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ABSTRACT

The multibeam snippets data, an acoustic backscatter data acquired by the 

multibeam sonar systems, carries important information about the seafloor and its 

physical properties, thus aid in seafloor classification. This acoustic backscatter 

strength is highly dependent of incidence angle due to different mechanism of 

scattering with different angular domains. Therefore, it is necessary to perform 

certain corrections for the backscatter data before producing the hydrographic plan. 

This is solved with the radiometric correction using CARIS HIPS & SIPS 7.0 

software and geometric correction using Matlab programming. Radiometric 

correction removed the Time Varied Gain from the data while geometric correction 

corrected the data for local bottom slope, seafloor insonified area and angular 

dependency. The seafloor can be classified using the produced distribution histogram 

of the desired study area. It is found that the snippets intensities estimated from the 

mean of snippets intensities provide an accurate measurement of the actual intensities 

strength of the seafloor and play an important role in correcting the angular 

dependency of the data. Besides that, the Gamma distribution model is found to be 

fitting well with the distribution of snippets intensities. The parameters of the 

Gamma distribution model, the scale and shape parameters are found to be dependent 

on the incidence angles of data. Furthermore, the Kolmogorov-Smimoff test was 

carried out to access the fitting of other statistical distribution models such as the 

Rayleigh and Log-normal distribution models in fitting with the distribution of 

snippets intensities. It is shown that the Rayleigh and the Log-normal distribution 

models followed only with the head of the distribution of the experimental data but 

not towards the tail of experimental distribution. Further experiment on comparing 

the backscattering characteristics of snippets data that were collected from different 

types of seafloor habitats is recommended for future research.
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ABSTRAK

Data pemerum gema berbilang alur snippets, suatu data sebaran akustik yang 

diperolehi dengan sistem pemerum gema berbilang alur, membawa maklumat 

penting mengenai dasar laut dan sifat-sifat fizikalnya serta membantu dalam 

pengklasifikasian dasar laut. Kekuatan sebaran balik akustik ini amat bergantung 

kepada sudut tuju sebaran disebabkan oleh mekanisme sebaran yang berbeza dengan 

domain yang berlainan sudut. Oleh itu, pembetulan tertentu perlu dilakukan bagi data 

sebaran balik sebelum menghasilkan pelan hidrografi. Ini dapat diselesaikan dengan 

pembetulan radiometrik menggunakan perisian CARIS HIPS & SIPS 7.0 dan 

pembetulan geometrik menggunakan pengaturcaraan Matlab. Pembetulan 

radiometrik membetulkan data untuk Time Varied Gain manakala pembetulan 

geometrik membetulkan data untuk kecerunan dasar laut, keluasan kawasan dan 

pergantungan kepada sudut. Dasar laut boleh diklasifikasikan dengan menggunakan 

histogram taburan untuk kawasan kajian tersebut. Adalah didapati bahawa keamatan 

snippets yang dianggarkan daripada min keamatan snippets menyediakan suatu 

ukuran tepat kekuatan keamatan sebenar dasar laut dan memainkan peranan penting 

dalam membetulkan pergantungan sudut data. Selain itu, model taburan Gamma 

didapati sesuai dengan taburan keamatan snippets. Parameter model taburan Gamma, 

iaitu parameter skala dan bentuk didapati bergantung kepada sudut tuju data. 

Tambahan pula, ujian Kolmogorov-Smimoff telah dijalankan untuk mengakses 

penyesuaian model taburan statistik seperti Rayleigh dan Log-normal dengan taburan 

keamatan snippets. Keputusan menunjukkan bahawa taburan model Rayleigh dan 

Log-normal hanya mengikuti taburan data eksperimen di permulaan tetapi tidak ke 

akhir taburan eksperimen. Eksperimen selanjutnya bagi perbandingan ciri-ciri 

sebaran data snippets dari pelbagai dasar laut dicadangkan untuk kajian pada masa 

hadapan.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Hydrographic surveying can be defined as a science of measuring and 

depicting the parameters and characteristics of the seabed to define the surface of the 

seabed, the geographical relationship of the seabed with the land mass and dynamical 

features of the sea (International Hydrographic Organization, 2005). For the purpose 

and needs for surveying and navigation, these parameters consist of depth or 

bathymetric data, the pattern and morphology of the seabed, velocity and direction of 

currents, tides, wave and the position of underwater objects (International 

Hydrographic Organization, 2005).

Until the Second World War, almost all of bathymetric surveys were made by 

lead line. The introduction of single beam echo sounder (SBES) after the world war 

has replaced the conventional lead line techniques. The SBES collects bathymetric 

data by the measurement of the travel time interval of the returned acoustic signal 

(Mayer et al., 2007) and provides better accuracy than the lead line techniques. In 

1980s, Multibeam Echo Sounder (MBES) or Multibeam Sonar System has been 

introduced in hydrographic surveying as a tool for bathymetric data collection. 

Figure 1.1 shows the principle of single beam echo sounder whilst Figure 1.2 shows 

the principle of multibeam echo sounder.
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Figure 1.1: Principle of single beam echo sounder 

(Source: http://www.ozcoasts.gov.au/glossary/def_s-t.jsp)

Figure 1.2: Principle of multibeam echo sounder 

(Source: http://divediscover.whoi.edu/tools/sonar-multibeam.html)

Development of maritime activities in Malaysia has increased rapidly. 

Therefore, the data from hydrographic surveying nowadays is widely used not only 

for nautical charting, but also for other applications such as marine engineering, pipe 

or cable laying and inspection, sedimentation studies, ocean habitats studies as well 

as maritime boundary determination.

http://www.ozcoasts.gov.au/glossary/def_s-t.jsp
http://divediscover.whoi.edu/tools/sonar-multibeam.html
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1.1.1 Acoustic Remote Sensing Technique in Seafloor Study

Towards the development in the exploration and exploitation, the ocean has 

become a powerful and commercial interested subject among the industries. Marine 

activities whether in the field of oil & gas exploration, marine geology and etc., need 

more and more seabed recognition tools and methods. Acoustic remote sensing 

techniques are one of the most cost-effective methods of resource mapping, 

particularly in the coastal zone. Seabed mapping and monitoring using acoustic 

remote sensing techniques has proven to be a useful tool in contemporary marine 

resource management particularly in turbid and deep water areas, where aerial and 

satellite remote sensing based on measuring the electromagnetic spectra is of limited 

use (Caruthers, 1977). The applications of acoustic remote sensing technique in 

seafloor study include measurements such as: a.) Bathymetry, which provides 

quantitative information on the relief; b.) Acoustic imaging, which is most often used 

in a qualitative sense for geomorphology and for feature detection of obstacle 

avoidance; c.) Acoustic bottom loss which is related to the physical properties of the 

substrate (de Moustier and Matsumoto, 1993).

Backscatter data or better known as the acoustic intensity of the seafloor is 

one of the by-products of MBES systems. The power of the received signal is 

analysed and compared with the transmitted signal and corrected for parameters such 

as incidence angle, attenuation and etc. Some processing algorithms record the full 

waveform for each footprint, piece the sample string back together, and analyse the 

resulting wave trend in a manner similar to side scan. This approach can yield 

backscatter data with higher resolution (smaller pixel size) than the bathymetry data 

(Daniel et al., 1999). In the measurement of backscatter data, the data are logged 

simultaneously with bathymetric data, which will permit precise co-registration of 

the backscatter with the multibeam data set, resulting the positional accuracy of the 

backscatter to be better compared to the traditional side scan image (FUGRO, 2005)

Backscatter data carries important information about the seafloor and its 

physical properties (Fonseca and Calder, 2005). This information may provide 

valuable data to aid in seafloor classification and important auxiliary information for



4

a bathymetric survey. Acoustic imagery of the seafloor, generated from either 

multibeam or towed side scan sonar system, represents the received acoustic 

backscatter intensities. These acoustic intensities depend on the scattering strength of 

the seafloor, distribution of scatterers, degree of bottom penetration and sub-bottom 

volume scattering, and ensonification angle (Whitmore, 2003). Acoustic backscatter 

imagery is used in a diverse set of applications and disciplines ranging from 

geological mapping to the detection of manmade objects on the seafloor. As such, 

acoustic backscatter imagery has many naval applications that include obstacle 

avoidance, characterization of the type of seafloor for engineering purposes, mine 

detection and parameterization of the seafloor for acoustic propagation modelling 

(Etter, 2003).

Currently, there are two approaches in the collection of backscatter data using 

multibeam system; the Multibeam Side Scan (MBSS) and Seafloor Backscatter 

Envelopes (Snippets). Multibeam Side Scan and Snippets can display a 

representation of the seafloor using the principle of acoustic imaging.

1.1.1.1 Multibeam Side Scan (MBSS)

Multibeam Side Scan is acquired by forming a large beam on either side of 

the sonar head. Time series data is sampled across these beams by summing all of 

returns from any given time to a pixel (quoted from webpage: http://www.fugro- 

pelagos.com/papers/Backscatter_GIS.doc.). The result of the Multibeam Side Scan 

imaging is a mosaic covering the seafloor. Assuming the lines have been run 

appropriately, the imaging should provide 100% coverage and it may be that the 

intensities information covers more than the bathymetry unless the beams have been 

invalidated for accuracy reasons (International Hydrographic Organization, 2005). It 

is likely that the extra intensities information will not be used since it does not have 

depth information associated with it, but it remains available. The drawbacks of the 

Multibeam Side Scan is that potentially useful spatial information is discarded in the 

process of reducing the intensities time series surrounding the bottom detect of each 

beam to a single value. Figure 1.3 shows the multibeam side scan sonar imagery.

http://www.fugro-
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Figure 1.3: Multibeam Side Scan Sonar Imagery 

(Source: http://halmapr.eom/news/tritech/category/news/page/4/)

1.1.1.2 Seafloor Backscatter Envelopes (Snippets)

The multibeam seafloor backscatter envelopes or better known as multibeam 

snippets data, are acquired by sampling an individual time series for each beam in the 

multibeam system. Sampling only occurs in the region of the bottom detect rather 

than throughout the water column (time-arc) (quoted from webpage: 

http ://www. fugropelagos. com/papers/newdevinmulitbeambackscatter/tgpibackscatter 

.htm). These samples are assigned as backscatter return for their respective individual 

beam footprints. As a result, the signal-to-noise ratio of the backscatter is greatly 

improved. Figure 1.4 shows the multibeam snippets imagery whilst Figure 1.5 shows 

the derivation of multibeam backscatter imagery.

http://halmapr.eom/news/tritech/category/news/page/4/
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Figure 1.4: Multibeam snippets imagery 

(Source :http ://www. fiagropelagos.com/papers/newdevinmulitbeambackscatter/tgpiba

ckscatter.htm)

Figure 1.5: Derivation of multibeam backscatter imagery 

(Source:http://www.fugropelagos.com/papers/newdevinmulitbeambackscatter/

tgpibackscatter.htm)

http://www.fugropelagos.com/papers/newdevinmulitbeambackscatter/
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As the snippets data act as an individual time series that directly associated 

with a portion of the bathymetric profile, therefore it is much easier to correct for 

slant range. When properly processed, multibeam snippets data can provide a view of 

seafloor geology and geomorphology at resolutions as little as a few decimetres and 

applicable in operations such as quantitative estimation of sediment transport in 

large-scale sediment waves and style of seafloor mass-wasting. In addition, the 

imagery potentially provides a means of quantitative classification of seafloor 

lithology, allowing the ability to examine spatial distributions of seabed sediment 

type without resorting to subjective estimation or prohibitively expensive bottom- 

sampling programs.

Provisions of snippets information are akin to the output of side scan sonar 

system and produce a representation of the seafloor in terms of the returned 

intensities echoes. The significant difference between the output of snippets 

information and side scan sonar system is that the multibeam echo sounder system is 

measuring the depth concurrently with the snippets information and this allows for a 

more sophisticated level of display. The depth data, when combined with beam angle, 

effectively gives the position on the seafloor to which the snippets information relate 

and therefore provide a true geometric correction of the backscatter image. Since this 

is in fact not the case, there will be distortions on the side scan sonar image. For this 

research, snippets data are collected and processed.

1.1.2 Correcting the Multibeam Snippets Data

The snippets signal received by multibeam sonar systems can be influenced 

by various parameters, which can be categorized into system settings (e.g. power, 

gain, pulse length), acoustic propagation conditions (e.g. absorption and spreading 

loss), beam geometry (e.g. range, incident angle, footprint size) and seafloor 

properties (seafloor roughness, acoustic properties). It is important that the received 

snippets signal is fully corrected so that it is invariant to system settings, propagation 

conditions and beam geometry so that changes in the snippets signal can be attributed 

to changes in the seafloor properties, and thus, be used to derive information about
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the substrate and geomorphology of the seabed (Gavrilov, 2005). More details are 

discussed in Chapter 3 and Chapter 4.

1.1.3 Statistical Analysis of Multibeam Snippets Data in Shallow Water

The statistical distributions of snippets values have been identified as a 

potential characteristic for classifying the seafloor. Exploiting the variation in 

multibeam backscatter measurements for seafloor classification has been achieved 

through probability density distributions (PDF) (Stewart et al., 1994). In simplified 

terms, a weak return signal (low amplitude) indicates a soft bottom substrate and a 

strong return signal (high amplitude) indicates a hard bottom substrate (Gustav, 

2008).

1.2 Problem Statements

Before a backscatter map can be made use, the backscatter data must be 

geographically registered using the collected bathymetric profile which accounts for 

full orientation and refraction. It is important to apply the radiometric correction to 

the backscatter data on a ping-by-ping basis for variables such as transmission power 

and receiver gain in order to turn them back to the “pure condition”, which means the 

data are invariant to system settings.

Both system settings and acoustic propagation conditions are easily corrected 

for, however, artefacts (angular dependency) in multibeam backscatter images due to 

beam geometry are hard to remove. In particular, the angular dependency of 

multibeam backscatter strength can be persistent in multibeam backscatter images, 

characterized by a stronger return at vertical incident angles, known as ‘nadir 

striping’ (Siwabessy and Gavrilov, 2004). Attempts made at correcting through 

theoretical models, which are usually based on Lambertian law, seem to be 

inadequate especially for the modem multibeam sonar systems currently used for
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shallow water work (Siwabessy and Gavrilov, 2004). Furthermore, there are no 

universal models for angular backscatter correction suitable for every seabed type. 

Therefore, geometric corrections play an important role in resolving this problem. 

This included using the right method to remove the angular dependency from the 

data.

Middleton (1999) theoretically stated that the statistical distribution of the 

backscatter intensities should follow a gamma distribution model. However, recent 

studies have noted a non-Rayleigh character of backscatter statistics for shallow 

water seabed and suggested different models, such as Rayleigh mixture distribution 

(Gallaudet and de Moustier , 2003; Hellequin et al., 2003; Lyons and Abraham, 1999; 

Abraham, 1997 and Dunlop, 1997) and log-normal distribution models (Trevorrow, 

2004; Stanic and Kennedy, 1992 and Gensane, 1989). Therefore, it is important to 

determine the distribution model that best fitting with the distribution of the 

backscatter intensities.

1.3 Objectives

In this research, the objectives are specified as follows:

1.) To perform geometric and radiometric correction for multibeam 

snippets data.

2.) To perform seafloor classification with statistical analysis method 

using multibeam snippets data.

3.) Assessment of the statistical distribution models in fitting with 

multibeam snippets data.



10

1.4 Scope of Study

The scopes of this study are described as follows:

i. Study and hands-on practical on RESON SeaBat 8124 multibeam 

sonar system.

ii. Multibeam snippets data collection.

iii. Processing of multibeam snippets data.

iv. Studies on seafloor classification using statistical analysis method on 

measured multibeam snippets data.

v. Study area - for this research, data collection was carried out in 

shallow coastal waters with 500m x 500m coverage that located at 

Lido Beach, Johor Bahru, Malaysia (Figure 1.6).

Figure 1.6: Study area

1.5 Significance of Study

The use of acoustic remote sensing techniques in seabed mapping and 

monitoring has proven to be a useful tool in contemporary marine resource 

management (Kenny et al., 2003), where aerial and satellite remote sensing based on
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the measurement of electromagnetic spectra is of limited use (Caruthers, 1977; 

Pickrill and Todd, 2003).

Seafloor acoustic response can be linked to sea-floor roughness produced by 

features such as ripples, benthic reworking and to physical properties of the surficial 

sediments (texture, dewatering, compaction, acoustic impedance, density, porosity, 

velocity). These properties are closely related, for example acoustic impedance is a 

function of velocity and density, which in turn depends on other properties such as 

compaction and porosity. It is an important development of acoustic remote sensing 

technique in marine science (Qiu-Hua Tang et al., 2005).

The integration of bathymetry and backscatter information has led to a 

revolution and larger potential in our understanding of seabed features, sedimentary 

processes and seafloor studies. For this purpose, more research should be conducted. 

(Hughes Clarke et al., 1997b; Mayer et al., 1997b; Baker et al., 1998 and Mayer et 

al., 1999).

1.6 Thesis Layout

This thesis is divided into 7 chapters with details as stated below:

1) Chapter 1 mainly introduced the background of the study and to put the work 

in context.

2) Chapter 2 gave some key elements of relevant theory and a review of 

literature in the field of multibeam acoustic backscattering thus acoustic 

seafloor classification.

3) Chapter 3 presented the necessary steps in the measurement of multibeam 

snippets data.

4) Chapter 4 is the focus of Objective 1, where the radiometric and geometric 

correction of measured multibeam snippets data is discussed.
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5) Chapter 5 is the focus of Objective 2 which devoted to the method of 

classification the seafloor using statistical analysis method.

6) Chapter 6 is the focus of Objective 3 which demonstrated and assessed the 

statistical variations of multibeam snippets data.

7) Thesis is ended with Chapter 7 which shows some discussion of the key 

findings and makes recommendations for future work in this research area.

1.7 Contributions of Research

In this research, the multibeam snippets data, which is one of the latest by

products of the multibeam system, is being explored for its usage in the study of 

seafloor classification. The RESON SeaBat 8124 multibeam sonar system is being 

upgraded and explored to generate and collect the multibeam snippets data. Other 

studies, such as Bentrem et al. (2006) and Houziaux et al. (2007) have used a side 

scan like approach to maximize the resolution of backscatter intensity produced by 

multibeam sonar systems. However, implementation of such an approach is not 

trivial because it requires adequate corrections for the backscatter data and beam 

pattern. Besides that, various tests and experiments have been carried out for the 

assessment of the statistical variations of the multibeam snippets data with the 

distribution models as stated theoretically by other researchers. As a result, this 

research aimed to give a better exploration of the acoustic backscattering technology, 

especially in the study of seafloor classification. Overall methodology of this study 

are presented in Appendix A.

1.8 Summary

This chapter briefly described the background of the study, providing a 

general view towards the acoustic remote sensing technique in seafloor study. These 

included discussion about the backscatter data and the necessary corrections for the 

data before a seafloor map can be produced with it.
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