available during earlier 

design stage hence the methods can only be used to assess existing plant 

• The methods are complicated to use, require specific knowledge or 

complex calculation thus preventing non-engineer/non-technical end user 

from using them 

• The methods are tedious, time-intensive and costly thus are not feasible 

for design stage that has very limited resources 

 

 

Thus, a new or improved methodology to evaluate fugitive emission from 

storage tank and wastewater treatment units during early design stage is 

recommended to allow a throughout plant fugitive emission study. 

 

 

 

 

1.5 Significant of study 

 

 

The outcome of this study will provide process designers and engineers with 

a systematic method to perform simple fugitive emission estimation from storage 

tank and WWT units with less effort, time and cost. Not only users are able to 

quantify the amount of fugitive emission from those units, the data can also expose 

most hazard associated with fugitive emission during early process design. Based on 

the identified risk, counter measures can be taken to reduce or eliminate the hazards 

through the various inherent safer principles. This will create a fundamentally 
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healthier and safer working environment for the workers and also complies with 

government policies to achieve sustainable development.     

 

 

1.6 Objectives 

 

 

The objectives of this study are: 

 

 

1. To review existing fugitive emission estimation methods 

2. To develop a new or improved method for estimating fugitive 

emission from storage tank and wastewater treatment units 

3. To create a precalculated emission database for storage tank and 

wastewater treatment units    

4. To calculate fugitive emission in mass flow rate and concentration 

using examples 

5. To determine health risk of storage tank and WWT units based on 

examples 

 

 

 

1.7 Scope of study 

 

 

This study will involve only few common storage tank and wastewater 

treatment units used in chemical industry. The study will review both theoretical (e.g., 

calculations, rule of thumb, guidelines) and instrumental methods to evaluate fugitive 

emission but the proposed methodology for emissions estimation will be based on 

theoretical methods, not involving any instrument for measurement. The study is 

limited to preliminary design stage and long term periodic fugitive emission release. 

After estimating emission concentration based on examples, a simple estimation of 
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health risk is performed based on the chemicals concentration estimates and their 

associated exposure limit value.    

 

 

1.8 Dissertation outline 

 

 

This dissertation comprises of five chapters. Chapter one is the introduction 

chapter providing a brief introduction on sustainability, SHE, regulations and 

importance of SHE in process development, inherent safety concept, fugitive 

emission, hazard of fugitive emission and importance of evaluating fugitive emission 

in earlier process design stage, problem statement, aim of study, significant of study, 

objective and scope of study. 

 

 

Chapter two covers the literature review which includes basic concept of 

occupational health, risk and risk assessment, exposure route, storage tank and WWT 

units assessment methods currently available, summary and conclusion of the review 

on currently available methods, design of storage tank and WWT units. 

 

 

Chapter three describes the methodology taken in order to evaluate fugitive 

emission from storage tank and WWT units. This chapter includes a brief 

introduction, calculations, materials and resources used to complete the study, 

parameters studied, and procedures to validate the propose method. 

 

 

Chapter four presents tabulated data and graphical presentation of fugitive 

emission rates for both storage tank and WWT units. A list of common units 

dimension is compiled from various sources. Three examples to calculate fugitive 

emission for storage tank and WWT units are shown. Other losses are calculated 

using TANKS 4.09d and evaporation loss equation. 

 

 



12 

Chapter five concludes this dissertation with conclusion and 

recommendations for future work.
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