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ABSTRACT

Porous asymmetric polysulfone (PSf) and polyvinyliden flouride (PVDF)

hollow fiber membranes were structurally developed using surface modifying

macromolecules (SMMs) as additives to improve hydrophobicity, wetting resistance

and carbon dioxide (CO2) absorption/desorption flux in hollow fiber membrane

contactor. The membrane structure was examined in terms of gas permeation, critical

water entry pressure, overall porosity, contact angle and mass transfer resistance. The

morphology of membrane was studied by scanning electron microscopy (SEM)

instrument. The CO2 absorption and desorption performance of both surface

modified membranes were investigated in a hollow fiber membrane contactor system

and compared against the unmodified membranes. Pore size, overall porosity and

contact angle of fabricated membranes increased significantly by surface

modification. Surface modified PVDF and PSf membranes showed higher CO2

absorption and stripping flux compared to plain PVDF and PSf membranes. Results

of long-term study demonstrated that after an initial CO2 flux reduction the surface

modified membranes performance maintained constant over 130 h operation. By

increasing SMM concentration in spinning dope to 6 wt.%, CO2 absorption and

stripping flux increased. However, by increasing SMM concentration to 8 wt.% both

CO2 absorption and stripping flux decreased, considerably. Thus, it can be concluded

that for surface modification of PVDF and PSf hollow fiber membrane contactor 6

wt.% of SMM as additive is an optimum concentration. From CO2 stripping

experiments it was found that liquid absorbent temperature played an important role

on CO2 stripping flux but gas flow rate had no significant effect.  Generally, it was

found that the porous surface modified membrane can be a promising alternative for

CO2 removal and stripping process.
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ABSTRAK

Membran berliang simetri polysulfone (PSf) dan gentian geronggang

polyvinyliden flourida (PVDF) telah dibangunkan strukturnya menggunakan

makromolekul pengubahsuai permukaan (SMMs) sebagai bahan tambah untuk

meningkatkan kehidrofobikan, rintangan pembasah dan fluks penyerapan / nyah

penyerapan karbon dioksida (CO2) dalam kontaktor membran gentian geronggang.

Struktur membran telah diperiksa dari segi penyerapan gas, tekanan kritikal

kemasukan air, keseluruhan keliangan, sudut sentuhan, dan rintangan pemindahan

jisim. Morfologi membran telah dikaji menggunakan mikroscopi pengimbasan

elektron (SEM). Penyerapan CO2 dan prestasi nyah penyerapan bagi kedua-dua

membran permukaan terubahsuai telah dikaji dengan sistem kontaktor membran

gentian geronggang dan dibuat perbandingan. Saiz liang, keliangan keseluruhan dan

sudut sentuh membran meningkat dengan ketara dengan pengubahsuaian permukaan.

Permukaan membran PVDF dan PSf yang diubahsuai menunjukkan penyerapan CO2

dan fluks pelucutan yang lebih tinggi berbanding PVDF dan membran PSf yang

tidak diubahsuai. Keputusan kajian jangka panjang menunjukkan bahawa selepas

pengurangan awal fluks CO2, prestasi membran permukaan diubahsuai adalah tidak

berubah selama lebih 130 jam operasi. Dengan meningkatkan kepekatan SMM dalam

larutan polimer hingga 6% berat, penyerapan CO2 dan fluks pelucutan meningkat

tetapi selepas peningkatan kepekatan SMM kepada 8% berat, kedua-dua fluks

penyerapan CO2 dan pelucutan menurun dengan ketara. Oleh itu, dapat disimpulkan

bahawa untuk pengubahsuaian permukaan PVDF dan PSf membran gentian

geronggang kontaktor, 6% berat SMM sebagai bahan tambah adalah kepekatan

optimum. Daripada eksperimen pelucutan CO2, didapati bahawa suhu penyerap

cecair memainkan peranan penting kepada fluks pelucutan CO2 tetapi kadar aliran

gas tidak mempunyai kesan yang penting. Secara umumnya, membran permukaan

berliang diubahsuai boleh menjadi alternatif yang baik untuk proses penyingkiran

dan pelucutan CO2.
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CHAPTER 1

1 INTRODUCTION

1.1 Research Background

Carbon dioxide (CO2) is one of the most important greenhouse gases

produced by human activities such as industries and domestic usages. Release of this

gas in air increases global warming . Therefore, it is essential to remove CO2 from

industrial and domestic flue gas streams in order to manage future climate changes.

In addition, with growing concern about gas emissions into atmosphere, improved

and economical gas purification equipment will be in great demand in the near

future.

Many methods exist to remove CO2 by absorption into aqueous solution of

alkanolamines using conventional equipment including packed columns, bubble

columns, and spray columns. The use of aqueous alkanolamines allows regeneration

of the liquid absorbents by simple heating. Therefore, a typical process for CO2

capture consists of two major units, absorption and desorption. Desorption is

commonly carried out by using conventional columns that have operational problems

such as flooding, channeling, and entrainment. Usually, the stripper unit operates at

slightly above normal pressure and high temperature (Khaisri et al. 2011).
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Recently, several techniques has been developed for capturing/stripping of

CO2. Microporous hollow fiber membrane contactor system is a favorable choice that

has attracted researchers attention (Mansourizadeh and Ismail. (2010a, 2010c),

Bakeri et al. (2010, 2012b), Naim et al. 2012). Fluids are contacted using an

appropriate membrane formation. For example in a hollow fiber membrane, the gas-

liquid interface is created at the mouth of membrane pores.

Among the numerous advantages of membrane-based gas absorption and

desorption over conventional contacting devices one can refer to high surface-area

per-unit contactor volume, independent flow rate control of gas and liquid without

any flooding, loading, foaming or entrainment, known gas-liquid interfacial area,

small size, modular and easy  scale- up or scale-down (Mansourizadeh and Ismail,

2009).

Since 1980, much research has been conducted for capturing of the major

greenhouse gas (carbon dioxide) from gas streams using a gas-liquid membrane

contactor system. To achieve this, researchers have taken into considerations various

factors including liquids absorbent, materials for membrane fabrication, and

membrane modules to enhance CO2 removal and stripping.

Recently, Mansourizadeh et al. (2010b) used polyvinylidene fluoride (PVDF)

hollow-fiber membranes to produce membrane contactors for CO2 capture. They

used ortho-phosphoric acids and lithium chloride monohydrate as additives in

spinning dope. Mansourizadeh and Ismail (2010a) also fabricated polysulfone (PSf)

hollow fiber membranes by using various additives in the spinning dopes. They used

polyethylene glycol (PEG200), ethanol, glycerol and acetic acid as the additives and

studied effect of additives on the structure and performance of fabricated membrane

for carbon dioxide (CO2) capture in hollow fiber membrane contactor system. Bakeri

et al. (2010) fabricated polyetherimide (PEI) hollow fiber membranes with different
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concentration of polymer in spinning dope. They used prepared membranes for CO2

removal in hollow fiber membrane contactor.

Membrane contactors were also applicable for desorption or regeneration of

liquid absorbents. Khaisri et al. (2011) developed a membrane contactor based

regeneration unit to strip CO2 gas from CO2 loaded monoethanolamine (MEA)

solution. They employed Poly(tetrafluorethylene) (PTFE) hollow fiber membranes to

test the desorption performance. The experimental results showed that the CO2

desorption flux increased with an increase in the liquid velocity, operating

temperature, and MEA concentration. They found that excessive increase of MEA

concentration resulted in the decrease of the overall mass transfer coefficient due to

the effect of viscosity. The maximum MEA concentration that gave the highest CO2

desorption performance in their work was 5 kmolm−3. They also found that the gas

phase mass transfer resistance in gas stripping membranes has a minor effect on the

CO2 desorption flux as generally found in a gas absorption membrane. They showed

that the desorption rate increased by a factor of two when the available membrane

surface was doubled. It indicated that the gas stripping membrane contactor can be

linearly scaled-up. Membrane porosity affected the CO2 desorption flux as well as

the membrane wetting. Their experimental results also showed that high membrane

porosity resulted in high desorption performance, but the long term performance

dropped due to the membrane wetting.

Koonaphapdeelert et al. (2009) fabricated ceramic hollow fiber membrane

contactors for CO2 stripping from a monoethanolamine (MEA) solution at high

temperature. They found that the membrane contactors could be operated very well

even in the region of an ordinary column showing flooding or loading. The

maximum capacity factor tested in the experiment was at least 2–10 times higher

than the flooding line without any sign of flooding.
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A study of CO2 desorption from CO2 loaded 2-amino-2-methyl-1-propanol

(AMP) solution using the membrane contactor was carried out by Kumazawa (2000).

Polytetrafluoroethylene (PTFE) hollow fiber membranes were used in the

experiments. It was found that the desorption process was controlled by diffusion and

chemical reaction in the liquid film. Their results showed that the overall mass

transfer coefficient increased with an increase in AMP solution concentration and

CO2 loading in the solution.

Naim et al. (2012) prepared microporous PVDF hollow fiber membranes via

wet spinning process for CO2 stripping from aqueous diethanolamine (DEA)

solution. They studied the effects of LiCl concentration in the polymer dope on the

membrane properties and the stripping performance of the membranes. Their results

demonstrated a linear increase of stripping flux and stripping efficiency as the LiCl

concentration increased in the polymer dope. As a result, the stripping flux was

found the highest when a combination of finger-like and sponge-like structures was

formed at 5 wt% LiCl. The maximum stripping efficiency thus achieved was 62% at

5 wt% LiCl and 0.45 m s−1 of liquid velocity. Finally, they concluded that an

enhanced CO2 stripping flux and efficiency can be achieved by improving the

structure of the PVDF hollow fiber membranes.

Thus, the advantages of membrane gas absorption contactors facilitate the use

of this technology in acid gas removal from flue gases, natural gas and industrial gas

streams, which have prompted investigators to consider various potential.

1.2 Problem Statement

One of the most important factors in gas-liquid membrane contactor which

affects absorption and desorption performance is pore wetting. The penetration of
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liquid into membrane pores should be prevented as pore wetting reduces the mass

transfer in contactor significantly and makes it less competitive compared to the

conventional column. One cause of pore wetting is capillary condensation (Mavroudi

et al. 2006), but more importantly the pressure of the feed liquid should surpass a

critical value for the liquid to enter into push the liquid pores. This critical value,

called  liquid entry pressure of water, depends on some properties of membrane such

as pore size, hydrophobicity, surface roughness and chemical resistance to solvent

(Dindore et al. 2004) and also, on the surface tension of solvent and operating

conditions of absorption process. Thus, it is possible to reduce the wettability of

membranes by decreasing pore size and using membranes of  high hydrophobic

surface. In hollow fiber membrane contactor furthermore hydrophobicity, pore size

is important as well. Hollow fiber membranes with very small pore size show low

mass transfer flux due to lower interfacial surface of gas and liquid. Therefore, in

order to decreasing wettability of membrane and increasing mass transfer flux, this is

essential to fabricate hollow fiber membrane with high hydrophobic surface and

large pore size.

The choice of membrane material affects phenomena such as absorption and

chemical stability under condition of actual application. This implies that the

requirements for the polymeric material are not primarily determined by the flux and

selectivity but also by the chemical and thermal properties of the material.  Among

various hydrophobic polymers, Polypropylene (PP) and Poly(tetrafluorethylene)

PTFE are the most popular materials that are fabricated as symmetric membranes for

gas absorption process. However since PTFE and PP membranes are usually

provided by stretching and thermal methods, their relatively low porosity restricts a

significant increase on absorption flux. Consequently the main advantage of the

microporous hollow fiber membrane i.e. a high area to volume ratio can not be fully

achived. However, some other hydrophobic polymers like PVDF and PSf can be

used to prepare asymmetric membranes via phase-inversion method. It is possible to

prepare an asymmetric membrane with high surface porosity and ultra thin skin layer

to reduce membrane mass transfer resistance (Ismail and Lai, 2003, Yeow et al.,

2004, Mansourizadeh and Ismail, (2010a, 2010c)).
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It is possible to decrease membrane wetting by using membranes with high

hydrophobic surface. One method to change the hydrophobicity of a membrane

surface is to use hydrophobic surface modifying macromolecule (SMM) as an

additive to the casting or spinning dope. Hydrophobic SMMs are macromolecules

with an amphipathic structure. Their main chain consists of a polyurea or

polyurethane polymer (hydrophilic part), which is end-capped with two low polarity

fluorine-based polymer (oligomer) chains (hydrophobic part). Since SMM has lower

surface energy, after casting or spinning the polymer solution, it tends to migrate to

the membrane-air interface to reduce the interfacial energy of the system, making

nano-scale agglomerates on the membrane surface and changing the surface

properties of the membrane (Pham et al. 1999).

One of the important parameter in migration of SMM from the polymer dope

to the surface of the membrane is the time between casting or spinning the polymer

solution and immersion in the coagulation bath. For the flat sheet membrane, this

time can be as long as needed, but in the hollow fiber membrane fabrication process,

this time is very limited and depends on the air gap length. In order to study of the air

gap effects on the morphology of hollow fiber membranes, several researches have

been done. Bakeri et al. (2012a) studied the effect of air gap length of surface

modified polyetherimide PEI hollow fiber membrane by application of Response

Surface Methodology (RSM). Their regression models could provide some

statistically meaningful results. For example, their model for membrane pore radius

predicted that plot of membrane pore radius versus air gap has a minimum point.

Khulbe et al. (2007) fabricated PES hollow fiber membrane with blending 1.5 %wt.

of SMM in spinning dope. Their results showed the contact angle of the outer surface

of the fabricated membranes increased significantly when the air gap had increased

from 10 to 30 cm, but the pores diameter were almost constant in that range of air

gap.

Most of the studies conducted on membrane surface modification using

SMM, have been focused on flat sheet membranes and investigations on SMM

application for the surface modification of hollow fiber membranes are rare (Bakeri
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et al. 2012a, 2012b, Khulbe at al. 2007, Bolong et al. 2009). For example, the

hydrophobic SMM was used to improve the surface hydrophobicity of

polyetherimide (PEI) flat sheet membranes for membrane distillation (Khayet et al.

2009). The hydrophobic SMM was used to change the hydrophobicity of

polyethersulfone (PES) ultrafiltration flat sheet membranes for the separation of

humic acid from water. Their results showed  that  the mean pore size of  the surface

modified membrane was  lower  than  the  unmodified membrane, which leads to

higher  fouling  resistance (Zhang et al. 2003). The hydrophobic  SMM  was added

into a PVDF casting  solution  and  the  effects  of  the  solvent  evaporation  time

and  the  SMM concentration in the casting dope were investigated. The surface

modified membranes were also used in pervaporation experiments to separate

water/chloroform mixtures (Khayet et al. 2002b). The authors also studied the

blending of hydrophobic SMM into the casting solution to make a composite

hydrophilic/hydrophobic membrane for the DCMD process. The composite

membrane has a  thin hydrophobic  top layer  which  facilitates  the  transfer  of

vapor through the membrane, and a thick hydrophilic sublayer which reduces the

heat loss across the membrane (Khayet et al. 2006). Bakeri et al. (2012b) fabricated

surface modified PEI hollow fiber membranes where they used SMM as additive in

the spinning dope. They evaluated the performance of the surface modified

membranes in a contactor application for CO2 absorption. Their results showed that

surface modified membranes have superior performance compared to commercial

and in-house made hydrophobic membranes.

Therefore, it is very important to develop porous asymmetric membrane

structure with high hydrophobic surface and low mass transfer resistance, which are

favorable for gas absorption and desorption in gas-liquid membrane contactor

system.
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1.3 Objectives of Study

Based on the above-mentioned problem statements, therefore the objectives

of the present  study are as follows:

i. To fabricate PSf and PVDF hollow fiber membranes, the surface of which is

modified by blending hydrophobic surface modifying macromolecules.

ii. To investigate the morphology and as well as structure of membranes in

terms of gas permeation, overall porosity, critical water entry pressure, water

contact angle and mass transfer resistance.

iii. To evaluate the performance of fabricated PVDF and PSf membranes for CO2

absorption and desorption and compare their performance.

1.4 Scope of the Study

To achieve the objectives, the following scopes have been considered:

i. Preparation polymer dope of PVDF (18wt.%) and PSf (15 and 18

wt.%) using SMM (1, 2, 4, 6 and 8 wt.%) as additive.

ii. Dry-wet spinning PVDF and PSf hollow fiber membranes and

characterization of the membrane in terms membrane structure and

hydrophobicity.

iii. Designing and fabricating an experimental gas-liquid membrane

contactor system for CO2 absorption and stripping.

iv. Comparing absorption and desorption performance of surface

modified PVDF and PSf membranes with plain PVDF and PSf

membranes.
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v. Studying the effects of SMM concentration on the structure and

performance of the surface modified PVDF and PSf hollow fiber

membranes for CO2 absorption and desorption process.

vi. Investigating the effects of operating parameters on the performance

of CO2 stripping flux.

vii. Assessing the performance of surface modified PVDF and PSf hollow

fiber  membranes for CO2 removal in long-term applications.

1.5 Organization of the Thesis

This thesis describes the development of surface modified PVDF and PSf

hollow fiber membrane structure for CO2 absorption and desorption through the gas-

liquid membrane contactors, which is divided in eight chapters.

In chapter one, background of the study, problem statement, objective and

scope of the research were presented. Chapter two discusses different aspects of

hollow fiber gas-liquid membrane contactors for carbon dioxide removal and

stripping in details. In addition, the structure and properties of surface modifying

macromolecules (SMM) and their application in membrane technology is presented.

The methodology of the membrane fabrication and characterization are described in

details in chapter three.

Fabrication of porous surface modified PVDF and PSf hollow fiber

membrane using a dry-wet phase inversion process, characterization of fabricated

membranes and application of membranes for CO2 absorption and desorption are

investigated and the results are presented in chapter four. The effect of SMM

concentration on the morphology and performance of surface modified PVDF and
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PSf hollow fiber membrane contactor for CO2 absorption and stripping are presented

in chapter four as well.

The general conclusions drawn from this research and some

recommendations for future research are provided in chapter five.
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