CONSTRUCTION OF A STREP-TAG II MUTANT MALTOSE BINDING PROTEIN FOR REAGENTLESS FLUORESCENCE SENSING

SITI HALIMAH BINTI HASMONI

UNIVERSITI TEKNOLOGI MALAYSIA

CONSTRUCTION OF A STREP-TAG II MUTANT MALTOSE BINDING PROTEIN FOR REAGENTLESS FLUORESCENCE SENSING

SITI HALIMAH BINTI HASMONI

A thesis submitted in fulfillment of the requirement for the award of the degree of Master of Science (Bioscience)

> Faculty of Bioscience and Bioengineering Universiti Teknologi Malaysia

> > NOVEMBER 2012

To my beloved parents, my family and my soulmate, my best friend; my husband and not forgetting to our newborn bub, Muhammad Rafiqi.

ACKNOWLEDGEMENT

First and foremost, I would like thank Dr Shafinaz, my supervisor, who had been dedicated and committed to guide me all this while. Her patience, encouragement and trust is truly appreciated and deeply cherished. Also, thanks to Prof Dr Anthony Cass, for his advice and insights on this research. Next, I would like to express my gratitude to Dr. Saiful Karsani and Dr. Goh Kian Mau is members of the research group. Thank you for the opportunity and the wealth of information shared during discussions. Also, my greatest gratitude goes to Prof Dr. Peter Klappa, who helps me solve the missing puzzle of my research with his knowledge and wisdom.

Furthermore, I am thankful to Ministry of Higher Education for funding my masters study. I would like to thank the Ministry of Higher Education again for funding this project under Fundamental Research Grant Scheme (FRGS) Vote Number 78309. A great appreciation for FBB,UTM for the research facilities they provided and also thank you to PSZ library for easy access of many literatures online.

Thank you to the technical supports from most of the companies that I contacted with for their advices and help. Not forgetting my fellow postgraduates' friends in this faculty for giving me their encouragements, helping hand and motivation. Thank you for being there for me. Special thanks to the best labmates/friends a researcher could for; Edot, Yok, Maya, Kak Su and Tiqah.

I would like to thank my supportive father and mother, my beloved sisters and brothers for supporting me no matter what. I would like to extend my appreciation to my husband who is always there for me through the ups and downs of this journey. And lastly, I am grateful to Allah.

ABSTRACT

Maltose binding protein (MBP) changes its conformational structure upon its ligand binding. This molecular recognition element that transduces a ligand-binding event into a physical one make MBP an ideal candidate for reagentless fluorescence sensing. MBP gene, (malE) was amplified from a pMaL-C4x plasmid vector and was fused to a Strep-Tag II pET-51b(+) vector. Strep-Tag II is a tag that will enable the MBP to be unidirectionally immobilized on solid supports. A cysteine mutant of the MBP was constructed by inverse PCR and the recombinant protein fusion was then purified by affinity purification using Strep-Tactin resin. To sense maltose binding, an environmentally sensitive fluorophore (IANBD amide) was covalently attached to the introduced thiol group. The tagged mutant MBP (D95C) was successfully generated and the protein was successfully purified with the expected molecular size of ~42 kDa observed on the SDS PAGE. The fluorescence measurements of the IANBD labeled of tagged mutant MBP (Strep-Tag II D95C) in the solution phase, showed an appreciable change in fluorescence intensity with dissociation constant, (K_d) of 7.6 \pm 1.75 μ M. Nonetheless, it could retain its ligand binding activity towards maltose. However, immobilization of Strep-Tag II D95C on solid surface suffered some limitation with the Strep-Tactin coated microwell plates because it did not give any dependable results to support the ligand binding activity of the site directed immobilized protein. Thus, this engineered mutant MBP (Strep-Tag II fused D95C) could be potentially developed for biosensor application with further improvement in protein immobilization method.

ABSTRAK

Protein pengikat maltosa (MBP) mengalami perubahan struktur konformasi semasa mengikat pada ligan. Molekul pengenalpastian yang menyebabkan transduksi pengikatan ligan kepada bentuk fizikal menjadikan MBP calon yang sesuai sebagai penderia pendaflour tanpa reagen. Gen MBP (malE) diamplifikasi daripada vektor plasmid pMaL-C4x dan kemudian digabungkan dengan Strep-Tag II yang terdapat pada vektor pET-51b(+). Strep-Tag II merupakan tag yang membolehkan MBP disekatgerak secara seragam kepada penyokong pepejal. Mutan MBP yang mempunyai satu residu sisteina telah dihasilkan melalui PCR berbalik dan gabungan protein rekombinan ini ditulen melalui penulenan afiniti yang menggunakan resin Strep-Tactin. Untuk mengesan pengikatan maltosa, flourofor yang sensitif pada persekitaran (IANBD amida) telah diikat secara kovalen kepada kumpulan tiol yang telah diperkenalkan pada protein itu. Mutan MBP yang bertag telah berjaya dijana dan melalui pemerhatian SDS-PAGE protein ini telah berjaya ditulen dengan saiz molekul ~42 kDa seperti yang dijangkakan. Ukuran pendaflour di dalam fasa larutan bagi mutan MBP yang bertag dan berlabel dengan IANBD menunjukkan perubahan ketara bagi keamatan pendaflour dengan pemalar penguraian K_d 7.6 \pm 1.75 μ M. Walau bagaimanapun, aktiviti pengikatan ligan terhadap maltosa boleh dikekalkan. Pemegunan protein Strep-Tag II D95C pada permukaan pepejal, berhadapan dengan beberapa kelemahan apabila piring mikrotelaga yang bersalut Strep-Tactin digunakan kerana ia tidak memberi keputusan yang dapat menyokong aktiviti pengikatan ligan oleh protein yang dipegunkan pada tapak khusus. Oleh itu, kejuruteraan mutan MBP gabungan Strep-Tag II-D95C berpotensi dibangunkan untuk aplikasi biopenderia dengan lebih penambahbaikan dalam kaedah pemegunan protein.

TABLE OF CONTENT

CHAPTER		TITLE	PAGE
	DEC	LARATION	ii
	DEDICATION		iii
	ACK	NOWLEDGEMENTS	iv
	ABSTRACT		V
	ABS	TRAK	vi
	TAB	LE OF CONTENT	vii
	LIST	Γ OF TABLES	xii
	LIST	COF FIGURES	xiii
	LIST	FOF APPENDICES	xvi
	LIST	FOF ABBREVIATIONS	xvii
1	INT	RODUCTION	
	1.1	Introduction	1
	1.2	Research Objectives	3
	1.3	Significance of Research	4
	1.4	Scope of Research	4
2	LITI	ERATURE REVIEW	
	2.1	Periplasmic Binding Protein (PBPs)	5
	2.2	Maltose Binding Protein (MBP)	6
	2.3	Reagentless Fluorescence Sensors Based on PBPs	9
	2	.3.1 Principles of Fluorescence	10
	2	.3.2 Thiol-reactive Fluorophore	12

2.4	Engineering MBP for Reagentless Fluorescence Sensing	13
2.5	Tagged Proteins for Site-specific Immobilization	16

3 CONSTRUCTION OF STREP-TAG II MUTANT MBP (D95C) FOR FLUORESCENCE SENSING

3.1	Introduction		19
3.2	Research Me	ethodology	20
3.3	Materials		21
3.3	.1 Chen	nicals and reagents	21
3.3	.2 Bacte	erial strains	21
3.3	.3 Plasm	nids	22
3.3	.4 Enzy	mes	22
3.3	.5 Cultu	re media, buffers and stock solutions	22
3.4	Molecular B	iology Methods	23
3.4	.1 Com	petent cell preparation	23
3.4	.2 Heat-	shock transformation of cells	24
3.4	.3 Plasm	nid extraction and purification	24
3.4	.4 Restr	iction enzyme digestion of DNA	24
3.4	.5 Agar	ose gel electrophoresis	25
3.4	.6 DNA	ligation	25
3.4	.7 Cons	truction of pET-51b (+)- malE	25
3.4	.8 Scree	ning for recombinant clones	27
3.4	.9 Const	ruction of pET-51b(+)-D95C	28
3.5	Results and	Discussion	29
3.5	5.1 Const	ruction of pET-51b (+)- malE	29
3.5	5.2 Cons	truction of cysteine mutants of MBP (D95C)	34
	3.5.2.1	Design of primer sequence for site-directed	
		mutagenesis	34
	3.5.2.2	Identification of cysteine mutants by	
		restriction enzyme digestion	35
3.6	Conclusions		39

4 EXPRESSION AND PURIFICATION OF STREP-TAG II WILD TYPE MBP AND ITS MUTANT (D95C)

4.1	Introduction	40
4.2	Research Methodology	41
4.3	Materials	42
4.3	Chemicals and reagents	42
4.3	Culture media, buffers and stock solutions	42
4.4	Expression and purification of the recombinant protein	44
4.4	.1 Recombinant protein expression of Strep-Tag II	
	Wild Type MBP and its mutant D95C	44
4.4	.2 Spectroscopic determination of protein	
	concentration	45
4.4	.3 Protein assay by Bradford reagent	47
4.4	.4 Protein electrophoresis (SDS-PAGE)	47
4.4	.5 Western blotting for detection of Strep-Tag II	48
4.4	.6 Western blotting for detection of Maltose	
	Binding Protein	48
4.4	.7 Recombinant protein purification via Strep-Tag II	
	affinity purification	49
4.4	.8 Recombinant protein purification via	
	size exclusion chromatography	50
4.4	.9 Ultrafiltration of the pooled fractions	51
4.5	Results and Discussions	52
4.5	Recombinant expression of Strep-Tag II	
	wild type MBP and its mutant (D95C)	52
4.5	5.2 Strep-Tag II affinity purification of Strep-Tag II	
	wild type MBP	57
4.5	Affinity purification of Strep-Tag II mutant	
	MBP (D95C) in room temperature	59
4.5	5.4 Size Exclusion Purification of Strep-Tag II	
	mutant MBP (D95C)	62
4.5	5.5 Affinity purification of Strep-Tag II mutant MBP	
	(D95C) in ice	65

5 INTRINSIC TRYPTOPHAN OF STREP-TAG II WILD TYPE MBP AND EXTRINSIC FLUORESCENCE SENSING OF STREP-TAG II MUTANT MBP (D95C)

5.1	Introdu	action	72
5.2	Mater	ials	73
5.3	Metho	odology	74
5.3	3.1	Intrinsic tryptophan fluorescence of Strep-Tag II	
		wild type MBP	74
5.3	3.2	Extrinsic fluorescence of Strep-Tag II mutant	
		MBP (D95C)	75
	5.3.2.1	Fluorophore labeling	75
	5.3.2.2	Extrinsic fluorescence measurement of	
		Strep-Tag II mutant MBP (D95C)	76
5.3	3.3	Immobilization of Strep-Tag II mutant	
		MBP (D95C) on functionalized surface	77
	5.3.3.1	Immobilization of Strep-Tag II D95C on	
		Strep-Tactin coated microwell plates	77
	5.3.3.2	Immobilization of Strep-Tag II D95C on	
		Strep-Tactin agarose.	78
	5.3.3.3	Immobilization of Strep-Tag II D95C on	
		Streptavidin coated microwell plates	78
5.4	Resul	ts and Discussions	79
5.4	4.1	Intrinsic tryptophan fluorescence of Strep-Tag II	
		wild type MBP	79
5.4	4.2	Extrinsic fluorescence sensing of Strep-Tag II	
		mutant MBP (D95C)	81
5.4	4.3	Fluorescence response of immobilized	
		Strep-Tag II D95C	85
	5.4.3.1	Immobilization of Strep-Tag II D95C on	
		Strep-Tactin coated microwell plates	86
	5.4.3.2	Immobilization of D95C on	

71

		Strep-Tactin agarose	89
	5.4.3.3	Immobilization of Strep-Tag II D95C	
		on streptavidin coated microwell plates	90
5.5	Conclusion		93

6 CONCLUSIONS AND FUTURE WORK

6.1	Conclusion	94
6.2	Future Work	95
6.2.1	Protein modeling of Strep-Tag II mutant MBP	95
6.2.2	2 X-ray crystallography	96
6.2.3	Characterisation of binding interactions by	
	isothermal titration calorimetry (ITC)	96
6.2.4	Characterisation of secondary structure and	
	folding protein properties by circular	
	dichorism (CD)	97
6.2.5	Improved methods for immobilization of	
	Strep-Tag II mutant MBP (D95C)	97
	REFERENCES	98

APPENDINCES A-E	109

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Types of thiol-reactive fluorophores	13
3.1	Primers sequence used for amplification of the cytoplasmic <i>malE</i> gene	26
3.2	Primers sequence used for site-directed mutagenesis of the MBP cysteine mutants D95C	28
4.1	The concentration (Molar) of crude lysate which was calculated according to the Beer Lambert Law	54
4.3	The concentration (Molar) of protein sample which was calculated according to the Beer Lambert Law	69
4.4	Purification table. The concentration and total protein of protein samples using protein assay Bradford reagent.	70
5.1	Comparisons of the dissociation constant of D95C and wild typ MBP	e 83
5.3	Optimization of immobilization of D95C onto streptavidin microwell plates.	91

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE

2.1	A three dimensional model of a maltodextrin binding	
	protein with bound maltose (1ANF)	6
2.2	A model of MBP transport system	7
2.3	Schematic model of MBP bound to Tar that induces the	
	chemotaxis of the bacteria	8
2.4	Jablonski Diagram	11
3.1	Workflow of construction of pET-51b(+)- <i>malE</i>	20
3.2	Workflow of construction of cysteine mutants of MBP (D95C)	
	by site-directed mutagenesis	21
3.3	pET-51b(+) Multiple Cloning Site	26
3.4	Agarose gel electrophoresis showing the size of	
	the amplified PCR product.	30
3.5	Agarose gel electrophoresis showing the size of the pET-51b(+)-	
	<i>malE</i> construct and the Restriction enzyme test of the construct	31

3.6	The contig assemblies of forward and reverse sequence of pET-51b(+)- <i>malE</i> construct using DNA Baser v.2.75.0.	32
3.7	ORF finder for the contig assemblies of forward and reverse sequence of pET-51b(+)- <i>malE</i>	33
3.8	Construction of MBP cysteine mutant (D95C)	34
3.9	Agarose gel electrophoresis showing the size of the product of inverse PCR of pET-51b(+)-D95C	35
3.10	Agarose gel electrophoresis of screening mutant MBP (pET-51b(+)-D95C) with restriction enzyme <i>Fsp</i> I	36
3.11	Agarose gel electrophoresis of diagnostic restriction enzyme of <i>Bam</i> HI and <i>Hin</i> dIII on the wild type and mutant	37
3.12	ORF finder for the contig assemblies of forward and reverse sequence of pET-51b(+)-D95C.	38
4.1	Workflow the expression and purification of Strep-Tag II wild type MBP and its mutant (D95C).	41
4.2	SDS- PAGE (12%) of the crude lysate of Strep-Tag II wild type and mutant (D95C) proteins.	53
4.3	A: SDS-PAGE of crude lysate of the wild type and mutant D95C. B: Western blot of MBP for crude lysate of the wild type and mutant D95C. C: Western blot of Strep-Tag II for crude lysate of the wild type and mutant D95C.	55
4.4	Chromatogram of Strep-Tag II affinity purification using Akta-Prime Plus	57

xiv

4.5	SDS- PAGE of the crude lysate and pooled of the fractions				
	collected during elution of Strep-Tag II purification	58			
4.6	(A) Western blot of maltose binding protein for the crude lysate				
	and fractions collected during elution of Strep-Tag II purification.				
	(B) Western blot of Strep-Tag II for the crude lysate and				
	fractions collected during elution of Strep-Tag II purification	58			
4.7	Elution peak of Strep-Tag II affinity purification using				
	Akta-Prime Plus	59			
4.8	SDS- PAGE of the crude lysate D95C and the fractions				
	collected during elution of Strep-Tag II purification of D95C	60			
4.9	(A) Western blot of maltose binding protein for the crude lysate				
	and fractions collected during elution of Strep-Tag II purification.				
	(B) Western blot of Strep-Tag II for the crude lysate and				
	fractions collected during elution of Strep-Tag II purification	61			
4.10	Elution peak of Strep-Tag II affinity purification using				
	Akta-Prime Plus	63			
4.11	SDS- PAGE of the affinity purification product and the				
	fractions collected during elution of Strep-Tag II purification				
	of D95C	63			
4.12	SDS- PAGE of the crude lysate of D95C and pooled				
	fractions of affinity and gel filtration purification	64			
4.13	SDS- PAGE of the crude lysate of D95C and observed the				
	presence of inclusion bodies from the pellet of lysed cell	65			
4.14	SDS- PAGE of the crude lysate of D95C and pooled				
	fractions of affinity and gel filtration purification	66			

4.15	(A) Western blot of Strep-Tag II for the crude lysate and fractions collected during elution of Strep-Tag II purification.				
	(B) Western blot of maltose binding protein for the crude				
	lysate and fractions collected during elution of				
	Strep-Tag II purification	67			
4.16	A: SDS-PAGE (12%) of crude lysate of the wild type				
	and mutant D95C. B: Western blot of MBP for crude lysate				
	of the wild type and mutant D95C. C : Western blot of				
	Strep-Tag II for crude lysate of the wild type and mutant D95C	68			
5.1	Maltose binding curves of intrinsic tryptophan of wild type MBP	80			
5.2	Fluorescence emission spectra of IANBD labeled D95C	81			
5.3	Maltose binding curves of labeled IANBD D95C	82			
5.4	Glucose binding curve of the labeled IANBD D95C	84			
5.5	Illustration of unidirectional immobilization of Strep-Tag II				
	fused D95C on functionalized surface	85			
5.6	Maltose binding curves of Immobilized labeled IANBD of				
	D95C	90			

LIST OF APPENDICES

APPENDIX	TITLE	PAGE	
A	Preparation reagents for SDS PAGE	109	
В	Standard curve for Bradford assay	111	
С	Molecular weight of protein standard of unstained protein marker (Fermentas)	112	
D	Molecular weight of protein standard of Strep-Tag II perfect protein markers (Merck)	113	
Е	Raw data of fluorescence measurement for immobilization Strep-Tactin coated microwell plate	114	

LIST OF ABBREVIATIONS

°C	-	Degree celcius		
µg/ml	-	Microgram per millilitre		
μl	-	Microliter		
μΜ	-	Micromolar		
bp	-	Basepair		
BLAST	-	Basic local alignment search tool		
CaCl ₂	-	Calcium chloride		
cm	-	centimeter		
DMSO	-	Dimethyl sulphoxide		
DNA	-	Deoxyribonucleic acid		
dNTP	-	Deoxyribonucleotides		
dsDNA	-	double stranded Deoxyribonucleic acid		
DTT	-	Dithiothreitol		
EDTA	-	Ethylenediaminetetraacetic acid		
ELISA	-	Enzyme-linked immunosorbent assay		
g	-	gram		
HRP	-	Hydrogen peroxidase		
IANBD	-	N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-		
		1,3-diazol-4 -yl)ethylenediamine		
IPTG	-	Isopropyl β-D-1-thiogalactopyranoside		
K ₂ HPO ₄	-	Dipotassium hydrogen phosphate		
KCl	-	Potassium chloride		
K _d	-	Dissoication constant		
kDa	-	kilodalton		
$\mathrm{KH}_{2}\mathrm{PO}_{4}$	-	Potassium dihydrogen phosphate		
KOAc	-	Potassium acetate		

LB	-	Luria Bertani
LBA	-	Luria Bertani Agar
М	-	Molar
MgSO ₄ .7H ₂ O	-	Magnesium sulfate heptahydrate
mM	-	Milimolar
MnCl ₂	-	Manganese chloride
MOPS	-	3-(N-morpholino)propanesulfonic acid
NaCl	-	Sodium chloride
nm	-	Nanometer
OD	-	Optical density
PAGE	-	Polyacrylamide Gel Electrophoresis
PBS	-	Phosphate buffer saline
PCR	-	Polymerase chain reaction
PMSF	-	Phenylmethanesulfonyl fluoride
RbCl	-	Rubidium chloride
rpm	_	Rotation per minute
SDS	-	Sodium dodecyl sulfate
TAE	-	Tris base, acetic acid, EDTA buffer
UV	-	Ultraviolet
V	-	Voltage
v/v	-	Volume per volume
w/v	-	Weight per volume

CHAPTER 1

INTRODUCTION

1.1 Introduction

Biosensor is an analytical device that functions by coupling a biological sensing element with a detector system using a transducer (Chauhan *et al.*, 2004). It involves exploiting the recognition and detection system of a biology component for a target molecule or macromolecule with a transducer that converts the biological recognition event into an output signal (Collings *et al.*, 1997). The signal can be electrical, optical or thermal and is converted by a suitable transducer into a measurable electrical parameter such as electrical or current. Since its establishment, biosensors have been widely used in diagnostics, pharmaceutical research, agriculture, food safety, environment and industrial monitoring (Luong *et al.*, 2008).

There have been some limitations in producing biosensors because each device is unique and requires an amount of time and optimization. This is because developments of most biosensors involve the identification of natural specificity of a biological component for an analyte and the discovery of a suitable signal transducer that is adapted to the macromolecule (Chauhan *et al.*, 2004). Hence, protein engineering techniques are being used to overcome this issue where signal transduction properties of biological molecules are being modified to adapt the detector instrumentation rather than adapting the detector instruments to the unique

requirements of each natural molecule. This is achieved by integrating a functional group that gives simple signal-transduction mechanism such as optical or electrical, to the protein itself (Hellinga and Marvin, 1998).

Development of sensor devices requires incorporation of sensing proteins into a detector element by encapsulation or surface immobilization on a suitable material for interfacing with detectors (De Lorimier *et al.*, 2006). It is crucial for the protein to be immobilized for reagentless biosensing and for further application in biosensor such as protein microarray. Thus, with protein engineering techniques, enzymes and proteins can be chemically modified to make them more stable and more specific with more regular interface for immobilization. A protein may be modified so that its active site points outwards from the sensor surface once the protein is immobilized because the active sites need to be accessible to the analyte (Collings *et al.*, 1997). Thus, in this research, rational protein engineering techniques will be applied to molecular engineer proteins for unidirectional immobilization on functionalized surfaces and to investigate its protein activity. Moreover, it will assess the applicability of immobilized protein for biosensing application for high throughput analysis of analyte.

The protein used in this research is maltose binding protein (MBP) which is in the superfamily of periplasmic binding protein (PBP) that is extensively studied as receptors for sensor applications (Hellinga *et al.*, 1998). This is because PBP superfamily has a remarkable adaptablity for their cognate ligands and can be designed to bind nonnatural ligands (Marvin and Hellinga, 2001). The structure of PBPs both with and without their ligands bound, has been described as a 'Venus Flytrap' where the two lobes of the protein will close upon the ligand, entrapping it (Gilardi *et al.*, 1994). This molecular recognition element that transduces a ligandbinding event into a physical event makes it suited for biosensor applications such as reageantless fluorescent biosensing. MBP will be altered genetically to construct a regeantless biosensor so that a reporter group (fluorophore) may be covalently linked to MBP. The fluorophore will respond to the ligand binding event of the labeled protein and this response is measured by fluorescence intensity changes. It is worth noting that, to the extent of our knowledge, all of the reported works describing signal transduction by fluorophore labeled PBPs have been studied without their linkage to solid supports (Brune *et al.*, 1994; Gilardi *et al.*, 1994; Marvin *et al.*, 1997; Hellinga and Marvin, 1998; Marvin and Hellinga, 2001). In this research, protein immobilization will be done by exploiting the affinity tag by genetic engineering. Affinity tags are widely used in biotechnology to assist purification of recombinant protein. The MBP will be fused to an affinity tag, Strep-Tag II to aid in purification and site-directed immobilization of the MBP onto functionalized solid surfaces. Strep-Tag II consists of eight amino acids fusion tag that will bind to Strep-Tactin protein (Merck Biosciences, 2007). The Strep-Tag II will act as a handle that will enable the attachment of MBP to a Strep-Tactin surface on microwell-plates for optimal ligand binding.

1.2 Research objectives

The ultimate aim of this work was to construct tagged fusion proteins for site directed immobilization onto surfaces with a view to investigate their potential for biosensor applications. To achieve this, the objectives were as follows:

- 1. To mutate the Maltose Binding Protein (MBP) for the development of a reagentless fluorescence sensing system for maltose.
- To overexpress and purify Strep-Tagged II fusion MBP and its mutant via affinity chromatography
- To determine the ligand binding activity of fluorophore-labeled mutant MBP via fluorescence intensity measurements.

1.3 Significance of Research

The immobilization of proteins onto solid surfaces remains a critical aspect in the development of biosensors. Furthermore, to the extent of our knowledge, all of the reported works describing signal transduction by fluorophore labeled PBPs have been studied without their linkage to solid supports. Thus, in this research, MBP was first mutated to construct a reagentless biosensor for maltose sensing. The Strep-Tag II fused to the mutated MBP enabled the attachment of the ligand binding protein onto a functionalized solid surface. The ability of the immobilized protein to sense ligand binding was subsequently assessed.

1.4 Scope of Research

To fulfill the objectives of this research, there were four main experimental steps in laboratory work that needed to be done. Firstly, the construction of plasmids containing wild type *malE* gene and its variant were done. This involved amplification of *malE* gene, site-directed mutagenesis of *malE* gene and cloning. The next step was expression and purification of wild type MBP and its mutant; which involved optimizing protein expression to produce the optimal amount of protein and purification of the protein by affinity purification. The third step was to analyze the ligand binding characteristics of wild type MBP and its mutant via fluorescence. Fluorescence measurements involved labeling the mutant MBP with fluorophore and analyzing the ligand binding characteristics of MBP via fluorescence. The final step was to analyze the ligand binding characteristics of the immobilized protein via fluorescence. In this final step, the labeled mutant protein was immobilized onto a functionalized microwell plate and its ability to sense maltose via fluorescence intensity changes was determined.

<u>References</u>

- Ames, G. F. (1986). Bacterial periplasmic transport systems: structure, mechanism, and evolution. *Annual Review of Biochemistry*. 55(1): 397-425
- Bell, C. E. and M. Lewis (2000). A closer view of the conformation of the Lac repressor bound to operator. *Nature Structural Biology*. 7(3): 209-214.
- Bollag, D. M., M. D. Rozycki and S. J. Edelstein. (1996). Protein Methods. (2nd
 Edition). USA. John Wiley & Sons Inc. Publication
- Bondos, S. E. and A. Bicknell. (2003). Detection and prevention of protein aggregation before, during, and after purification. *Analytical Biochemistry*. 316 (2):223-231.
- Brune, M., J. L. Hunter, J. E. Corrie and M. R. Webb (1994). Direct, real-time measurement of rapid inorganic phosphate release using novel fluorescent probe and its application to actomysin subfragment 1 ATPase. *Biochemistry*. 33(27): 8262-8271
- Bray, D. (1998). Signaling complexes: Biophysical Constraints on Intracellular Communication. Annual Review of Biophysics and Biomolecular Structure. 27:59-75
- Cha, T. W., A. Guo and X. Y., Zhu (2005). Enzymatic activity on a chip: The critical role of protein orientation. *Proteomics*. 5: 416–419

Chauhan, S., V. Rai and H. B. Singh (2004). Biosensors. Resonance. 9 (12): 33-44

Chen, H. M. and C. W. Lin. (2007). Hydrogel-coated streptavidin piezoelectric biosensors and applications to selective detection of *Strep*-Tag displaying cells. *Biotechnology Progress*. 23: 741-748

- Chiti, F., N. Taddei, F. Baroni, C. Capanni, M. Stefani, G. Ramponi and C. M. Dobson, (2002). Kinetic partitioning of protein folding and aggregation. *Nature Structural Biology*. 9(2): 137-143.
- Coligan, J. E., B. M. Dunn, D. W. Speicher and P.T. Wingfield. (2003). Short protocols in protein science: a compendium of methods from current protocols in protein science. Canada. John Wiley & Sons Inc.
- Collings, A. F. and F. Caruso (1997). Biosensors: recent advances. *Report on Progress in Physics*. 60:1397-1445
- Copeland, R. A (1994). *Methods for protein analysis: a practical guide to laboratory protocols.* London, Great Britain. Chapman & Hall
- Dattelbaum, J. D., L. L. Looger, D. E. Benson, K. M. Sali, R. B. Thompson, and H.
 W. Hellinga (2004). Analysis of allosteric signal transduction mechanisms in an engineered fluorescent maltose biosensor. *Protein Science*.14:284-291
- Davidson, A. L. and P. C. Maloney (2007). ABC transporter: how small machines do a big job. *Trends in microbiology*. 15 (10): 448-455
- De Lorimier, R. M., J. J. Smith, M. A. Dwyer, L. L. Looger, K. M. Sali, C. D. Paavola, S. S. Rizk, S. Sadigov, D. W. Conrad, L. Loew, and H. W. Hellinga. (2002). Construction of fluorescent biosensor family. *Protein Science*. 11:2655-2675
- De Lorimier, R. M., Y. Tian and H. W. Hellinga (2006). Binding and signaling of surface-immobilized reagentless fluorescent biosensors derived from periplasmic binding proteins. *Protein Science*. 15: 1-9
- Dippel, R and W. Boos (2005). The maltodextrin system of *Escherichia coli*: metabolism and transport. *Journal of Bacteriology*. 187(24): 8322-8331

- Dubendorf, J. W. and F. W. Studier (1991). Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. *Journal of Molecular Biology*. 219(1): 45-59.
- Duy, C. and J. Fitter. (2006). How aggregation and conformational scrambling of unfolded states govern fluorescence emission spectra. *Biophysical Journal*. 90(10): 3704–3711.
- Dwyer, M. A. and H. W. Hellinga. (2004). Periplasmic binding proteins: a versatile superfamily for protein engineering. *Current Opinion in Structural Biology* 14:405-504
- Falke, J. J. and G. L. Hazelbauer. (2001). Transmembrane signaling in bacterial chemoreceptors. *Trends in Biochemical Sciences*. 26(4):257-265
- Gaj, T., S. C. Meyer and I. Ghosh. (2007). The AviD-tag, a NeutrAvidin/avidin specific peptide affinity tag for the immobilization and purification of recombinant proteins. *Protein Expression and Purification*. 56(1):54-61
- Garman, A. (1997). *Non-radioactive labelling: a practical introduction*. London, United Kingdom. Academic Press.
- GE Healthcare. (2008). Strep-Trap HP manual [Manual]. Sweeden. GE Healthcare.
- Gilardi, G. (2004) Protein engineering for biosensors. J. Cooper and T. Cass. Biosensors. (185- 240). United Kingdom. Oxford University Press
- Gilardi, G., L. Q. Zhou, L. Hibber and A. E. Cass. (1994). Engineering the maltose binding protein for reagentless fluorescence sensing. *Analytical Chemistry* 66(21):3840-3847
- Gilardi, G., G. Mei, N. Rosato, A. F. Agro and A. E. G. Cass. (1997). Spectroscopic properties of an engineered maltose binding protein. *Protein Engineering*. 10(5): 479-486

- Giuseppe, A. D., K. Forti, F. Feliziani, G. Severi and M. Cagiola. (2010). Purification by Strep-Tactin affinity chromatography of a delete envelope gp51 protein of bovine leukaemia virus expressed in sf21 insect cells. *Protein Journal*. 29:153–160
- Glenn, K. F., M. J. Smith and D. M. Markovitz. (1997). Bacterial protease Lon is a site-specific DNA-binding protein. *Journal of Biological Chemistry*. 272(1):534-538
- Grossman, T. H., E. S. Kawasaki, S. R. Punreddy and M. S. Osburne. (1998). Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. *Gene.* 209(1-2):95-103.
- Hamid, T. H. T. A., M. A. Eltaweel, R. N. Z. R. A. Rahman, M. Basri and A. B. Salleh. (2009). Characterization and solvent stable features of Strep-tagged purified recombinant lipase from thermostable and solvent tolerant *Bacillus* sp. Strain 42. *Annals of Microbiology*. 59(1):111-118
- Hellinga, H. W. and J. S. Marvin. (1998). Protein engineering and the development of generic biosensor. *Trends in Biotechnology*. 6: 183-189
- Huang, J., J. Villemain, R. Padilla and R. Sousa. (1999). Mechanisms by which T7 lysozyme specifically regulates T7 RNA polymerase during different phases of transcription. *Journal of Molecular Biology*. 293: 457-475
- Johnson, L. and M. T. Z. Spence. (2011) Molecular probes handbook- a guide to fluorescent probes and labeling technologies. (11th Edition). USA. Invitrogen, Life Technologies Corporation.
- Juda, G. A., J. A. Bollinger, and D. M. Dooley. (2001). Construction, overexpression, and purification of Arthrobacter globiformis amine oxidase-strep-tag ii fusion protein. Protein Expression and Purification. 22: 455–461

- Kambampati, R. and C. T. Lauhon. (2000). Evidence for the transfer of sulfane sulfur from IscS to ThiI during the in vitro biosynthesis of 4-thiouridine in *Escherichia coli* tRNA. *Journal of Biological Chemistry*. 275:10727-10730
- Khan, F., M. Hue and M. J. Taussig. (2006). Double-Hexahistidine tag with high affinitybinding for protein immobilization, purification and detection on Ninitrilotriacetic acid surfaces. *Analytical Chemistry*. 78(9) 3072-3079
- Koiwai, O. and H. Hayashi. (1979). Studies on bacterial chemotaxis for interaction of maltose receptor with membrane bound chemosensing component. *Journal Biochemistry*. 86 :27-34
- Lakowicz, J. R. (1999). *Principles of Fluorescence Spectroscopy*. (Second Edition). Spring Street, New York. Kluwer academic/ Plenum Publisher New York.
- Le, T. T., C. P. Wilde, N. Grossman and A. E. G. Cass. (2011). A simple method for controlled immobilization of proteins on modified SAMs. *Physical Chemistry Chemical Physics*. 13, 5271–5278
- Le Grice, S. F. J., H. Matzura, R. Marcoli, S. Lida and T. A. Bickle. (1982). The catabolite-sensitive promoter for the chloramphenicol acetyl transferase gene is preceded by two binding sites for the catabolite gene activator protein. *Journal of Bacteriology*. 150(1):312-318
- Lesaicherre, M. L., R. Y. P. Lue, G. Y. J Chen, Q. Zhu and S. Q. Yao (2002). Intern mediated biotinylation of proteins and its application in a protein microarray. *Journal of the American Chemical Society*. 124 (30): 8768-8769
- Lee, W., B. K. Oh, W. H. Lee and J.W. Choi. (2004). Immobilization of antibody fragment for immunosensor application based on surface plasmon resonance. *Colloids and Surfaces B: Biointerfaces*. 40 :143–148
- Ling, M. M. and B. H. Robinson. (1997). Approaches to DNA mutagenesis: An overview. *Analytical Biochemistry*. 254:157-178

- Litchy, J. L., J. L. Malecki, H. D. Agnew, D. J. Michelson-Horowitz, S. Tan. (2005). Comparison of affinity tags for protein purification. *Protein expression and Purification*. 41: 98-105
- Luong, J. H. T, K. B. Male and J. D. Glennon. (2008). Biosensor technology: technology push versus market pull. *Biotechnology Advances*. 26: 492-500
- Lyndon, L. E., R. A. W. Salins, C. M. Ensor, and S. Daunert. (2001). A novel reagentless sensing system for measuring glucose based on the galactose/glucose-binding protein. *Analytical Biochemistry*. 294: 19–26.
- Maier, T., N. Drapal, M. Thanbichler and A. Bock. (1998). Strep-Tag II affinity purification: an approach to study intermediates of metalloenzyme biosynthesis. *Analytical Biochemistry*. 259: 68–73
- Marvin, J. S., E. E. Corcoran, N. A. Hattangadi, J. V. Zhang, S. A. Gere and H. W. Hellinga. (1997). The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors. *Proceedings of the National Academy of Sciences of the United States of America*. 94 (9): 4366-4371
- Marvin, J. S. and H. W. Helinga. (1998). Engineering biosensors by introducing fluorescent allosteric signal transducers: Construction of a novel glucose sensor. *Journal of The American Chemical Society*. 120 (1): 7-11
- Marvin, J. S and H. W. Hellinga. (2001). Manipulation of ligand binding affinity by exploitation of conformational coupling. *Nature Structural Biology*. 8 (9): 795-798
- McCarter, J. D., D. Stephens, K. Shoemaker, S. Rosenberg, J. F. Kirsch and G. Georgiou. (2004). Substrate specificity of the *Escherichia coli* outer membrane protease OmpT. *Journal of Bacteriology*. 186 (17): 5919-5925

- 104
- Merck Biosciences. (2007). Novagen Strep-tag II, Tools for protein expression, purification and detection in bacterial, insect and mammalian cells. [Strep-Tag Brochure]. United States of America. Merck
- Mierendorf, R., K. Yeager and R. E. Novy. (1994a). The pET System: your choice for expression. *InNOVAtions*. 1(1):1-3
- Mierendorf, R. C., B. B. Morris, B. Hammer and R. E. Novy. (1994b). Expression and purification of recombinant proteins using the pET system. R. Rapley (Ed.). The Nucleic Acid Protocols Handbook. Totowa, N.J. Humana Press Inc.
- Miller, D. M. 3rd, J. S Olson, J. W. Pflugrath and F. A. Quiocho. (1983). Rates of ligand binding to periplasmic proteins involved in bacterial transport and chemotaxis. *Journal Of Biological Chemistry*. 258 (22): 13665-13672
- Miroux, B. and J. E. Walker. (1996). Over-production of proteins in *Escherichia coli*: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. *Journal of Molecular Biology*. 260:289–298
- Mocz, G. (1999). *The Use of Fluorescence in Research into Protein Structures*. unpublished note, A PPS '99 Project University of Hawaii.
- Nakane, P. K. and A. Kawaoi. (1974). Peroxidase-labeled antibody a new method of conjugation. *Journal of Histochemistry and Cytochemistry*. 22 (12): 1084-1091
- Nikaido, H. (1994). Maltose transport system of *Escherichia coli*: an ABC-type transporter. *FEBS Letters*. 346(1):55-58
- Novy, R. and B. Morris. (2001). Use of glucose to control basal expression *in the* pET system. *BioTechniques*. 12 (26): 1–3

- Ntziachristos, V. (2006). Fluorescence molecular imaging. *Annual Review Biomedical Engineering*. 8:1–33
- Pabrosky, L. R., K. E. Dunn, C. S. Gibbs and J. P. Dougherty. (1996). A nickel chelate microtiter plate assay for six-histidine containing proteins. *Analytical Biochemistry*. 234(1):60-65
- Peluso, P., D. S. Wilson, D. Do, H. Tran, M. Venkatasubbaiah, D. Quincy, B. Heidecker, K. Poindexter, N. Tolani, M. Phelan,K. Witte, L. S. Jung, P. Wagner, and S. Nock. (2002). Optimizing antibody immobilization strategies for the construction of protein microarrays. *Analytical Biochemistry*. 312: 113–124
- Perutz, M. F., B. J. Pope, D. Owen, E. E.Wanker and E. Scherzinger. (2002). Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and asparagine-rich domains of Sup35 and of the amyloid βpeptide of amyloid plaques. *Proceedings of the National Academy of Sciences of the United States of America*. 99 (8): 5596-5600.
- Rusmini, F, Z. Zhong and J. Feijen. (2007). Protein immobilization strategies for biochips. *Biomacromolecules*. 8: 1775-1789
- Salins, L. L. E., R. A. Ware, C. M. Ensor and S. Daunert (2001). A novel reagentless sensing system for measuring glucose based on the galactose/glucose-binding protein. *Analytical Biochemistry*. 294: 19-26
- Schmidt, T. G. M. and A. Skerra. (1994). One-step affinity purification of bacterially produced proteins by means of the "Strep tag" and immobilized recombinant core streptavidin. *Journal of Chromatography A*. 676 (2): 337-345.
- Seo, M. H., J. Han, Z. Jin, D. W. Lee, H. S. Park, and H. S. Kim. (2011). Controlled and oriented immobilization of protein by site-specific incorporation of unnatural amino acid. *Analytical Chemistry*. 83: 2841-2845

- Skerra, A. and T. G. M. Schmidt. (1999). Applications of a peptide ligand for streptavidin: the Strep-tag. *Biomolecular Engineering*. 16: 79–86.
- Shahir, S. (2006). Engineering the Maltose Binding Protein for Metal Ions Sensing. Doctor Philosophy. Imperial College London, United Kingdom.
- Sharff, A. J., L. E. Rodseth, J. C. Spurlino, and F. A. Quiocho. (1992). Crystallographic Evidence of a Large Ligand-Induced Hinge-Twist Motion between the Two Domains of the Maltodextrin Binding Protein Involved in Active Transport and Chemotaxis. *Biochemistry*. 31:10657-10663
- Sharff, A. J., L. E. Rodseth and F. A. Quiochol. (1993). Refined 1.8-Å structure reveals the mode of binding of p-cyclodextrin to the maltodextrin binding protein. *Biochemistry*. 32:10553-10559
- Shrestha, S., L. L. E. Salins, C. M. Ensor and S. Dauner. (2002). Rationally designed fluorescently labeled sulfate-binding protein mutants: evaluation in the development of a sensing system for sulfate. *Biotechnology and Bioengineering*. 78: 517–526
- Sohanpal, K., T. Watsuji, L. Q. Zhou and A. E. G. Cass. (1993). Reagentless fluorescence sensor based upon specific binding proteins. *Sensor and Actuators*. 11:547-552
- Sørensen, H. P. and K. K Mortensen. (2005). Advanced strategies for recombinant protein expression in *Escherichia coli*. *Journal of Biotechnology*. 115: 113-128
- Spurlino, J. C., G. Y. Lu and F. A. Quicho. (1991). The 2.3 Å resolution structure of the maltose or maltodextrin- binding protein, a primary receptor of bacterial active transport and chemotaxis. *The Journal of Biological Chemistry*. 266(6):5202-5219

- Studier, F. W., A. H. Rosenberg, J. J. Dunn, and J. W. Dubendorff. (1990). Use Of T7 RNA-Polymerase to direct expression of cloned genes. *Methods in Enzymology*. 185: 60-89.
- Szmelcman, S. and M. Schwartz. (1976). Maltose transport in *Escherichia coli* K12: a comparison of transport kinetics in wild-type and a-resistant mutants with the dissociation constants of the maltose-binding protein as measured by fluorescence quenching. *Journal Biochemistry*. 65: 13-19
- Taddei, N., C. Capanni, F. Chiti, M. Stefani, C. M. Dobson and G. Ramponi (2001). Folding and aggregation are selectively influenced by the conformational preferences of the alpha-helices of muscle acylphosphatase. *Journal of Biological Chemistry*. 276(40): 37149-37154.
- Taraska, J. W., and W. N. Zagotta (2010). Fluorescence application in molecular neurobiology. *Neuron*. 66(2):170-89.
- Templin, M. F., D. Stoll, M. Schrenk, P. C. Traub, C. F. Vohringer and T. O. Joos (2002). Protein microarray technology. *Trends in Biotechnology*. 20 (4): 160-166
- Tsai, C. W., C. I. Liu and R. C. Ruaana. (2009). A novel strategy for oriented protein immobilization. World Academy of Science, Engineering and Technology. 53: 975-979
- Vercillo, N. C., K. J. Herald, J. M. Fox, B. S. Der, and J. D. Dattelbaum. (2006). Analysis of ligand binding to a ribose biosensor using site-directed mutagenesis and fluorescence spectroscopy. *Protein Science*. 16: 362-368
- Villaverde, A. and M. M. Carrio. (2003) Protein aggregation in recombinant bacteria: biological role of inclusion bodies. *Biotechnology Letter*. 17: 1385-1395

- Voss S. and A. Skerra. (1997). Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. *Protein Engineering*. 10 (8): 975-982
- Walker, J. M. (2002). *The Protein Protocol Handbook*. (2nd Edition).United Kingdom. Humana Press.
- Wemmer, E. M. (2003). The energetic of structural change in maltose binding protein. Proceedings of National Academy of Sciences. 100 (22): 12529-12530
- Ye, L., C. D. M. Filipe, M. Kavoosi, C. A. Haynes, R. Pelton and M. A. Brook.
 (2009). Immobilization of TiO₂ nanoparticles onto paper modification through bioconjugation. *Journal of Materials Chemistry*. 19: 2189–2198
- Zhou, Q. L. and A. .E. G. Cass. (1991). Periplasmic binding protein based biosensors: preliminary study of maltose binding protein as sensing element for maltose biosensor. *Biosensors and Bioelectronics*. 6 (1): 445-450
- Zhu, H. and M. Snyder. (2003). Protein Chip Technology. Current Opinion in Chemical Biology. 7: 55-63