
 

 

 

CONSTRUCTION OF A STREP-TAG II MUTANT MALTOSE BINDING 

PROTEIN FOR REAGENTLESS FLUORESCENCE SENSING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SITI HALIMAH BINTI HASMONI 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA 



 

 

 

CONSTRUCTION OF A STREP-TAG II MUTANT MALTOSE BINDING 

PROTEIN FOR REAGENTLESS FLUORESCENCE SENSING 

SITI HALIMAH BINTI HASMONI 

A thesis submitted in fulfillment of the requirement for the award of the degree of 

Master of Science (Bioscience) 

 

Faculty of Bioscience and Bioengineering 

Universiti Teknologi Malaysia 

 

 

 

 

NOVEMBER 2012



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my beloved parents, my family and my soulmate, my best friend; my husband 

and not forgetting to our newborn bub, Muhammad Rafiqi. 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

 

ACKNOWLEDGEMENT 

 

 

 

 
 First and foremost, I would like thank Dr Shafinaz, my supervisor, who had been 

dedicated and committed to guide me all this while. Her patience, encouragement and 

trust is truly appreciated and deeply cherished. Also, thanks to Prof Dr Anthony Cass, 

for his advice and insights on this research. Next, I would like to express my gratitude to 

Dr. Saiful Karsani and Dr. Goh Kian Mau is members of the research group. Thank you 

for the opportunity and the wealth of information shared during discussions.  Also, my 

greatest gratitude goes to Prof Dr. Peter Klappa, who helps me solve the missing puzzle 

of my research with his knowledge and wisdom.  

 

 Furthermore,  I am thankful to Ministry of Higher Education for funding my 

masters study. I would like to thank the Ministry of Higher Education again for 

funding this project under Fundamental Research Grant Scheme (FRGS) Vote 

Number 78309. A great appreciation for FBB,UTM for the research facilities they 

provided and also thank you to PSZ library for easy access of many literatures 

online. 

 

 Thank you to the technical supports from most of the companies that I 

contacted with for their advices and help.  Not forgetting my fellow postgraduates’ 

friends in this faculty for giving me their encouragements, helping hand and 

motivation. Thank you for being there for me. Special thanks to the best 

labmates/friends a researcher could for; Edot, Yok, Maya, Kak Su and Tiqah.  

 

 I would like to thank my supportive father and mother, my beloved sisters 

and brothers for supporting me no matter what. I would like to extend my 

appreciation to my husband who is always there for me through the ups and downs of 

this journey. And lastly, I am grateful to Allah. 



v 

 

 

ABSTRACT 

 

 

 

 

Maltose binding protein (MBP) changes its conformational structure upon its ligand 

binding.This molecular recognition element that transduces a ligand-binding event 

into a physical one make MBP an ideal candidate for reagentless fluorescence 

sensing. MBP gene, (malE) was amplified from a pMaL-C4x plasmid vector and was 

fused to a Strep-Tag II pET-51b(+) vector. Strep-Tag II is a tag that will enable the 

MBP to be unidirectionally immobilized on solid supports. A cysteine mutant of the 

MBP was constructed by inverse PCR and the recombinant protein fusion was then 

purified by affinity purification using Strep-Tactin resin. To sense maltose binding, 

an environmentally sensitive fluorophore (IANBD amide) was covalently attached to 

the introduced thiol group. The tagged mutant MBP (D95C) was successfully 

generated and the protein was successfully purified with the expected molecular size 

of ~42 kDa observed on the SDS PAGE. The fluorescence measurements of the 

IANBD labeled of tagged mutant MBP (Strep-Tag II D95C) in the solution phase, 

showed an appreciable change in fluorescence intensity with dissociation constant, 

(Kd) of 7.6 ± 1.75 µM. Nonetheless, it could retain its ligand binding activity towards 

maltose. However, immobilization of Strep-Tag II D95C on solid surface suffered 

some limitation with the Strep-Tactin coated microwell plates because it did not give 

any dependable results to support the ligand binding activity of the site directed 

immobilized protein. Thus, this engineered mutant MBP (Strep-Tag II fused D95C) 

could be potentially developed for biosensor application with further improvement in 

protein immobilization method. 
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ABSTRAK 

 

 

 

 

Protein pengikat maltosa (MBP) mengalami perubahan struktur konformasi 

semasa mengikat pada ligan. Molekul pengenalpastian yang menyebabkan transduksi 

pengikatan ligan kepada bentuk fizikal menjadikan MBP calon yang sesuai sebagai 

penderia pendaflour tanpa reagen. Gen MBP (malE) diamplifikasi daripada vektor 

plasmid pMaL-C4x dan kemudian digabungkan dengan Strep-Tag II yang terdapat 

pada vektor pET-51b(+). Strep-Tag II merupakan tag yang membolehkan MBP 

disekatgerak secara seragam kepada penyokong pepejal. Mutan MBP yang 

mempunyai satu residu sisteina telah dihasilkan melalui PCR berbalik dan gabungan 

protein rekombinan ini ditulen melalui penulenan afiniti yang menggunakan resin 

Strep-Tactin. Untuk mengesan pengikatan maltosa, flourofor yang sensitif pada 

persekitaran (IANBD amida) telah diikat secara kovalen kepada kumpulan tiol yang 

telah diperkenalkan pada protein itu.  Mutan MBP yang bertag telah berjaya dijana 

dan melalui pemerhatian SDS-PAGE protein ini telah berjaya ditulen dengan saiz 

molekul ~42 kDa seperti yang dijangkakan. Ukuran pendaflour di dalam fasa larutan 

bagi mutan MBP yang bertag dan berlabel dengan IANBD menunjukkan perubahan 

ketara bagi keamatan pendaflour dengan pemalar penguraian Kd 7.6 ± 1.75 µM. 

Walau bagaimanapun, aktiviti pengikatan ligan terhadap maltosa boleh dikekalkan. 

Pemegunan protein Strep-Tag II D95C pada permukaan pepejal, berhadapan dengan 

beberapa kelemahan apabila piring mikrotelaga yang bersalut Strep-Tactin 

digunakan kerana ia tidak memberi keputusan yang dapat menyokong aktiviti 

pengikatan ligan oleh protein yang dipegunkan pada tapak khusus. Oleh itu, 

kejuruteraan mutan MBP gabungan Strep-Tag II-D95C berpotensi dibangunkan 

untuk aplikasi biopenderia dengan lebih penambahbaikan dalam kaedah pemegunan 

protein. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

 Biosensor is an analytical device that functions by coupling a biological 

sensing element with a detector system using a transducer (Chauhan et al., 2004). It 

involves exploiting the recognition and detection system of a biology component for 

a target molecule or macromolecule with a transducer that converts the biological 

recognition event into an output signal (Collings et al., 1997). The signal can be 

electrical, optical or thermal and is converted by a suitable transducer into a 

measurable electrical parameter such as electrical or current. Since its establishment, 

biosensors have been widely used in diagnostics, pharmaceutical research, 

agriculture, food safety, environment and industrial monitoring (Luong et al., 2008).  

 

 

 There have been some limitations in producing biosensors because each 

device is unique and requires an amount of time and optimization. This is because 

developments of most biosensors involve the identification of natural specificity of a 

biological component for an analyte and the discovery of a suitable signal transducer 

that is adapted to the macromolecule (Chauhan et al., 2004). Hence, protein 

engineering techniques are being used to overcome this issue where signal 

transduction properties of biological molecules are being modified to adapt the 

detector instrumentation rather than adapting the detector instruments to the unique 
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requirements of each natural molecule. This is achieved by integrating a functional 

group that gives simple signal-transduction mechanism such as optical or electrical, 

to the protein itself (Hellinga and Marvin, 1998).  

 

 

Development of sensor devices requires incorporation of sensing proteins into 

a detector element by encapsulation or surface immobilization on a suitable material 

for interfacing with detectors (De Lorimier et al., 2006). It is crucial for the protein 

to be immobilized for reagentless biosensing and for further application in biosensor 

such as protein microarray. Thus, with protein engineering techniques, enzymes and 

proteins can be chemically modified to make them more stable and more specific 

with more regular interface for immobilization. A protein may be modified so that its 

active site points outwards from the sensor surface once the protein is immobilized 

because the active sites need to be accessible to the analyte (Collings et al., 1997). 

Thus, in this research, rational protein engineering techniques will be applied to 

molecular engineer proteins for unidirectional immobilization on functionalized 

surfaces and to investigate its protein activity. Moreover, it will assess the 

applicability of immobilized protein for biosensing application for high throughput 

analysis of analyte.  

 

 

The protein used in this research is  maltose binding protein (MBP) which is 

in the superfamily of  periplasmic binding  protein (PBP) that is extensively studied 

as receptors for sensor applications (Hellinga et al., 1998). This is because PBP 

superfamily has a remarkable adaptablity for their cognate ligands and can be 

designed to bind nonnatural ligands (Marvin and Hellinga, 2001). The structure of 

PBPs both with and without their ligands bound, has been described as a ‘Venus 

Flytrap’ where the two lobes of the protein will close upon the ligand, entrapping it 

(Gilardi et al., 1994). This molecular recognition element that transduces a ligand-

binding event into a physical event makes it suited for biosensor applications such as 

reageantless fluorescent biosensing. MBP will be altered genetically to construct a 

regeantless biosensor so that a reporter group (fluorophore) may be covalently linked 

to MBP. The fluorophore will respond to the  ligand binding event of the labeled 

protein and this response is measured by fluorescence intensity changes.  
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It is worth noting that, to the extent of our knowledge, all of the reported works 

describing signal transduction by fluorophore labeled PBPs have been studied 

without their linkage to solid supports (Brune et al., 1994; Gilardi et al., 1994; 

Marvin et al., 1997; Hellinga and Marvin, 1998; Marvin and Hellinga, 2001).  In this 

research, protein immobilization will be done by exploiting the affinity tag by 

genetic engineering. Affinity tags are widely used in biotechnology to assist 

purification of recombinant protein. The MBP will be fused to an affinity tag, Strep-

Tag II to aid in purification and site-directed immobilization of the MBP onto 

functionalized solid surfaces. Strep-Tag II consists of eight amino acids fusion tag 

that will bind to Strep-Tactin protein (Merck Biosciences, 2007). The Strep-Tag II 

will act as a handle that will enable the attachment of MBP to a Strep-Tactin surface 

on microwell-plates for optimal ligand binding.  

 

 

 

 

1.2 Research objectives 

 

 

 The ultimate aim of this work was to construct tagged fusion proteins for site 

directed immobilization onto surfaces with a view to investigate their potential for 

biosensor applications. To achieve this, the objectives were as follows: 

 

1. To mutate the Maltose Binding Protein (MBP) for the development of a 

reagentless fluorescence sensing system for maltose.   

 

2. To overexpress and purify Strep-Tagged II fusion MBP and its mutant via 

affinity chromatography 

 

3. To determine the ligand binding activity of fluorophore-labeled mutant MBP 

via fluorescence intensity measurements. 
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1.3 Significance of Research 

 

  

 The immobilization of proteins onto solid surfaces remains a critical aspect in 

the development of biosensors. Furthermore, to the extent of our knowledge, all of 

the reported works describing signal transduction by fluorophore labeled PBPs have 

been studied without their linkage to solid supports. Thus, in this research, MBP was 

first mutated to construct a reagentless biosensor for maltose sensing. The Strep-Tag 

II fused to the mutated MBP enabled the attachment of the ligand binding protein 

onto a functionalized solid surface. The ability of the immobilized protein to sense 

ligand binding was subsequently assessed. 

 

 

 

 

1.4 Scope of Research 

 

 

 To fulfill the objectives of this research, there were four main experimental 

steps in laboratory work that needed to be done. Firstly, the construction of plasmids 

containing wild type malE gene and its variant were done. This involved 

amplification of malE gene, site-directed mutagenesis of malE gene and cloning. The 

next step was expression and purification of wild type MBP and its mutant; which 

involved optimizing protein expression to produce the optimal amount of protein and 

purification of the protein by affinity purification. The third step was to analyze the 

ligand binding characteristics of wild type MBP and its mutant via fluorescence. 

Fluorescence measurements involved labeling the mutant MBP with fluorophore and 

analyzing the ligand binding characteristic of MBP via fluorescence. The final step 

was to analyze the ligand binding characteristics of the immobilized protein via 

fluorescence. In this final step, the labeled mutant protein was immobilized onto a 

functionalized microwell plate and its ability to sense maltose via fluorescence 

intensity changes was determined. 
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