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ABSTRACT

Compared to the traditional metallic implant materials such as stainless steels, 
titanium alloys and cobalt chromium alloys, magnesium (Mg) has received great 
attention as biodegradable medical implants as it does not require second surgical 
procedure for removal. Mg and its alloys also possess suitable mechanical properties 
for orthopaedic and cardiovascular applications. However, clinical applications of 
Mg have been limited due to its relatively poor corrosion resistance, rapid 
degradation rate and hydrogen gas evolution in human body fluid. This research is 
aimed at decreasing the Mg degradation and corrosion rate by alloying with calcium 
(Ca) and zinc (Zn), surface treatment by hydrofluoric acid and coating with nano
sized hydroxyapatite (HA) and brushite (DCPD) using electrodeposition method. 
The first stage of the research is to enhance the corrosion resistance of pure Mg by 
the addition of Ca (0.5 to 10 wt.%). In the second stage, Zn at different percentages 
(0.5 to 9 wt.%) was added to the binary Mg-Ca alloy to further enhance the corrosion 
properties. Both strategies were found to enhance the corrosion resistance of the 
alloy, however, the effect was not significant. To further enhance the corrosion 
resistance fluoride treatment by using different concentrations of hydrofluoric acid 
(35 and 40%) for the duration of 6 to 24 hrs were employed on binary Mg-Ca and 
ternary Mg-Ca-Zn alloys. Finally, nano-HA and Brushite were coated on the 
fluoride-treated specimens via electrochemical deposition (ED) method at different 
voltages (0.15 to 0.8 mA/cm2) and deposition times (10 to 60 min). Microstructural 
evolutions were characterized by XRD, AFM, FTIR, SEM, and TEM. Corrosion 
resistance was examined by potentiodynamic polarization and immersion test in 
Kokubo solution at room temperature. The results revealed that the grain size and 
dendrite cell size decreased with the addition of Ca and Zn contents into the binary 
and ternary alloys respectively. The addition of 0.5 wt.% Ca content was found to 
produce the lowest dissolution rate and the highest corrosion resistance. However, 
further addition of Ca led to an increased dissolution rate and pH value. The 
corrosion resistance of Mg-0.5Ca alloy was enhanced with the addition of up to
1 wt.% Zn, but further addition produced the reverse effect. Mg-0.5Ca-lZn alloy, 
which has a-Mg+Ca2Mg6Zn3+Mg2Ca phases showed lower corrosion rate than those 
alloys with Zn/Ca atomic ratio higher than 1.23. After fluoride treatment the 
degradation rates of the alloys were significantly reduced compared to the untreated 
alloys. Electrochemical tests showed a significant decline in corrosion current 
density from 365.2 to 5.23 |xA/cm2 on Mg-0.5Ca-lZn alloys coated with composite 
nano-HA/MgF2. The application of composite coating of nano-HA/MgF2 on Mg-Ca- 
Zn alloys could be used to reduce the corrosion rates of Mg alloys for biodegradable 
medical applications.



ABSTRAK

Berbanding dengan implan tradisional yang dibuat dari bahan logam seperti 
keluli tahan karat, aloi titanium dan aloi kromium kobalt, magnesium (Mg) telah 
mendapat perhatian besar sebagai bahan biodegradasi implan perubatan kerana tidak 
memerlukan prosedur pembedahan kedua untuk penyingkiran implan. Mg dan 
aloinya memiliki sifat mekanikal yang juga sesuai untuk aplikasi ortopedik dan 
kardiovaskular. Walau bagaimanapun, aplikasi klinikal Mg adalah terhad disebabkan 
oleh mutu rintangan kakisan yang rendah, kadar degradasi yang tinggi dan evolusi 
gas hidrogen yang pantas dalam cecair badan manusia. Kajian ini bertujuan untuk 
mengurangkan kadar degradasi dan kakisan Mg secara pengaloian menggunakan 
unsur kalsium (Ca) dan zink (Zn), rawatan permukaan oleh asid hidrofluorik, dan 
salutan hydroxyapatite (HA) bersaiz nano dan brushite (DCPD) dengan kaedah 
elektroenapan. Peringkat pertama kajian adalah untuk meningkatkan rintangan 
kakisan Mg tulen dengan penambahan unsur Ca (0.5-10 wt.%). Pada peringkat 
kedua, unsur Zn pada peratusan yang berbeza (0.5-9 wt.%) ditambah kepada aloi 
binari Mg-Ca untuk menambah baik sifat kakisan. Kedua-dua strategi ini didapati 
beijaya menambah baik rintangan kakisan aloi, tetapi kesannya tidak ketara. Untuk 
mempertingkatkan lagi sifat rintangan kakisan, rawatan fluorida menggunakan 
kepekatan asid hidrofluorik yang berbeza (35 dan 40%) untuk tempoh 6 hingga 24 
jam telah digunakan ke atas aloi binari Mg-Ca dan aloi pertigaan Mg-Ca-Zn. 
Akhimya, HA dan Brushite telah disalut pada spesimen yang telah menjalani 
rawatan fluorida dengan kaedah pemendapan elektrokimia (ED) pada voltan (0.15- 
0.8 mA/cm2) dan masa pemendapan (10-60 min) yang berbeza. Evolusi 
mikrostruktur telah dilakukan menggunakan XRD, AFM, FTIR, SEM, dan TEM. 
Kerintangan kakisan telah diteliti menggunakan polarisasi potentiodynamic dan ujian 
rendaman dalam larutan Kokubo pada suhu bilik. Keputusan menunjukkan bahawa 
saiz bijian dan saiz sel dendrit menurun dengan penambahan kandungan Ca dan Zn 
ke atas aloi binari dan aloi pertigaan masing-masing. Penambahan 0.5 wt.% Ca 
dikenalpasti menghasilkan kadar keterlarutan terendah dan rintangan kakisan 
tertinggi. Walau bagaimanapun, penambahan Ca yang seterusnya membawa kepada 
peningkatan kadar keterlarutan dan nilai pH. Rintangan kakisan aloi Mg-0.5Ca telah 
dipertingkatkan dengan penambahan sehingga 1 wt.% Zn, tetapi penambahan 
seterusnya menghasilkan kesan yang sebaliknya. Aloi Mg-0.5Ca-lZn yang 
mempunyai fasa a-Mg+Ca2Mg6Zn3+Mg2Ca menunjukkan kadar kakisan lebih 
rendah berbanding dengan aloi lain yang mempunyai nisbah atom Zn/Ca lebih 
daripada 1.23. Selepas rawatan fluorida kadar degradasi aloi dikurangkan dengan 
ketara berbanding dengan aloi yang tidak dirawat. Ujian elektrokimia menunjukkan 
penurunan yang ketara dalam ketumpatan arus kakisan; 365.2-5.23 (iA/cm2 bagi aloi 
Mg-0.5Ca-lZn yang disalut dengan komposit nano-HA/MgF2. Salutan komposit 
nano-HA/MgF2 aloi pada Mg-Ca-Zn boleh digunakan untuk mengurangkan kadar 
kakisan aloi Mg untuk aplikasi perubatan biodegradasi.



TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xii

LIST OF FIGURES xiv

LIST OF ABBREVIATIONS xxiv

LIST OF SYMBOLS xxvi

LIST OF APPENDICES xxviii

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 4

1.3 Purpose of the Study 4

1.4 Objectives of the Research 5

1.5 Significance of the Research 5

1.6 Scope of the Research 6

2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Biodegradable Materials 7

2.2.1 New Biodegradable Materials 8

2.3 Biodegradable Magnesium 10



2.3.1 History of Biodegradable Magnesium 10

2.3.2 Magnesium Properties 11

2.3.3 Magnesium and its Alloys for Biomedical 

Applications 14

2.4 Magnesium and Its Alloys 15

2.4.1 Mg-Ca Binary Alloys 18

2.4.2 Mg-Zn Binary Alloys 21

2.4.3 Mg-Ca-Zn Ternary Alloys 24

2.5. Solidification of Magnesium Alloys 26

2.5.1 Thermal Analysis Method 27

2.6. Corrosion Characteristics of Mg and Its Alloys 28

2.6.1 Degradation Rate of Magnesium 31

2.6.2 Corrosion Types 33

2.6.3 Corrosion Products 37

2.7. Current Modification Methods 40

2.7.1 Conversion Coatings by Hydrofluoric Acid

(HF) 42

2.8 Calcium Phosphates 43

2.8.1 Dicalcium Phosphate Dihydrate -  brushite 45

2.8.2 Hydroxyapatite 46

2.9 Coating for Magnesium Alloys 47

2.9.1 Biomimetic 59

2.9.2 Sol-gel Coating 50

2.9.3 Plasma Spraying 50

2.9.4 Dip Coating 51

2.9.5 Electrodeposition 52

3 RESEARCH METHODOLOGY 55

3.1 Introduction 55

3.2 Alloy Fabrication 59

3.3 Samples Preparation 61

3.4 Microstructural Characterization 63

3.4.1 SEM and TEM Studies 63



3.4.2 XRD Analysis 64

3.4.3 FTIR Analysis 64

3.4.4 AFM Analysis 65

3.5 Hardness Analysis 66

3.6 Thermal Analysis 66

3.7 Electrochemical Measurements 67

3.8 Immersion Test 68

3.8.1 Hydrogen Evolution 70

3.9 Fluoride Treatment 71

3.10 Electrodeposition of Calcium Phosphate Coatings 72

4 RESULTS AND DISCUSSION 74

4.1 Introduction 74

4.2 Evolution of the Microstructural Characteristics and 

Corrosion Behaviour of Mg-xCa Alloys 74

4.2.1 Microstructure Characteristics 75

4.2.1.1 XRD Analysis 79

4.2.2 Hardness Analysis 80

4.2.3 Thermal Analysis 81

4.2.4 Electrochemical Measurements 89

4.2.5 Immersion Test 93

4.2.5.1 XRD Analysis of Corrosion Products 97

4.2.5.2 FTIR Analysis of Corrosion Products 98

4.2.5.3 pH Evaluation 101

4.3 Evolution of the Microstructural Characteristics and 

Corrosion Behaviour of Mg-0.5Ca-xZn Alloy 102

4.3.1 Microstructure Analysis 102

4.3.1.1 XRD Analysis 108

4.3.2 Hardness Analysis 109

4.3.3 Thermal Analysis 111

4.3.4 Electrochemical Measurements 120

4.3.5 Immersion Test 126

4.3.5.1 XRD Analysis of Corrosion Products 131



4.3.5.2 FTIR Analysis of Corrosion Products 132

4.3.5.3 pH Evaluation 135

4.3.5.4 Hydrogen Evolution 136

4.3.6 In Vitro Degradation Behavior 137

4.4 Surface Modification of Mg-Ca and Mg-Ca-Zn

Alloys via Fluoride Treatment 140

4.4.1 Microstructure and Coating Characterization 143

4.4.1.1 XRD Analysis 148

4.4.1.2 AFM Analysis 150

4.4.2 Electrochemical Measurements 152

4.4.3 Immersion Test 156

4.4.3.1 XRD Analysis of Corrosion Products 162

4.4.3.2 FTER Analysis of Corrosion Products 165

4.4.3.3 pH Evaluation 167

4.4.4 In Vitro Degradation Mechanism 169

4.5 Hydroxyapatite and Brushite Coatings on Fluoride

Treated Mg-Ca-Zn Alloy 175

4.5.1 Electrodeposition of the Brushite Coatings 175

4.5.1.1 XRD Analysis of the Brushite 178

4.5.1.2 AFM Analysis of the Brushite 180

4.5.1.3 Surface Morphology Evaluation 181

4.5.2 Microstructure and Coating Characterization

of Composite Coated Alloys 185

4.5.2.1 XRD Analysis 190

4.5.2.2 FTIR Analysis 192

4.5.2.3 AFM Analysis 194

4.5.3 Electrochemical Measurements 196

4.5.4 Immersion Test 200

4.5.4.1 XRD Analysis of Corrosion Products 202

4.5.4.2 FTIR Analysis of Corrosion Products 203

4.5.4.3 pH Evaluation 205

4.5.4.4 Hydrogen Evolution 206



5 CONCLUSIONS AND RECOMMENDATIONS 209

5.1 Introduction 209

5.2 Conclusions 209

5.3 Recommendations for Future Work 212

REFERENCES

Appendices A-D

213

230-233



LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Mechanical properties and degradation rate of biodegradable
polymers as a comparison with bone, ceramics and metals

2.2 Mechanical properties of different type of magnesium alloys 
compared with tissue and traditional biomaterials

2.3 Influence of alloying elements on properties of Mg alloys at 
ambient temperatures

2.4 Corrosion types of various magnesium alloys in MEM 
solution

2.5 Example of calcium phosphate phases and their major 
properties

13

16

34

44

2.6 Different techniques to deposit HA coatings 48

3.1 Overall experimental details procedure of the research 58

3.2 Nominal and actual chemical compositions of Mg-xCa 
alloys 60

3.3 Actual chemical compositions of the Mg-0.5Ca and 
Mg-0.5Ca-xZn alloys 61

3.4 Etchants used for characterisation of Mg alloys 62

3.5 Chemical composition of the Kokubo simulated body fluid 
(SBF) compared to the human blood plasma 69

3.6 Amounts and formula weights of reagents for preparing 1000
ml of SBF 69

4.1 Cooling curve parameters for the pure Mg and Mg-xCa alloys 85

4.2 Electrochemical parameters of specimens in Kokubo solution 
attained from the polarization test 90

4.3 The characteristic parameters identified for Mg-0.5Ca and



Mg-0.5Ca-xZn alloys during solidification by thermal 
analysis

4.4 Electrochemical parameters of Mg-0.5Ca and Mg-0.5Ca- 
xZn specimens in Kokubo solution attained from the 
polarization test

4.5 Electrochemical parameters of untreated and fluoride coated 
specimens in Kokubo solution attained from the polarization 
test

4.6 Hydrogen and corrosion observation of untreated and fluoride 
treated after immersed in Kokubo solution for 10 days

4.7 Effect of current density and deposition time on deposit 
weight of brushite

4.8 Electrochemical parameters of untreated, fluoride treated and 
composite coated specimens in Kokubo solution attained 
from the polarization test

4.9 pH value, Hydrogen and degradation observation of 
untreated, fluoride treated and composite coated specimens 
after immersed in Kokubo solution for 10 days

123

156

173

176

199



LIST OF FIGURES

FIGURE NO. TITLE

2.1 Potential applications of magnesium-based materials to:
(a) osteosynthesis, (b) cardiovascular stents, and (c) 
wound-closing devices for stomach trauma

2.2 Mechanical properties of as-cast pure Mg and M g-lX 
alloy ( X= Al, Ag, In, Mn, Si, Sn, Y, Zn and Zr) specimens 
s at room temperature. Extracted from reference [49]

2.3 Mechanical properties of as-cast, as-rolled and as-extruded 
Mg-ICa alloy as well as as-cast Mg-2Ca alloy and as- cast 
Mg-3Ca alloy at room temperature

2.4 Mg-Ca binary phase diagram

2.5 Potentodynamic polarization curves of pure Mg and Mg- 
Zn alloys

2.6 Mg-Zn binary phase diagram

2.7 Typical stress -strain curve of as cast Mg-xZn-ICa alloys

2.8 The ternary phase diagram of as-cast Mg-Ca-Zn alloy

2.9 Free corrosion potentials of some construction metals in 
neutral sodium chloride solution

2.10 Pourbaix diagram of magnesium in water at 25C

2.11 The hydrogen evolution volumes of as-cast pure Mg and 
M g-lX alloys ( X = Al, Ag, In, Mn, Si, Sn, Y, Zn and Zr) 
specimens immersed in SBF and Hank’s solution for 
500 h

2.12 Localized corrosion morphology of AM50 magnesium 
alloy

PAGE

14

18

20

21

22

23

25

26

30

31

32 

34

2.13 SEM micrographs of AZ80 magnesium alloy after 
immersion in 0.5 wt.% NaCl solution: (a) 4 h immersion



shows large pits and (b) 24 h immersion shows 
coalescence of pits forming trenches 36

2.14 Effects of impurities concentrations on the corrosion rate
of AZ91 magnesium alloy 3 6

2.15 Mechanism of micro-galvanic corrosion proposed for the 
WEXX alloys: (a) formation of magnesium hydroxide 
layer on the surface of the a-Mg matrix and (b) localised 
micro-galvanic corrosion at preferential areas 37

2.16 Build-up of very voluminous Ca-rich oxide product that 
forms as a result of corrosion in SBF at 37 °C. The product
is insoluble 38

2.17 Corroded surface after immersion in Hank’s solution for
(a) HP Mg, (b) Mg2Zn0.2Mn, (c) ZE41 and (d) AZ91 39

2.18 SEM images of (a) phosphate coating, (b) cerium coating
and (c) stannate coating 41

2.19 SEM images of the fluoride-coated Mg-Zn (a, b) the 
embedded image in Figure, lb is the magnified 
morphology of the pore within the white rectangle 43

2.20 Crystal structure of brushite DCPD with orientation of 
monoclinic crystal in b-plane 45

2.21 The super cell of hydroxyapatite in PI  space group after 
removing excess OH groups 47

2.22 Schematic of biomimetic coating: (a) simple biomimetic
coating of an amorphous calcium deficient carbonated 
apatite from SBF (usually the SBF ion concentration for 
biomimetic coating is 5 to 10 times higher than the normal 
SBF ion concentration); (b) biomimetic co-precipitation of
drug/growth factor 49

2.23 Schematic set up of arc plasma spray 51

2.24 Schematic of dip coating technique 52

2.25 Electrophoretic deposition cell showing positively charged 
particles in suspension migrating towards the negative 
electrode 54

3.1 Overall experimental activities flowchart of the research 57

3.2 The process of preparing Mg-xCa alloy specimens 59

3.3 The process of preparing Mg-0.5Ca-xZn alloy specimens 59



3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

4.1

4.2

4.3

Casting produced from two different moulds for 
preparation of specimen. Specimen produced from casting 
a) plate and b) cylindrical rod 60

Schematic drawing of specimens cut from Mg alloys the 
castings: a, b) cylindrical rod and c) rectangular plate 62

Equipment used for analysing the specimens 
microstructure a) Field emission scanning electron 
microscope and b) Transmission electron microscope 63

Fourier transform infrared spectroscopy used to determine 
the surface functional groups of the specimens 64

Atomic-force microscopy spectroscopy used to evaluate 
the surface topography of the composite coated, fluoride 
coated and untreated specimens 65

Schematic illustration of thermal analysis set up with 
stainless steel mould and thermocouples 67

a) The electrochemical experiment set up, b) Schematic of 
three-electrode electrochemical testing cell and c) 
Prepared specimen for corrosion test 68

Exterior views of the specimens immersed in Kokubo 
solution a) Mg-Ca alloy and b) Mg-Ca-Zn alloy 69

Schematic illustration of the experimental setup for 
hydrogen gas evolution measurement 71

Schematic arrangement of the electrodeposition cell for the 
deposition of nano-HA on Mg-Ca-Zn alloy 73

Optical micrographs of specimens (a) Mg pure, (b) with 
different calcium content: 0.5, (c) 1.25, (d) 2.5, (e) 5, (f)
10 wt.%, (g) high magnification of Mg-5Ca alloy and
(h) high magnification of Mg-1 OCa alloy 76

SEM micrographs of (a) Mg-0.5Ca, (b) Mg-1.25Ca, (c)
EDS analyses of area 1, (d) EDS analyses of area 2, (e) 
Mg-2.5Ca, (f) Mg-5Ca, (g) EDS analyses of area 3, (f)
EDS analyses of area 4 (i) Mg-1 OCa, (j) high 
magnification of framed region indicated in Figure 4.2i 78

X-ray diffraction patterns of (a) pure Mg, (b) various 
Mg-Ca alloys with different calcium content: 0.5, (c)
1.25, (d) 2.5, (e) 5, (f) 10 wt.% 80

4.4 Effect of calcium content on the hardness value of M g- 
Ca alloys 81



4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

Cooling curves for the Mg-xCa alloys (x = 0, 1.25, 2.5 
and 5) with two phase reactions 82

Thermal analysis results of (a) pure Mg and Mg-Ca 
alloys with different calcium content; (b) 0.5, (c) 1.25,
(d) 2.5, (e) 5 and (f) 10 wt.% 84

Cooling curves of the center and wall of the specimen 
with its corresponding equivalent temperature difference 
(AT=TW-TC) for Mg-Ca alloys with different calcium 
content (a) 1.25, (b) 2.5, (c) 5 and (d) 10 wt.% 86

The effect of Ca content on solid fraction at dendrite 
coherency point and T n -T Dcp 88

Potentiodynamic polarization curves of Mg and Mg-Ca 
alloy in Kokubo solution 90

SEM micrographs after polarization test in Kokubo 
solution (a) pure Mg, and b) Mg-xCa alloys with 
various Ca content; 0.5 (c) 1.25, (d) 2.5, (e) 5 and (f) 10 
wt.% 92

SEM micrographs showing the occurrence of pitting and 
peeling in pure Mg and Mg-xCa after being immersed in 
Kokubo solution for 84 h. Mg-1 OCa was immersed in 
Kokubo solution for 6 h. (a) pure Mg, (b) Mg-0.5Ca, (c) 
Mg-1.25Ca, (d) Mg-2.5Ca, (e) EDS analyses of area 1,
(f) EDS analyses of area 2, (g) Mg-5Ca, (h) Mg-lOCa,
(i) EDS analyses of area 3 and (j) EDS analyses of 
area 4. 96

X-ray diffraction patterns of (a) pure Mg, and Mg-xCa 
alloys with various Ca additions (b) 0.5, (c) 1.25, (d)
2.5, (e) 5 and (f) 10 wt.% immersed in Kokubo solution 
for 144 h 98

FTER absorption spectra of (a) pure Mg and Mg-xCa 
alloys with various Ca content: (b) 0.5, (c) 1.25, (d) 2.5,
(e) 5 and (f) 10 wt.% with immersion duration of 144 h 100

The variation of the pH value in a Kokubo solution as a 
function of immersion time for pure Mg and Mg-xCa 
alloys with different calcium content 101

Optical micrographs of specimens (a) Mg-0.5Ca and 
Mg-0.5Ca-xZn alloys with various Zn content: (b) 0.5,
(c) 1, (d) 3, (e) 6, (f) 9 wt.% 104



4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

SEM micrographs of a) Mg-0.5Ca, (b) Mg-0.5Ca- 
0.5Zn, (c) Mg-0.5Ca-lZn, (d) Mg-0.5Ca-3Zn, (e) EDS 
analysis of point 1, (f) EDS analysis of point 2, (g) M g- 
0.5Ca-4.5Zn, (h) Mg-0.5Ca-6Zn, (i) EDS analysis of 
point 3 and (j,k) Mg-0.5Ca-9Zn alloys 107

X-ray diffraction patterns of (a) Mg-0.5Ca and M g- 
0.5Ca-xZn alloys with various Zn content: (b) 0.5, (c) 1,
(d) 3, (e) 4.5, (f) 6 and (g) 9 wt.% 109

Effect of Zn amount on the hardness value of Mg- 
0.5Ca-xZn alloys 110

Cooling curves of the Mg-0.5Ca-xZn alloys (x = 0.5, 1,
6 and 9 wt.%) with four solidification reactions 111

Cooling curve from the thermal analysis (a) Mg-0.5Ca,
(b) Mg-0.5Ca-0.5Zn, (c) Mg-0.5Ca-lZn, (d) M g- 
0.5Ca-6Zn and (e) Mg-0.5Ca-9Zn alloys 113

Schematic plots of solidification stage of Mg-0.5Ca- 
xZn alloy with Zn solute distribution 114

The changes of (AT/At) versus time for (a) Mg-0.5Ca 
and Mg-0.5Ca-xZn alloys with various Zn content: (b)
0.5, (c) 1, (d) 3, (e) 4.5, (f) 6 and (g) 9 wt.% 117

Cooling curves at the center and wall of the specimen 
and the equivalent temperature difference of Mg-0.5Ca- 
xZn for (a) 3, (b) 4.5, (c) 6 and (d) 9 wt.% Zn 118

The effect of Zn contents on solid fraction at dendrite 
coherency point 119

Potentiodynamic polarization curves of Mg-0.5Ca-xZn 
alloys specimens immersed in Kokubo solution 122

SEM micrographs showing surface morphology 
characteristics of Mg-0.5Ca-xZn alloys with various Zn 
content (a) 0.5, (b) 1, (c) 3, (d) 4.5, (e) 6 and (f) 9 wt.% 
after polarization in Kokubo solution 125

SEM micrographs of (a) Mg-0.5Ca (b) Mg-0.5Ca- 
0.5Zn, (c) Mg-0.5Ca-lZn, (d) EDS analysis of point 1,
(e) Mg-0.5Ca-3Zn, (f) Mg-0.5Ca-4.5Zn, (g) M g- 
0.5Ca-6Zn, (h,i) Mg-0.5Ca-9Zn alloys, (j) EDS 
analysis of point 2, and (k) EDS analysis of point 3 after 
samples immersed for duration of 144 h in Kokubo 
solution 129



4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

Schematic illustration of corrosion mechanism for M g- 
Ca-Zn alloys (a) the galvanic corrosion between Mg 
and secondary phases, (b) formation of the thin 
protective film of Mg(OH)2, (c) formation of 
hydroxyapatite layer and (d) formation of needle shape 
hydroxyapatite layer on M g-0.5Ca-l Zn alloys 131

X-ray diffraction patterns of Mg-0.5Ca-xZn alloys with 
various Zn content: a) 0.5 (b) 1, (c) 3, (d) 4.5, (e) 6, (f) 9 
wt.% immersed in Kokubo solution for 144 h 132

FTIR absorption spectra of (a) Mg-0.5Ca and M g- 
0.5Ca-xZn alloys with various Zn content: (b) 0.5, (c) 1,
(d) 3, (e) 4.5, (f) 6 and (g) 9 wt.% with immersion 
duration of 144 h in Kokubo solution 134

The variation of the pH value in Kokubo solution as a 
function of immersion time for Mg-0.5Ca-xZn alloys 
with different Zn content 136

Hydrogen evolutions of the Mg-0.5Ca-xZn alloys 
immersed in Kokubo solution for duration of 240 h 137

Corrosion rate obtained by weight loss of Mg-0.5Ca- 
xZn alloys as a function of Zn content in Kokubo 
solution for duration of 3, 7 and 14 days 139

The variation of mass gain of Mg-0.5Ca and Mg-0.5Ca- 
lZn treated specimens in HF solution as a function of 
soaking time 142

Image of (a) 35% HF and (b) 40% HF specimens after 
fluoride treatment 142

SEM micrographs of (a) untreated Mg-0.5Ca alloy, (b)
35% HF, (c) 40% HF and (d) EDS spectrum of point 1 144

SEM micrographs of (a) untreated Mg-0.5Ca-lZn alloy,
(b) 35% HF, (c) 40% HF and (d) EDS spectrum of 
point 2 145

Element mapping of Mg, Ca, O, C and F on Mg-0.5Ca 
specimens after fluoride treatment (a) 35% HF, (b) 40%
HF, (c) EDS of point 1, (d) EDS of point 2 (red—>Mg;
Ca—>blue; O—>-green; C—>violent; F—>yellow) 146

Element mapping of Mg, Ca, O, C and F on Mg-0.5Ca- 
lZn specimens after fluoride treatment (a) 40% HF, (b)
35% HF, and (c) EDS of point 1 147



4.40

4.41

4.42

4.43

4.44

4.45

4.46

4.47

4.48

4.49

4.50

X-ray diffraction patterns of Mg-0.5Ca fluoride treated
(a) 40% HF, (b) 35% HF and (c) untreated specimen 149

X-ray diffraction patterns of Mg-0.5Ca-lZn fluoride 
treated (a) 40% HF, (b) 35% HF and (c) untreated 
specimen 149

AFM images of (a) untreated Mg-0.5Ca, (b) untreated 
Mg-0.5Ca-lZn, (c) treated Mg-0.5Ca with 35% HF, (d) 
treated Mg-0.5Ca-lZn with 35% HF and e) treated Mg- 
0.5Ca with 40% HF and (f) treated Mg-0.5Ca-lZn with 
40% HF 151

Potentiodynamic polarization curves of untreated, 35%
HF and 40% HF treated Mg-0.5Ca alloy in Kokubo 
solution 154

Potentiodynamic polarization curves of untreated, 35%
HF and 40% HF treated Mg-0.5Ca-lZn alloy in Kokubo 
solution 154

SEM micrographs of the Mg-0.5Ca and Mg-0.5Ca-lZn 
alloys after the potentiodynamic polarization tests: (a,b)
35% HF, (c,d) 40% HF and (e,f) EDS spectrum of point 
l an d  2 155

SEM micrograph indicates surface morphology of Mg- 
0.5Ca alloy after being immersed in Kokubo solution 
for 168h; (a,b) untreated Mg-0.5Ca, (c,d) treated with 
35% HF, (e,f) EDS analysis of point 1 and 2, (g,h) 
treated with 40% HF and (j,k) EDS analysis of point 3 
and 4 159

SEM micrograph indicates surface morphology of Mg-
0.5Ca-lZn alloy after being immersed in Kokubo 
solution for 168h; (a,b) untreated Mg-0.5Ca-lZn, (c,d) 
treated with 35% HF, (e,f) EDS analysis of point 5 and
6, (g,h) treated with 40% HF and (j,k) EDS analysis of 
point 7 and 8 162

X-ray diffraction patterns of (a) untreated Mg-0.5Ca 
specimen (b) fluoride treated alloy with 35% HF and (c)
40% HF after immersion in Kokubo solution for 
196 h 164

X-ray diffraction patterns of (a) untreated Mg-0.5Ca- 
lZn specimen (b) fluoride treated alloy with 35% HF 
and (c) 40% HF after immersion in Kokubo solution for 
196 h 164

FTIR absorption spectra of (a) untreated Mg-0.5Ca



4.51

4.52

4.53

4.54

4.55

4.56

4.57

4.58

4.59

4.60

4.61

4.62

4.63

specimen (b) fluoride treated alloy with 35% HF and (c)
40% HF after immersion in Kokubo solution for 196 h 166

FTIR absorption spectra of (a) untreated Mg-0.5Ca-lZn 
specimen (b) fluoride treated alloy with 35% HF and (c)
40% HF after immersion in Kokubo solution for 196 h 166

The variation of the pH value in Kokubo solution as a 
function of immersion time for untreated Mg-0.5Ca and 
treated specimen 168

The variation of the pH value in Kokubo solution as a 
function of immersion time for untreated Mg-0.5Ca-lZn 
and treated specimen 168

The mass loss of untreated Mg-0.5Ca alloy and treated 
specimens versus immersion time in Kokubo solution 171

The mass loss of untreated Mg-0.5Ca-lZn alloy and 
treated specimens versus immersion time in Kokubo 
solution 171

Images of untreated and fluoride treated Mg-0.5Ca 
alloys (Dark color: HF treated; Light color: untreated 
alloy) after immersed in Kokubo solution at 37°C for (a)
3 days, (b) 7 days and (c) 10 days 174

Images of untreated and fluoride treated Mg-0.5Ca-lZn 
alloys (Dark color: HF treated; Light color: untreated 
alloy) after immersed in Kokubo solution at 37°C for (a)
3 days, (b) 7 days and (c) 10 days 174

Effect of current density on deposit weight of brushite at 
constant deposition time of 60 min 177

Effect of electrodeposition time on deposit weight of 
brushite at constant current density of 0.4 mA/cm2 177

XRD pattern of brushite coating on Mg alloy at 
different current density (a) 0.15 mA/cm2, (b) 0.25 
mA/cm2, (c) 0.4 mA/cm2 and (d) 0.8 mA/cm2 179

XRD pattern of brushite coating on Mg alloy at different 
electrodeposition time (a) 10 min, (b) 20 min,(c) 40 min 
and (d) 60 min 179

AFM image of brushite coating on Mg alloy at different 
current density (a) 0.15 mA/cm2, (b) 0.25 mA/cm2, (c)
0.4 mA/cm2 and (d) 0.8 mA/cm2 181

SEM image of DCPD coating on Mg alloy at different



4.64

4.65

4.66

4.67

4.68

4.69

4.70

4.71

4.72

4.73

4.74

current density and corresponding EDS (a,b) 0.15 
mA/cm2, (c,d) 0.25 mA/cm2, (e,f) EDS analysis of point 
A and B (g,h) 0.4 mA/cm2 and (j,k) 0.8 mA/cm2 and 
(m,n) EDS analysis of point C and D

TEM micrographs of the powder scraped from the 
brushite coating on Mg alloy at different current density 
(a) 0.15 mA/cm2 and (b) 0.8 mA/cm2

SEM images of the surface of (a) untreated Mg-0.5Ca- 
6Zn alloy, (b) fluoride coating, (c) EDS analysis of 
point 1, (d) DCPD/MgF2 composite coating,
(e) nano-HA/MgF2 composite coating specimen, (g) 
EDS analysis of point 2 and (h) EDS analysis of point 3

The cross-sectional SEM image of (a) DCPD/MgF2 
composite coating, (b) HA/MgF2 composite coating and
(c) fluoride coated specimen

The cross-sectional SEM images of the top layer of (a) 
HA coating and (b) DCPD coating

TEM micrographs of the powder scraped from the (a) 
DCPD coating, and (b) HA coating on Mg-Ca-Zn alloy

X-ray diffraction patterns of (a) untreated alloy, (b) 
fluoride coating, (c) DCPD/MgF2 composite coating and
(d) nano-HA/MgF2 composite coating specimen

The FTIR characteristic bands of (a) DCPD/MgF2 
composite coating and (b) nano-HA/MgF2 composite 
coating specimen

AFM topography of (a) untreated alloy, (b) fluoride 
coating, (c) DCPD/MgF2 composite coating, (d) nano- 
HA/MgF2 composite coating specimen

Potentiodynamic polarization curves of untreated alloys 
and three coated specimens in Kokubo solution

SEM images of specimens immersed in Kokubo for 192 
h (a) untreated, (b) fluoride coating, (c) EDS analysis of 
point 1, (d) DCPD/MgF2 composite coating, (e) nano- 
HA/MgF2 composite coating, (f) EDS analysis of point
2, (g) EDS analysis of point 3

X-ray diffraction patterns attained from the corrosion 
products of (a) untreated alloy, (b) fluoride coating, (c) 
DCPD/MgF2 composite coating and (d) nano-HA/MgF2 
composite coating specimen after full immersion

183

185

187

189

190

190

191

194

195 

197



4.75

4.76

4.77

exposure to Kokubo solution for 192 h duration 203

FTIR absorption spectra attained from the corrosion 
products of (a) untreated alloy, (b) fluoride coating, (c) 
DCPD/MgF2 composite coating, and (d) nano-HA/MgF2 
composite coating specimen after full immersion 
exposure to Kokubo solution for 192 h duration 204

Change in pH of the Kokubo solution during immersion 
of untreated, fluoride coated, DCPD/MgF2 and nano- 
HA/MgF2 composite coated specimens for duration of 
192 h 206

Hydrogen evolution of the untreated, fluoride coated, 
DCPD/MgF2 and nano-HA/MgF2 composite coated 
specimens immersed in Kokubo solution for duration of 
240 h 208



LIST OF ABBREVIATIONS

CA-CCTA Computer Aided Cooling Curve Thermal Analysis

CCA Cooling Curve Analysis

DCP Dendrite Coherency Point

EDX Energy Dispersive X-ray

FESEM Field Emission Scanning Electron Microscopy

OM Optical Microscopy

FTIR Fourier-Transformed Infrared Spectroscopy

SEM Scanning Electron Microscopy

TA Thermal Analysis

TEM Transmission Electron Microscopy

AFM Atomic-Force Microscopy

UTS Ultimate Tensile Strength

UCS Ultimate Compressive Stress

XRD X-ray Diffraction

SBF Simulated body fluid

HA Hydroxyapatite

DCPD Dicalcium Phosphate Dihydrate (Brushite)

ED Electrodeposition

SiC Silicon Carbide

VHN Vickers Microhardness

SCE Saturated Calomel Electrode

HF Hydrofluoric Acid

PBR Pilling-Bedworth Ratio

Ca-P Calcium Phosphates

MgF2 Magnesium Fluoride

Mg(OH)2 Magnesium Hydroxide (Brucite)



DMEM Dulbecco’s Modified Eagle Medium

MEM Minimum Essential Medium

PBS phosphate buffered saline

ACP Amorphous Calcium Phosphate

OCP Octacalcium Phosphate

TCP Tricalcium phosphate

CDHA Calcium-Deficient Hydroxyapatite

PLLA Poly L-Lactic Acid

PGA Polyglycolic Acid

PEO Polyethylene Oxide

mpy Mils Per Year

P 0 43 Phosphate

OH" Hydroxide

C032- Carbonate



LIST OF SYMBOLS

Zre - Impedance

Cp - Specific heat

foe? - Solid fraction at dendrite coherency point

/s  - Solid fraction

/ l - Liquid fraction

T - Temperature

Ts - Start of solidification temperature

Te - End of solidification temperature

Teu - Eutectic temperature

ts - Start of solidification time

te - End of solidification time

AT - Solidification range

At - Total solidification time

Tn - Nucleation temperature

tx - Nucleation time

T dcp - Coherency temperatures

a-Mg - Primary magnesium dendrite

p - Density

°C - Centigrade degree

/? - Diffraction peak width at mid-height,

t - Average crystallite size (mn)

6 - Bragg diffraction angle

A - X-ray wave length

Ra - Average roughness

R ms - Mean spacing roughness

icorr - Corrosion current density

Ecorr - Corrosion potential



fie - Cathodic Tafel slops

Pa - Anodic Tafel slopes

RP - Polarization resistance

Pi - Corrosion rate

Epit - Pitting potential

Q  - Growth restricted factor

m - Gradient of the liquidus line of a binary alloy

Co - Bulk concentration of the solute

k - Equilibrium partition coefficient of the solute

Qs - Rate of heat released

Tf - Final temperature

Cp - Specific heat of the alloy

Tw - Temperature at wall thermocouple

Tc - Temperature at centeral thermocouple



LIST OF APPENDICES

APPENDIX TITLE

A Screen view of DEWESoft 7.5 Data acquisition
software during recording

B Screen view of Autolab software for fitting and
extracting results from the Tafel slopes

C SEM micrographs of porous Mg(OH)2 on the
specimen surface immersion in SBF

D List of publications

PAGE

230

231

232

233



INTRODUCTION

1.1 Background

Metallic materials have fundamental roles for repair or replacement of bone 

tissue particularly for load-bearing applications due to their good fracture toughness 

and high mechanical strength [1]. However, the release of toxic metallic ions during 

corrosion has limited their applications as implant materials [2]. This released ion 

can result in inflammatory, which in turn decrease biocompatibility [3]. Compared to 

the traditional metallic implant materials such as titanium alloys, stainless steel and 

cobalt-chromium alloys, biodegradable implant materials do not require second 

surgical procedure to remove them once the bone healed and they are replaced by 

natural tissue. In addition, second surgical procedures always have risk and cost 

involved [4]. Furthermore, the presence of permanent implants in the human body 

may cause allergy and sensitization.

Recently, polymeric-based biodegradable materials, mostly polylactic have 

shown a feasible approach to the development of completely degradable devices for 

biomedical applications. However, polymers can create significant adverse reactions 

and have inadequate mechanical strength, thus their applications are limited to low 

load-bearing applications [5]. In addition, polymeric implants are more expensive 

compared to the typical metallic implants [4,5], As an alternative to biodegradable 

polymer implants is the biodegradable metallic implants which received great 

attention owing to the high load-bearing capacity [4], Magnesium and its alloys have 

shown great potential in cardiovascular applications where temporary stents are



required. They have also been used as bone substitute materials owing to their 

biocompatibility and biodegradability and have similar mechanical properties with 

natural bone. Mg is one of the fundamental elements in the human body and the

fourth most dominant component in the human serum [6], According to Song [5] a
2+

normal adult consumes about 300-400 mg of Mg every day and an excess of Mg is 

not harmful since it excretes through urine. Mg as biodegradable material is 

lightweight (1.74 g/cm3), which is 1.6 and 4.5 times lighter than that of aluminum 

and steel respectively.

Magnesium fracture toughness is higher compared to bio-ceramics such as 

hydroxyapatite, and has close elastic modulus and compressive yield strength to 

natural bone [3, 5], However, applications of Mg alloys are limited due to the 

relatively poor corrosion resistance, the release of hydrogen gas and a relatively high 

degradation rate when exposed to human body fluid [7, 8]. These characteristics lead 

to a decline in the mechanical properties of pure Mg before new tissues are properly 

and adequately healed. Mg alloy as implant can maintain the mechanical stability for 

around 6 to 8 weeks, while implant need to maintain its mechanical integrity in the 

body for about 12 weeks [9]. Thus, various approaches have been employed to 

enhance corrosion resistance of pure Mg such as alloying, surface treatment and 

coating.

Most of the research reported on biodegradable magnesium alloys for 

biomedical application contains aluminium (Al) and/or rare earth (RE) elements. 

However, Al could cause nerve toxicity and RE could lead to hepatotoxicity [10, 11]. 

Other alloying elements such as zirconium (Zr) may lead to lung, liver, 

nasopharyngeal and breast cancers [5]. The addition of neodymium (Nd) and yttria 

(Y) into Mg alloys resulted in a disturbance at the implantation site [10, 11]. Clearly, 

to guarantee the biosafety of biodegradable materials, the constitutional elements of 

magnesium-based alloys should be toxic free [7,10]. To address this point, Ca and Zn 

were found to be toxic free.



Calcium is one of the main elements in the human bone and release of Mg 

and Ca ions may improve the bone healing process [12]. Calcium, with a density of 

1.55g/cm3, is also lightweight material similar to magnesium (1.74 g/cm3) and will 

maintain its specific properties. The relatively reasonable cost of Ca should also 

attract its use as alloying element in medical applications [13]. Previous research also 

has shown that the corrosion resistance of Mg-Ca alloys increased significantly with 

the addition of 1 wt.% Ca [14]. Besides, the addition of Zn into magnesium alloys is 

very effective in increasing their mechanical strength [15, 16]. Zinc is also generally 

known to increase age hardening response, produce intermetallic compounds, refine 

grain size and improve castability and mechanical properties such as tensile and 

hardness of Mg-Ca [17-19], The effect of Zn on corrosion resistance of Mg-Ca was 

not known for biomedical applications. Thus, there is a need to investigate the effect 

of Zn addition on Mg-Ca corrosion rate.

Since ensuring the implant remains its function until after the bone heals, 

corrosion resistance of Mg-Ca and Mg-Ca-Zn alloys should be enhanced further by 

double protective film composed of inner-layer. Several reports have shown that 

decreasing the corrosion rate of Mg in simulated body fluids is possible by surface 

treatment methods [20-23]. Surface treatment by hydrofluoric acid (HF) was found 

to be effective in increasing corrosion resistance at 48% concentration [4]. However, 

protection provided by the MgF2 layer at that concentration was high at the initial 

phase, but stabilized with time and became less effective. Other HF concentrations 

and immersion time was not known to affect corrosion rate of Mg-Ca and Mg-Ca-Zn 

alloys. Micro sized hydroxyapatite (HA) as the top layer coat by electrodeposition 

was used without inter-layer on Mg-Ca substrates with the intention to prolong 

protection. It was found effective in increasing the corrosion resistance, however the 

hydrogen gas evolution was beyond the tolerance limit of human body [24, 25].

Therefore, this research is aimed at addressing a comprehensive use of 

alloying, fluoride treatment and nano-calcium phosphate coating in the form of nano- 

HA/MgF2 and DCPD/MgF2 composite coating to increase the corrosion resistance 

and minimize hydrogen production of Mg alloys for use in biomedical implant.



1.2 Problem Statement

Magnesium alloys as biodegradable materials possess several advantages 

compared to the current metallic materials and biodegradable plastics and ceramics. 

Magnesium benefits include higher fracture toughness over ceramic biomaterials, 

higher strength them biodegradable plastics, and higher elastic modulus compared to 

other biomedical metals. However, the use of pure magnesium is hindered by its 

relatively poor corrosion resistance which causes the mechanical properties of the 

implant to significantly decrease resulting in the tissues being unable to heal. 

Furthermore, Mg corrosion process involves evolution of hydrogen gas which 

accumulates in vivo adjacent to the implant. The H2 gas and subsequent formation of 

hydrogen bubbles can noticeably impair other clinical applications of Mg. 

Alkalization of the surroundings by the H2 gas evolution during the corrosion process 

of Mg is another drawback. Thus, it is essential to increase the corrosion resistance 

of Mg and its alloys to meet the requirements of the synchronization between implant 

biodegradation and the new bone formation.

1.3 Purpose of the Study

The purpose of this study addresses the problem described above, namely to 

develop a new biodegradable magnesium alloy with adequate degradation rate for 

use as an implant material. To investigate the potential of fluoride treatment for the 

corrosion protection of magnesium alloys. The influence of parameters such as HF 

concentration, duration and coating performance will be investigated. To determine 

the developed process for synthesis a novel bi-layered coating composed of nano-HA 

and brushite as top layer and MgF2 as interlayer that will demonstrate enhancement 

of corrosion resistance of magnesium alloy. The optimal coating conditions for 

deposition of nano-hydroxyapatite and brushite on fluoride treated magnesium alloy 

will be determined.



1.4 Objectives of the Research

The principal objective of the research is increasing corrosion resistance of 

magnesium alloys by alloying accompanied with surface treatment and nano- 

hydroxyaptite coating by electrodeposition (ED) method on Mg-Ca and Mg-Ca-Zn 

alloys. The specific objectives include:

1. To investigate the effects of calcium and zinc additions on the microstructure, 

degradation rate and corrosion properties as well as solidification behavior 

using thermal analysis of magnesium alloys.

2. To determine the effect of surface modification by hydrofluoric acid (HF) on 

microstructure, in-vitro degradation behavior and corrosion properties of Mg- 

Ca and Mg-Ca-Zn alloys.

3. To determine the effect of nano-HA/MgF2 and DCPD/MgF2 composite coating 

on microstructure and corrosion behavior of Mg-Ca-Zn alloys.

1.5 Significance of the Research

In recent years, the study of magnesium alloys as degradable biomaterials has 

become one of the most revolutionary research topics at the forefront of biomaterials 

research. However, its application has been limited due to the relatively poor 

corrosion resistance. Hence, it is expected that the outcome of the research will 

eliminate the need of secondary surgery for current implant materials eliminated. 

Using magnesium alloys as biodegradable implants resulted in reducing time, cost, 

risk and morbidity of the patients.



1.6 Scope of the Research

The research was conducted in the following limits:

1- Calcium and zinc additions to Mg were limited to between (0.5 and 10 wt.%) 

and (0.5 and 9 wt%) respectively.

2- The responses on the effect of calcium and zinc additions were limited to the 

microstructure, degradation rate, corrosion properties and solidification 

behavior of Mg-xCa and Mg-Ca-xZn alloys.

3- Hydrofluoric acid with concentrations between 35 and 40% as well as 

immersion duration of 6 to 24 hours was used for surface treatment of Mg-Ca 

and Mg-Ca-Zn alloys.

4- The current density used in electrodeposition of nano-HA and brushite 

coatings on magnesium alloys was regulated between 0.15 to 0.8 mA/cm2 for 

durations of 10 to 60 min.

5- The specimens were subjected to microstructural characterization using 

optical microscopy, X-ray diffraction, atomic-force microscopy, Fourier- 

transformed infrared spectroscopy, scanning electron microscopy and energy 

dispersive X-ray spectroscopy and transmission electron microscopy.

6- The corrosion resistance was examined in vitro by potentiodynamic 

polarization test, immersion test and hydrogen evolution test in Kokubo 

solution at room temperature.

7- Solidification behavior of Mg-Ca and Mg-Ca-Zn alloys were examined via 

two thermocouple thermal analysis method.
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