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ABSTRACT 

 

 

 

 

Silicon nanodots is a common zero-dimensional nanomaterial investigated for 

single-electron device applications in integrated circuits. The current study attempts 

to look into the ever-popular silicon self-assembly nanodot grown on different 

substrates, with emphasis on its growth theory and characterizations. Discrepancy in 

its growth theories has led to misunderstanding and therefore innovative approaches 

are presented in this study to clarify and resolve the existing problems. A radio-

frequency magnetron sputtering method was used for Silicon nanodots deposition, 

with the following conditions: argon gas flow rate 5-10 sccm, substrate temperature 

between 300-600 ºC, deposition time 7-20 minutes, and radio-frequency power 

between 100-150 W.  This research covers both experimental and simulation works 

including the classical theory of nucleation.  Generally, important parameters were 

first calculated then simulated using computer programming, and finally matched in 

order to estimate the values of critical energy ∆G*, critical radius r*, surface energy 

γ, and free energy change per unit area ∆Gv.  The associated Volmer-Weber growth 

mode was then predicted. Observably, optimum growth parameters for the inception 

of silicon nanodots were found to be at 600 ºC/10 minutes/100W formed on corning 

glass substrate.  Structural and optical properties have been characterized using 

atomic force microscope AFM, energy-dispersive X-ray spectroscopy EDX, X-Ray 

diffraction XRD, photoluminescence PL and scanning electron microscopy SEM.  In 

addition, the AFM characterization results show the existence of nanodots with the 

estimated average size of 34.4 nm.  The results from PL spectrum reveal the presence 

of a peak which corresponds to a bandgap energy of 1.80 eV and this was attributed 

to the quantum confinement of electron–hole pairs in quantum wells.  A further 

confirmation using EDX measurement was made which showed the existence of 0.48 

at.% of silicon on the substrate.  XRD analysis reveals the crystalline structure for 

high temperature conditions due to orderly silicon nanodots formed on the substrate.  

The results proved that the properties of silicon nanodots on quartz SiO2, corning 

glass (7059) and silicon substrates were strongly dependent on the experimental 

conditions. 
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ABSTRAK 
 

 

 

 

Bintik-nanosilikon merupakan satu bahan nano berdimensi sifar yang dikaji 

bagi kegunaan peranti elektron tunggal dalam litar bersepadu. Kajian ini cuba 

mendalami bahan yang semakin diminati di kenali sebagai bintik-nanosilikon yang 

terbentuk-sendiri pada substrat berbeza, dengan tumpuan kepada teori pertumbuhan 

dan penciriannya. Percanggahan mengenai teori pertumbuhan telah menyebabkan 

kecelaruan dan oleh itu pendekatan yang lebih inovasi dipersembahkan dalam kajian 

ini bagi meleraikan masalah sedia ada. Satu kaedah percikan frekuensi magnetron 

telah digunakan bagi menghasilkan bintik-nanosilikon pada keadaan berikut: kadar 

aliran gas argon 5-10 sccm, suhu substrat diantara 300-600 ºC, masa pemendapan 7-

20 minit, dan kuasa frekuensi-radio 100-150 W. Penyelidikan ini merangkumi 

kedua-dua eksperimen dan kerja simulasi termasuk teori klasik mengenai 

penukleusan. Pada dasarnya, parameter yang penting dikira terlebih dahulu ke 

mudian di simulasi kan menggunakan program komputer dan akhirnya disepadankan 

kedua-duanya bagi memperolehi nilai-nilai tenaga genting ∆G*, jejari genting r*, 

tenaga permukan γ, dan perubahan tenaga bebas per unit luas ∆Gv. Mod 

pertumbuhan Volmer-Weber kemudiannya boleh diramalkan daripada hasil tersebut. 

Secara pemerhatian  di dapati bahawa parameter pertumbuhan yang optimum bagi 

bintik-nano silicon adalah 500 ºC/ 10 minit/ 100 W pada substrat kaca corning. 

Pencirian sifat-sifat struktur dan optik telah di lakukan dengan menggunakan 

mikroskop daya atom AFM, sinar-X sebaran elektron EDX, pembelauan sinar-X 

XRD, luminesenfoto PL dan mikroskop electron imbasan SEM. Sebagai tambahan, 

keputusan pencirian AFM telah menunjukkan tentang kewujudan bintik-nano dengan 

anggaran saiz sekitar 34.4 nm.  Keputusan spectrum PL pula memaparkan adanya 

satu puncak dengan tenaga jalur jurang 1.80 eV yang boleh dikaitkan dengan 

pemerangkapan kuantum bagi pasangan electron-lohong dalam perigi kuantum. 

Seterusnya keputusan yang diperolehi telah di sahkan dengan menggunakan 

pengukuran EDX dimana sebanyak 0.48 atom.% kandungan silikon wujud pada 

permukaan substrat. Pemerhatian analisis XRD pula memperlihatkan struktur hablur 

bagi suhu tinggi yang disebabkan oleh pembentukan bintik-nanosilikon yang lebih 

teratur pada permukaan substrat, Semua keputusan di atas membuktikan bahawa 

sifat-sifat bintik-nanosilikon pada substrat SiO2, kaca corning (7059) dan silikon 

adalah sangat bergantung kepada keadaan eksperimen. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

From the beginning of the last century, nanotechnology has become one of 

the most common techniques promising for new artificial atoms having diameter less 

than 100 nm to fabricate nanodevices into single integrated chip [1,2].  Now the 

International Technology Roadmap of Semiconductors (ITRS) predicts that the 

physical gate length of high performance metal oxide semiconductor field effect 

transistor (MOSFETs) will reach sub 10 nm in 2016 [3].  Therefore, the fast 

improvement in the fabrication techniques of silicon electronic devices and single 

electron very large scale integrated circuits (VLSI) has been achieved.  This has been 

gradually developed by miniaturizing the device dimensions by exponential growth 

of microelectronics capabilities.  Currently, single electron transistor device was 

reported using silicon self-assembled nanodots (NDs) and room temperature 

characteristics have been measured.  Consequently, there is a chance for using SiNDs 

as a memory cell, due to the nanodots parallel to the multitunnel junction structure 

that has strong changed of random background charges.  On the other hand, 

maintaining the conventional top-down methods improvement becomes very hard 

due to the basic phenomena, scientific confines and cost effectiveness [4]. 

Thin film semiconductors devices around over decades have been fabricated 

by a thin film deposited on a semiconductor substrate.  However the integrated 
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electronic circuits system depends on electrical charges confined in the interfaces 

between different materials with different electronic properties.  This system created 

by composite different materials of the thin film such as thin films deposition that 

has the desired properties on substrate.  The material structure applications at high 

temperature depend on thin film methods to provide the suitable coating, increase the 

efficiency and increase the material lifetime.  The surface and near surface properties 

are important in varying the functionality of the material (catalysis, deformation, 

electrical and optical properties).  Hence, rapidly growing of economics and 

application require high performance, low cost, compact and reliable adaptable 

devices that are driving the technology of thin film. 

The fabrication of thin film microstructure must carry out the influences of 

contaminations in the vapour phase, kinetic energy of the incident ions, base 

pressure, deposition rate, nature of substrate material, substrate temperature; in 

addition, its surface cleanliness, nanostructure.  The deposited microstructure can 

also be affected by energetic particles such as electron photon and ion bombardment.  

Operating the growth parameters permits to avoid the defects in the depositing 

polycrystalline film, as well as control the point of thin film thickness and grain size 

in thin films, which is only possible in some cases with certain deposition process.  

In integrated circuits a low resistivity film and high threshold current density is 

required for interconnections by semiconducting films.  All of these properties are 

particularly influenced by the fault structure of the film, and in fact it depends on the 

techniques used to fabricate the thin film [5]. 

The technique of thin film deposition has four stages.  First, the essential 

configuration of the vapor phase from the condensed phase and its properties.  There 

are some methods of vapor formation such as evaporation, sputtering, electron beam 

evaporation and ion deposition.  The second stage is the transport of ionized particles 

from the target to the substrate.  Also some techniques consider the reactivation of 

evaporated atoms during the transport to the substrate such as reactive evaporation, 

electron cyclotron resonance plasma assisted growth and other else.  The most 

important field of thin film fabrication is the study of the capability to form an 

epitaxial thin film.  This capability has exclusive control the formation, construction 
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and faults of the thin film.  Thirdly, concerning those procedures that lead to 

reorganize the coalescence on the substrate surface, or rearrange the structure of the 

thin film to give the desired properties for the device.  Some characteristics are 

desired to fabricate the final microstructure of the thin film appearance indicates the 

controlling of nanostructure and surface morphology of  the thin films by set the 

defects position as preferred or give them the desired crystal structure [5,6]. 

Self-assembled Si nanostructure deposition by using radio frequency 

sputtering technique has much recommended for large-scale integrated circuits 

fabrication.  The production of silicon nanostructures has opportunity to use for 

electrical devices.  The magnetron sputtering method becomes one of the most 

common methods for fabricating the silicon nanostructures due to high deposition 

rate and safety currently [2].  In fact to make sufficient devices, it is important to 

improve the methods which permit the commercial production of semiconductor thin 

films.  The usual ions transportation from target to substrate will establish the 

regularity of that thin film.  The real properties of the film are affected by the 

substrate selected and its surface cleanliness.  Moreover the nanostructure of the 

films through deposition depends on different parameters, such as the substrate 

temperature, ion energy and angle of incidence of the depositing particles [7]. 

Thin film techniques are important to produce nanoscale materials, such as 

quantum wires, quantum dots and superlattices.  All these structures make thin film 

field not only more attractive material properties and process reliant, but also give 

interesting novels to explain the material phenomena.  Thin film properties are 

clearly related to the existence of surface at two materials in close connection with 

each other.  Where the properties vary from bulk material, divides the amount of 

atoms at any time on the surface on average 10
10

 atoms/m [5]. 

Nanostructure of materials and its properties (the electron and phonon states) 

change radically as their size decrease in one or more dimensions to nanometer scale, 

that have follow down almost the atomic energy levels [8].  Si nanodots are one of 

typical materials used in nanotechnologies, because of their unique and useful 
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functions originating from quantized electron energy state [3].  The observed visible 

luminescence at room temperature from Si gives attention to improve the electronic 

and oscillation properties of silicon nanocrystals.  The recognized electronic devices 

motivates many investigations of different Si nanostructures using varied preparation 

methods.  Currently, research in nanocrystalline silicon nc-Si confirmed considerable 

changes in the luminescence properties and energy levels, due to quantum 

confinement caused by the miniaturized size of the particles and a collapse of k-

vector protection [9].  In addition, zero- and one dimensional nature of electronic 

states in the individual SiNDs realizes new electronic and photonic properties, which 

are not achieved with bulk silicon [3].  Nevertheless, the observations show some 

disagreement with QC create from other phenomenon that may come from the PL.  

However, the PL properties are clearly following the measured structure (composite, 

ML, amorphous, crystalline, etc.) and also depend on the fabrication method [2]. 

In the practical applications, it is important to form high-density and 

similarly-sized SiNDs.  Although various formation techniques have been developed 

so far, it is generally difficult to achieve high-density and nanometer-size with low 

dispersion of distribution simultaneously.  Silicon nanostructures can be formed on 

non-Si substrates, such as glass and plastic, the Si-based bottom-up approach may 

lead to high performance and large-area electronics [8].   

The research area of nanostructure silicon fabrication methods have been 

widely improved last time as the finding of room-temperature photoluminescence PL 

function of porous silicon.  The researchers were faithful to nanodots structures 0D 

and to layered formations 2D for the construction of optoelectronic devices suitable 

for the silicon structure, due to the strong mechanical performance and stable porous 

silicon 1D.  For explaining the combined materials consist of SiNDs embedded in 

apparent and insulating matrix SiO2, they are usually prepared using plasma 

enhanced chemical vapour deposition PECVD or by magnetron sputtering of Si
+
 ion 

implantation in thermally grown silica.  The ML structure clears more fitting than the 

complex material, while it presents at least a confident of the nanoparticles size in the 

formation method [2, 10].  Moreover, hard and costly equipment of molecular beam 

epitaxy system which limits the number of multilayers.  On the other hand, the 
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magnetron sputtering technique shows more improving of visible photoluminescence 

Si/SiO2 [11].   

The accurately controlled nanostructures can be fabricated easily using self-

assembly of atoms by operating the organic molecules as a structure block for 

nanoscale devices which have more consideration.  This bottom-up approach 

changed the hard processes of the existing silicon top-down approach.  Since the 

conductivity of the organic molecular configurations is less than silicon conductivity, 

the electron moving among the single molecule is mainly controlled by passing the 

conduction.  Silicon nanodots SiNDs and nanowires SiNWs can give a resolution to 

these problems by assembling the involvements of both bottom-up approach and 

optimum electron transport.  Since silicon nanostructures can be grown on non-Si 

substrates, such as glass and plastic, the silicon supported bottom-up techniques may 

guide to fine properties and wide electronics applications.  However, nanostructure 

considers new electrical and photonic behaviors, which are not realized with bulk 

silicon.  Also interconnecting the bottom-up approach with the classic top-down Si 

methods permit to investigate silicon nanoelectronics [5, 12].   

1.2 Statement of Problem 

Silicon nanostructure has two types: crystalline nanostructure which has 

regular periodic arrangement of atoms in the lattice structure such as Poly crystalline 

silicon, and amorphous that has dangling bonds and random arrangement of atoms 

such as hydrogenated amorphous silicon as shows in Fig 1.1.  This nanostructure 

depends on the substrate temperature during thin film deposition. Therefore, high 

substrate temperature causes the kinetic energy of atoms exceeding the surface 

barrier and relocated during deposition; as a result, increase the surface roughness of 

the thin film.  Whereas, low temperature causes the sputtered atoms lose their kinetic 

energy before catch the substrate and creates amorphous thin film nanostructure 

[13,14].  
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Figure 1.1 The crystalline and amorphous silicon thin film nanostructure. 

Silicon nanofabrication is essential to motivate nanotechnology [15].  The 

real challenges in nanomaterials fabrication are the accuracy of the diameter and fine 

identified shapes.  To fabricate a nanodevice, considerations must be given to 

nanoscale diameters, shapes, and properties of materials or components [16].  The 

silicon thin film nanostructure grown by using RF-magnetron sputtering system is 

affected by the different growth parameters such as substrate temperature as shows in 

Fig 1.2.  However by changing the substrate temperature different nanodots 

diameter, islands density, islands shape, surface roughness, crystalline structure and 

optical properties could be obtained.  It is essential to precise the size of the 

nanoparticles, their density, and surface morphology, as the emission in visible scope 

is clearly showed by a quantum confinement.  Widely, the fabrication system applied 

these values and the reduction of nanodots size follow by energy gap increasing 

[17,18].   
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Figure 1.2 Silicon thin film deposition and the growth parameters of RF magnetron 

sputtering system. 

There were few improvement of works using the conventional deposition 

techniques which discovered the formation of SiNDs with less identify structures.  

RF-magnetron sputtering system – which located at Ibnu Sina institute for 

fundamental studies, UTM - had been used [20,21] to deposit silicon thin films at 

substrate temperature less than 400 ˚C, as shows in Figure 1.3.  Whereas low 

substrate temperature less than 300 ˚C cause defects (dangling bonds) in the thin film 

nanostructure, that create the random arrangement of the atoms in the lattice structure 

(amorphous structure).  

 In fact the silicon/silicon dioxide nanocrystal is desired for high electron 

mobility in the microelectronic devices, which is low in amorphous silicon.  

Therefore, by replacing each atom of silicon with oxygen [19] to reduce the typical 

defect like silicon dangling bonds, Si/SiO2 multilayers could keep a lattice match for 

low defects [11, 17, 20-24]. 
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Figure 1.3 The literature survey of radio frequency magnetron sputtering. 

This study is involved which will result in quality of the SiNDs fabrication on 

different substrates.  The effect of temperature, chamber pressure, gas flow rate, and 

RF-power on structural, optical and electrical properties of SiNDs growth has been 

given attention so far.  SiNDs deposited in plasma excitation radio frequency also 

depend on these parameters.  So by varying these parameters, the corresponding 

structural and optical properties are expected to be significantly improved [7].  

Therefore, to obtain silicon thin film with a high crystalline structure and high 

surface roughness, it is proposed to increase the substrate temperature until 500 ˚C or 

more.   

Nucleation is a random process; in which the number of nuclei formed in a 

fixed period of times is a random quantity and is subject to statistical laws.  

However, the average values can be calculated and are subject to the kinetic theory 

of nucleation.  This research has been done to compare the simulation results with 

the experimental works and confirm the classical theory of nucleation and growth 

mode of Volmer- Weber.  The formation of SiNDs can be predicted using a simple 
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followed by agglomeration that form the nuclei of new phase.  Thus, this research 

describes the nucleation and growth of silicon nanodots for the vapour/liquid 

transition with detailed analysis of parameters deduced from the theory and 

experimental [25].  

1.3 Research Objectives 

The objectives of this research as to: 

1. Reestablish the simulation works in order to confirm the classical theory of 

nucleation and growth mode of Volmer- Weber. 

2. Determine the optimum growth parameters of SiNDs and Si/SiO2 interface 

for HVC system (deposition time, substrate temperature, gas flow rate, gas 

pressure, and radio frequency power), as well as modify the HVC system.  

3. Characterize silicon thin film structural properties of surface roughness and 

nanndots size using AFM measurements follow by SEM measurement, and 

determine the silicon atomic percentage that has deposit on the substrate by 

used EDX measurements. 

4. Characterize the energy gap (optical properties) of silicon thin film using PL 

measurement to confirm the reduction of nanodots size follow by energy gap 

increasing. 

5. Characterize the grain (nanocrystal) size and silicon thin film crystalline 

structure using XRD measurements. 
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1.4     Scope of the Study 

This research explains the theoretical and simulation procedure of 

heterogeneous nucleation.  The simulation work represents the nucleation and growth 

theory, including the transition from liquid-solid phase, also to prove the appearance 

changing for net energy and nuclei size.  The simulation program is conducted using 

Microsoft Visual Basic 6.0 professional.  As well as to determine the calculated 

parameters using a computer programe are designed for a dome-like nucleus 

assumed in Volmer-Weber growth theory.   

Recently self-assembly technique to fabricate SiNDs is experimentally 

carrying out by using radio frequency magnetron sputtering system for future 

nanodevice applications.  In this research, the quartz SiO2, corning glass (7059), and 

silicon wafer have been chosen as substrates.  Therefore, the experimental conditions 

are identified at high substrate temperature of 600 ˚C in order to create silicon thin 

film with high crystalline structure.  Consequently, this deposition process is 

performed using different growth parameters (deposition time, substrate temperature, 

gas flow rate, gas pressure, and radio frequency power).  SiNDs structural properties 

are measured using AFM, EDX, SEM and XRD equipments following by optical 

properties using PL measurement to calculate the energy gap of silicon thin film. 
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1.5     Significance of the Study  

This study is essential to enhance the understanding of SiNDs growth 

mechanism and its properties. The possibility to form a semiconductor thin film on 

the surface of the glass substrates open a new aspect in understanding the structure, 

electrical and optical properties of thin films.  However these properties are attracting 

researchers to fabricate various structural properties which are absolutely unlike the 

naturally accessible properties [5]. 

Thin film deposition technique is adding new commercial devices and 

allowing further characteristic in fabrication.  Therefore it is a promising to improve 

the devices utility and also keep the possessions materials wastes by the conventional 

fabrication methods.  In addition the quantum confinement of charge carriers 

improves the field of nanostructure as influences the properties of materials.  The key 

to convergence the computing, communications and consumer electronics is the 

optical, magnetic and electronic properties of thin films.  It is apparent that thin film 

has an important function to influence humanity in the future [5]. 

Recently, research related to Si nanostructure has been given consideration 

and continuing trend towards integration of microelectronics and optoelectronics 

devices.  However, bulk Si has an indirect band-gap structure that limited its 

application in optoelectronics for a very long time, due to the lower luminescence 

efficiency [27].  Silicon becomes the preferred material for single-electron and 

quantum electronic devices due to its unique structure, electrical and optical 

properties.  Recently SiNDs applications in electronics device is recommended and 

agreed by the design of single memory and other devices requires the coulomb 

blockade effect [16].  
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