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ABSTRACT

In recent development of nanoelectronic devices, strained silicon Metal-

Oxide-Semiconductor Field-Effect Transistor (MOSFET) has been identified as a

promising structure for the future nanoscale device. Strained silicon is an attractive

option due to the enhanced carrier mobility, high field velocity and carrier velocity

overshoot. However, the aggressive geometry scaling has approached a limit where

the classical mechanism is insufficient to clarify the characteristics of nanoscale

MOSFET accurately. Beyond the classical limit, quantum-mechanical model

becomes necessary to provide thorough assessment of the device performance. This

research describes the modeling of nanoscale strained silicon MOSFET taking into

account the critical quantum mechanical effects in terms of energy quantization and

carrier charge distribution. Technology-Computer-Aided-Design (TCAD)

simulations that apply the classical mechanisms are conducted to allow comparison

with the developed models. It is shown that quantum mechanical effects become

more dominant at channel length below 60nm. Significant discrepancy of threshold

voltage as high as 90mV is found particularly in short channel regimes. The

analytical model was also extended to the advanced structure of dual channel that

provides higher electron and hole mobility compared to strained silicon MOSFET.

The models were subsequently compared to the TCAD simulation results using a

similar set of parameters as well as to the existing data from other literatures.

Excellent agreements validate the models based on the physics of the quantum

mechanical effects. In addition, the current-voltage model incorporating the quantum

mechanical correction was also developed. The role of quantum capacitance over

current drive in the channel was discussed. The developed models successfully

replicate experimental data with proper physical explanation.
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ABSTRAK

Pada era pembangunan peranti elektronik masa kini, penegang silikon

semikonducktor oksida logam transistor kesan medan (MOSFET) telah dikenal pasti

sebagai struktur semikonductor berukuran nano masa hadapan. Penegang silicon

merupakan satu opsyen yang menarik disebabkan peningkatan dalam

kebolehgerakan pengangkut, kelajuan medan tinggi dan kelajuan terlanjak. Tetapi,

skala geometri yang agresif telah mencapai satu tahap dimana mekanisme klasikal

tidak mencukupi untuk menerangkan tingkah laku MOSFET nano. Pada had

melebihi fizik klasikal ini, model kuantum mekanik diperlukan bagi menyediakan

satu penilaian penuh ke atas prestasi peranti. Kajian ini menerangkan model

penegang silicon MOSFET nano yang menggabungkan kesan kritikal kuantum

mekanik dari segi pengkuantuman tenaga dan taburan cas pengangkut. Teknologi-

Reka Bentuk-Berpandukan-Komputer (TCAD) yang menggunakan mekanisme

klasik dilakukan untuk membenarkan perbandingan dengan model-model yang

dibangunkan. Ia menunjukkan bahawa kesan kuantum mekanik menjadi lebih

dominan pada lebar saluran di bawah 60nm. Perbezaan ketara dalam voltan ambang

setinggi 90mV ditemui terutamanya pada bahagian saluran pendek. Model analisis

ini juga diperkembangkan untuk struktur dua saluran yang menyediakan

kebolehgerakan yang lebih tinggi untuk elektron dan lubang berbanding dengan

penegang silicon MOSFET. Model ini kemudiannya dibandingkan dengan TCAD

dengan menggunakan satu set parameter yang serupa serta data yang sedia ada dari

sumber literasi. Persamaan baik yang diperolehi mengesahkan teori fizik yang

mengambil kira kesan kuantum mekanik. Tambahan pula, persamaan arus-voltan

yang mengambil kira kesan kuantum mekanik turut diperolehi. Peranan kemuatan

kuantum ke atas arus saluran turut dibincangkan. Model-model yang dibangunkan

berjaya menepati data eksperimen dengan penerangan fizikal yang tepat.
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CHAPTER 1

INTRODUCTION

This chapter begins with little description of the background of the field-

effect transistors from it first invention to the latest development in today’s

semiconductor industries. Next, the arising problems regarding to the research topic

are addressed in the problem statement section, following with the research

objectives and scopes. The overall organization of this thesis is presented in the last

section of this chapter.

1.1 Background

The invention of the first field-effect transistor (FET) can be traced back in

1925, when the first patent filed by Austrian-Hungarian physicist Lilienfeld (Arns,

1998). However, Lilienfeld did not publish any research articles on his research nor

his patents cited any specific examples of a working prototype. The practical Metal-

Oxide-Semiconductor (MOS) was only developed much later in 1947 when the Bell

Telephone Laboratories performed the fundamental works on FETs. Following in the

year 1959, Moll fabricated the first MOS capacitor (Sah, 2005). This was followed
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by the first Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) build by

Kahng and Atalla (Arns, 1998). Nowadays, numerous advances have been done to

the MOS transistors and it is now, the most abundant man-made object in the world.

World’s largest microelectronics manufacturer, Intel currently announces a historic

innovation for the world’s first 3-D transistors in mass production with 22 nm feature

size (Intel, 2012).

The rapid advancement and growth in the semiconductor industry is fuelled

by the increasing need for faster, smaller and cheaper microprocessors and

microelectronic devices. For over the past few decades, the miniaturization in silicon

(Si) integrated circuits (IC’s) has been well characterized and envisioned by Moore’s

Law, which predicted that the number of transistors on chip doubled every 18 to 24

months, compared to its predecessor (Thompson and Parthesarathy, 2006; Mack,

2011). Many improved lithography and semiconductor fabrication equipments are

designed to be on track with the curve and one ahead of the technology. So far,

Moore’s Law has been a valuable way of describing the progress of ICs and number

of transistors fitted into each generation of processors.

For many years now, the size shrinking of MOSFET has been predominantly

directed by the scaling of it physical properties (Ernst et al, 2000; Frank et al, 2001).

Researches on the scaling limitations were initially concerned with the predicted

minimum feature size of MOSFET. The ultimate physical limit of the scaling is

believed to be the atom atomic distance in the silicon crystal which is around 0.3 nm,

which in turn, limit the channel length to be 25 nm for planar Si MOSFET (Iwai et

al, 2006). The scaling strategy is getting complicated as the effective channel length

approaches sub 100 nm and supply voltage reaches 1V (Zeitzoff, 2006). These

challenges include several physical limitations on gate oxide thickness, doping

concentration, depletion and junction depth as well as the presence of short channel

effects (SCEs).
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Physical and performance limitations are encountered along with the

continuous shrinking the size of the transistors into nanometer regime, where the

scalability of the conventional Si MOSFET devices seem to be constrained. Novel

materials and novel architectures are to be investigated to continue to increase the

speed and scalability of MOSFET devices, leading to the future electronic systems in

new paradigm. In conjunction, International Roadmap of Semiconductor (ITRS)

pointed that one of the primary challenge that the industry has identified is how to

decrease the size of semiconductor while increasing performance standard to meet

consumer demands (ITRS, 2011), with the hope of maintaining the Moore’s

exponential growth. The extended CMOS platform via heterogeneous integration of

new technologies that are being explored include: new device designs namely dual

gate, FinFet, silicon-on-insulator (SOI) and new materials such as strained silicon,

carbon nanotube, graphene and nanowire.

Current nanometer-scaled MOSFETs are true short channel devices, where

the device dimensions are scaled down into nanometer regime and several serious

doubts are being raised regarding the ability to shrink the gate length of conventional

bulk MOSFET below 30 nm. In addition, classical physics are insufficient to fully

understand the behavior of MOSFET at small dimension. Significant deviations from

the classical calculation are observed, which must be explained by the quantum

theory in order to model the next generation of more precise short channel

MOSFETs.

1.2 Problem Statement

The sustained scaling of conventional bulk devices into sub-nanometer

regime shows a tremendous growth by the introduction of novel devices with

enhanced performance. The re-evaluation of the device physics in nanoscale regime
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through simulation and modeling are necessary to generate a new paradigm of

understanding the physical characterizations and give a truthful interpretation on the

device operations.  Simulation tools dramatically reduce the development costs and

time that allow the users to examine various scenarios of physical aspects (Silvaco,

2012). This is important as it allows for performance enhancement without the need

for monetary investment to obtain new specialized equipments. Accordingly, the

modeling provides a new insight into the operation of modern semiconductor devices

and explores new phenomena of the device physics.

Leading from many technological and fundamental physical challenges posed

in scaling the conventional MOSFET, strained silicon/silicon germanium (strained

Si/SiGe) arises as one innovation to continue the performance enhancements without

significant changes to the current Si processing steps. Strained Si was reported to

increase the electron and hole mobility by 110% and 45%, respectively. However, as

the device dimension is shrinking into nanometer regime, the classical models are

found to be insufficient (Jayadeva amd DasGupta, 2009) that resulted in erroneous

on critical device structures and inadequate predictions of the electrical behavior

parameters. Consequently, fundamental physical and practical consideration of such

a small device is vitally needed to be re-visited.

One of the concerns is the influence of quantum effects on the threshold

voltage and current-voltage variations. These electrical characteristics that

incorporate the quantum mechanical effects significantly deviate from the classical

models. At extremely small dimension where the oxide thickness is typically thin and

the channel is highly doped, the presence of high electric field in the channel causes

energy quantization and charge carrier re-distribution (Ma et al, 2000). Moreover, the

Maxwellian distribution which is generally applied for lowly doped semiconductor is

no longer sufficient to describe the current-voltage characteristic for these devices.

Hence, the electrical behaviors of degenerately doped short channel MOSFET are

necessary to re-considered associated with the quantum theory.
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1.3 Research Objectives

The aim of this research is to investigate the impact of quantum mechanics on

the threshold voltage of both strained Si MOSFET and dual channel heterostructure

using two-dimensional Poisson equation and to model the current-voltage

characteristic of two-dimensional strained Si MOSFET.  The followings are the

objectives of this research:

1. To design and simulate strained Si MOSFET and dual channel

heterostructure with enhanced performance for channel length down

to 30 nm.

2. To investigate and model the quantum mechanical effects on the

threshold voltage of nanoscale strained Si MOSFET and dual channel

heterostructure.

3 To formulate analytical current-voltage characteristic with the

incorporation of quantum theory of two-dimensional short channel

strained Si MOSFET.

1.4 Research Scopes

In this research, the quantum mechanical effects on the electrical performance

of strained Si MOSFET and dual channel heterostructure are investigated. The

research scopes of this work are divided into five main categories as follow:



6

a) TCAD Simulation

Simulation of strained Si MOSFET and dual channel heterostructure are

conducted using Silvaco’s TCAD software. Both fabrication processes and

characterization are reported using TCAD tools:  ANTHENA and ATLAS for

sub-100 nm scalable channel length.

b) Analytical Modeling of Threshold Voltage

The quantum-mechanical threshold voltage models of both strained Si and

dual channel heterostructure are developed using MATHEMATICA and

MATLAB software. A theory of quantum of nanoscale transistors is adopted

and reported.

c) Analytical Modeling of Current-Voltage Characteristic

The analytical modeling of current-voltage characteristic of two-dimensional

strained Si MOSFET that comprises of quantum capacitance, carrier statistic,

intrinsic velocity and carrier mobility is carried out for both non-degenerate

and degenerate doped devices using MATHEMATICA and MATLAB

software.

d) Results Analysis

The characteristics and performances of the models are studied particularly in

understanding the underlying physics and mechanisms.

d) Validation

Comparisons between the analytical results and TCAD simulation results as

well as the experimental data or others published models are performed in

order to evaluate the validity of the developed models and adopted theories
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1.5 Thesis Organization

This thesis work has been divided into six chapters. Chapter 1 introduces the

background of this research by providing the problem statements, research

objectives, research scopes and thesis organization.

Following this chapter, a thorough historical review of different MOSFET

development is presented in chapter 2. It briefly discusses the fundamentals of

strained Si technology, the physics behind the mobility improvement of strained Si

devices and the advantages of dual channel heterostructure. A detail description on

the quantum mechanical effects is also presented. Reviews of the previous threshold

voltage models are also provided. The model characteristics and related researches

are summarized at the end of this chapter.

Chapter 3 deals with the workflow for this research. It also introduces the

modeling and simulation approaches used in accomplishing the respective research

objectives. The research methodology flowchart that summarizes the overall research

sequences is also presented in this chapter.

In chapter 4, the analytical threshold voltage that takes into account the

quantum mechanical effects for strained Si MOSFET and dual channel

heterostructure are presented. Intensive analysis is carried out on the analytical

results and the findings are discussed. The comparison between analytical models

and simulation results using TCAD tool are presented in the chapter with detailed

physical explanation.

Chapter 5 describes the current-voltage (I-V) characteristic of two-

dimensional strained Si MOSFET in the degenerate regime. A small portion of this



8

chapter discusses the definition of non-degenerately and degenerately doped

semiconductor. The I-V characteristic has been validated using the available

experimental data and the degradation of drain current attributed to the quantum

mechanical effects is discussed and explained.

Finally, chapter 6 summarizes and concludes the findings of this research

together with the main contributions and recommendations of possible areas for

future research and development.
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