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ABSTRACT 

 

 

 

 

 Sudden cardiac death is often attributed to cardiac arrhythmia, the situation 

when normal heart rhythm is disordered.  In the context of optimal control of cardiac 

arrhythmia, it is essential to determine the optimal current required to be injected to 

the patient for dampening the excitation wavefront propagation resulting from 

cardiac arrhythmia, in which this process is known as defibrillation.  Consequently, 

this leads to an optimization problem arising from cardiac electrophysiology, namely 

Optimal Control Problem of Monodomain Model (OCPMM).  The OCPMM is a 

nonlinear programming problem that is constrained by parabolic partial differential 

equation coupled to a system of nonlinear ordinary differential equations, which 

turned out to be computationally demanding.  The main aim of this research is on 

discovering more efficient optimization methods for solving OCPMM.  First, the 

original complex problem is decomposed into sub-problems through the operator 

splitting technique for reducing the complexity of OCPMM.  Next, the classical, 

modified and hybrid nonlinear conjugate gradient methods are employed to solve the 

split and discretized OCPMM.  Numerical results prove that the modified method, 

namely the variant of the Dai-Yuan (VDY) method as well as the new developed 

hybrid method, namely the hybrid Ng-Rohanin (hNR) method are very efficient in 

solving OCPMM.  Besides that, this research also studies the effects of control 

domain on OCPMM using two recognized factors, which are the position and the 

size.  Numerical findings indicate that the control domains should consist of small 

size domains and located near to the excitation domain, for achieving better 

defibrillation performance.  Lastly, based on the observed effects, an ideal control 

domain is proposed.  Numerical results show that lowest current as well as shortest 

time are required by the ideal control domain during the defibrillation process.  As a 

conclusion, the ideal control domain is capable of ensuring an efficient and 

successful defibrillation process.   
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ABSTRAK 

 

 

 

 

 Kematian kardium mengejut sering dikaitkan dengan aritmia jantung, 

keadaan apabila rentak jantung yang normal bercelaru.  Dalam konteks kawalan 

optimum aritmia jantung, ia adalah penting untuk menentukan arus elektrik optimum 

yang diperlukan untuk disuntik kepada pesakit untuk melembabkan penyebaran 

muka gelombang terangsang yang disebabkan oleh aritmia jantung, di mana proses 

ini dikenali sebagai defibrilasi.  Oleh yang demikian, ini membawa kepada masalah 

pengoptimuman yang timbul daripada elektrofisiologi jantung, iaitu Masalah 

Kawalan Optimum Model Monodomain (OCPMM).  OCPMM adalah masalah 

pengaturcaraan tak linear yang dikekang oleh persamaan terbitan separa parabola 

yang ditambah kepada sistem persamaan terbitan biasa tak linear, ternyata menjadi 

cabaran dalam pengiraan.  Tujuan utama penyelidikan ini adalah dalam pencarian 

kaedah pengoptimuman yang lebih cekap untuk menyelesaikan OCPMM.  Pertama 

sekali, masalah kompleks asal dipecahkan kepada sub masalah dengan menggunakan 

teknik pemisahan operator untuk mengurangkan kekompleksan OCPMM.  Kemudian, 

kaedah kecerunan konjugat klasik, terubahsuai dan hibrid digunakan untuk 

menyelesaikan OCPMM yang telah dipecah dan didiskret.  Keputusan berangka 

membuktikan bahawa kaedah terubahsuai, iaitu kaedah varian Dai-Yuan (VDY) 

serta kaedah hibrid yang baru dibina, iaitu kaedah hibrid Ng-Rohanin (hNR) adalah 

sangat cekap dalam menyelesaikan OCPMM.  Selain itu, penyelidikan ini juga 

mengkaji kesan domain kawalan bagi OCPMM dengan menggunakan dua faktor 

yang dikenalpasti, iaitu kedudukan dan saiz.  Keputusan berangka menunjukkan 

bahawa untuk mencapai prestasi defibrilasi yang baik, domain kawalan harus terdiri 

daripada saiz domain yang kecil dan terletak berhampiran dengan domain 

perangsangan.  Akhirnya, berdasarkan kesan yang diperhatikan, satu domain 

kawalan unggul dicadangkan.  Keputusan berangka menunjukkan arus elektrik yang 

terendah serta masa yang tersingkat diperlukan oleh domain kawalan unggul semasa 

proses defibrilasi.  Sebagai kesimpulan, domain kawalan unggul mampu memastikan 

proses defibrilasi dijalankan dengan cekap dan berjaya.         
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   - Lipschitz boundary 

 ex   - Extracellular concentration of the ion x  

 ix   - Intracellular concentration of the ion x  

     - Euclidean norm of vectors 

1t   - Local time-step for the linear PDE 

2t   - Local time-step for the nonlinear ODEs 

 eIĴ   - Reduced gradient 

 

 

 

 

 

 

 

 

 



CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Optimization 

 

 

 Optimization is an essential tool in the analysis of physical systems, and may 

be defined as the science of determining the best solution among all feasible 

solutions for a certain mathematical problem.  In general, an optimization problem 

consists of three basic elements; the objective function, the decision variables and the 

constraints.  The objective function is a mathematical expression in terms of decision 

variables that can be used for determining the total cost or profit for a given solution.  

The decision variables represent the quantities of either inputs or outputs that the 

decision maker can control.  Sometimes, the decision maker is restricted only to 

certain available choices, that is, the situation when the decision variables are 

constrained.  The constraints can be classified as equality constraints    or 

inequality constraints   or    , depending on the signs used in the equations.  

Mathematically, a general optimization problem is given by  

 

 

 
 
  0                

0            s.t.

  Optimize





xh

xg

xf

 (1.1) 

 

where  xf  denotes the objective function, x  denotes the decision variable, 

  0xg  denotes the equality constraint and   0xh  denotes the inequality 

constraint.  
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Optimization problems can be divided naturally into discrete and continuous 

optimization problems depending on the types of the decision variables.  In discrete 

optimization problems, the decision variables are only allowed for discrete values 

such as the integers.  The discrete optimization problems can be further divided into 

two branches, namely combinatorial optimization and integer programming.  As 

opposed to the discrete optimization problems, the decision variables for the 

continuous optimization problems are allowed to take on real values.  If constraints 

are involved in the continuous optimization problem, the problem is said to be a 

constrained optimization problem.  Otherwise, it is said to be an unconstrained 

optimization problem, which is generally easy to solve.  

 

 

 In general, constrained problem can be divided into linear and nonlinear. 

Linear programming problem refers to the optimization problem with all the 

elements are linear.  However, if only the objective function is quadratic, then it 

turned out to be a quadratic programming problem, which is a special case of the 

linear programming problem with quadratic objective function (Floudas and 

Visweswaran, 1995).  Lastly, if some of the elements of the optimization problem are 

nonlinear, consequently, it falls into the class of nonlinear programming problem.   

 

 

 Nonlinear programming problem has attracted the attention of science 

because most of real life problems are nonlinear in nature.  This nonlinear 

programming problem is hard to solve than the linear programming problem because 

the feasible regions for the nonlinear constraints are hard to find, and at the same 

time the nonlinear objective may contains many local optima (Shang, 1997).  

Recently, the nonlinear programming problem that is constrained by partial 

differential equations (PDEs) has gained considerable amount of attention.  This 

problem, now called PDE-constrained optimization problem, arises widely in many 

science and engineering applications.  In fact, the main aim of this research is on 

discovering more efficient optimization methods for solving the PDE-constrained 

optimization problem arising from cardiac electrophysiology.   
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 Figure 1.1 displays a graphical representation of the classification of 

optimization problems with particular focus on PDE-constrained optimization.     

 

 

 
 

Figure 1.1 A classification of optimization problems 

 

 

 

 

1.1.1 PDE-Constrained Optimization 

 

 

 Optimization of the systems governed by PDEs gives rise to a category of 

optimization problems called PDE-constrained optimization.  The PDEs 

mathematically represent a multitude of natural phenomena, for example, heat flow, 

fluid flow and wave propagation.  Consequently, it gives rise to various applications 

Optimization Problems 

Discrete Continuous 

Combinatorial 

Optimization 

Integer 

Programming 

Unconstrained Constrained 

Nonlinear Linear 

Linear 

Programming  

Quadratic 

Programming  

PDE-Constrained  

Nonlinear 

Programming  
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in science as well as engineering (Haber and Hanson, 2007).  For instances, it arises 

in environmental engineering (Akcelik et al., 2002; Laird et al., 2005), mathematical 

finance (Bouchouev and Isakov, 1999; Egger and Engl, 2005), atmospheric science 

(Fisher et al., 2009), aerodynamics (Orozco and Ghattas, 1992; Hazra and Schulz, 

2006) and biomedical engineering (Schenk et al., 2009; Arridge, 1999).  However, 

this type of optimization problems is difficult to solve owing to the PDE constraints.  

Consequently, different approaches such as Tikhonov regularization (Egger and Engl, 

2005), parallel computing (Biros and Ghattas, 2005) and preconditioning (Benzi et 

al., 2011; Haber and Ascher, 2001; Rees and Stoll, 2010) have been proposed by 

researchers to cope with this numerical challenge.  

 

 

 Recall that the general optimization problem is defined in Equation (1.1).  If 

the equality constraint   0xg  involves a PDE or a system of coupled PDEs, then 

Equation (1.1) is called the PDE-constrained optimization problem.  Now, the 

decision variable x  can be partitioned into two parts, i.e.  uyx  , , where y  and u  

denote the state and control variables.  Thus, the PDE-constrained optimization 

problem now is given as 

 

 

 
 
  0 ,                

0 ,            s.t.

 ,  Optimize





uyh

uyg

uyf

 (1.2) 

 

where the PDE-constrained optimization problem with structure in Equation (1.2) is 

generally known as the optimal control problem.  
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1.1.2 Optimal Control 

 

 

 Optimal control theory is a modern approach to dynamic optimization.  

Specifically, it is an extension of calculus of variations (Sargent, 2000).  This modern 

approach differs from the calculus of variations in that it introduces a new variable 

called control variable  tu  that serves as an instrument of optimization (Rakamarić-

Šegić, 2003).  Once the optimal value for the control variable  tu  is obtained, it 

follows that the solution to the state variable  ty  can be determined.   

 

 

 In optimal control problem, the evolution of system from one stage to the 

next is governed by  tu , while the behavior of system at any stage is described by 

 ty  (Rao, 1984).  In addition,  ty  are governed by the following first-order 

differential equation, namely the state equations 

 

     ttutygy   ,,  (1.3) 

 

where nmng :  is continuously differentiable and t  as the time.  

Moreover, the state equations in Equation (1.3) are completed with initial and 

terminal conditions as follows 

 

     TyTyyy         ,0 0  (1.4) 

 

where  T ,0  is the time interval.  Furthermore, a cost functional is required for 

measuring how good a given control  tu  is.  Thus, let the cost functional be given as 

 

       dtttutyIuyf
T

 0
,,,     (1.5) 

 

where  mnI :  is continuously differentiable function defined on the 

time interval  T ,0 .  The optimal control problem can be stated as follows:  Find the 

control input   mtu   on the time interval  T ,0  that drives the system in 
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Equation (1.3) along a trajectory   nty   such that the cost functional in Equation 

(1.5) is minimized, given the initial and terminal conditions in Equation (1.4).  

Mathematically, the above optimal control problem is given by 

 

 

      

    

    T

T

yTyyy

ttutygy

dtttutyIuyf





 

       ,0        

 , ,    s.t.

 , , ,  min

0

0

 . 

 

Optimal control problems with various physical backgrounds arise widely in many 

engineering and scientific areas.  In this research, the focus is on the optimal control 

problem arising from cardiac electrophysiology.  

 

 

 

    

1.2 Background of the Problem 

 

 

Sudden cardiac death refers to an unexpected death of a person in a short time 

period, which is a common cause of death among adults.  In China, sudden cardiac 

death episodes affect 544,000 people each year (Zhang, 2009).  In the United States, 

sudden cardiac death takes the lives of over 450,000 people annually (Zheng et al., 

2001).  Also, a recent study by Ong (2011) indicates that about 23% of 

approximately 16,000 deaths (per year) in Singapore are reported as cardiac death.   

 

 

Sudden cardiac death is often attributed to cardiac arrhythmias, the situation 

when normal heart rhythm is disordered.  As a consequence of the cardiac 

arrhythmia, the heart beats inconsistently and irregularly.  It follows that death can 

occur within a short time period unless electrical defibrillation is given to the patient 

for restoring normal heart rhythm (Amann et al., 2005; Dosdall et al., 2010; Klein et 

al., 2003).      
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 The optimal control of cardiac arrhythmia was introduced by Nagaiah et al. 

(2011a), with attempt to determine the optimal current required during the 

defibrillation process.  Specifically, the control objective was to utilize the optimal 

extracellular current for dampening the excitation wavefront propagation resulting 

from cardiac arrhythmia.  Since Nagaiah et al. (2011a) employed the monodomain 

model to represent cardiac electrical behavior, thus, the above optimization problem 

is given the name Optimal Control Problem of Monodomain Model (OCPMM). 

 

 

 The monodomain model composed of a PDE coupled to a system of ordinary 

differential equations (ODEs) representing cell ionic activity, which is a simplified 

version of the bidomain model.  The bidomain model is a powerful mathematical 

model for simulating cardiac electrical activity, however, the numerical solution for 

it is computationally demanding.  Thus, the monodomain model is chosen by 

Nagaiah et al. (2011a) to form OCPMM, as this model can be solved at a less 

computationally demanding manner than the bidomain model.  Since the 

monodomain model appears as constraints in OCPMM, it falls into the class of PDE-

constrained optimization problem.    

 

 

Two types of optimization methods have been applied for solving OCPMM, 

namely the nonlinear conjugate gradient methods (Nagaiah et al., 2011a) and the 

Newton method (Nagaiah and Kunisch, 2011).  Nonlinear conjugate gradient method 

has computational advantage but usually requires many iterations to converge.  In 

contrast, the Newton method is likely to converge with less iterations but requires 

higher memory storage.   

 

 

Consequently, this leads to an idea of solving OCPMM using optimization 

methods which combine the merits of the above methods.  This gives rise to two 

classes of optimization methods called modified and hybrid nonlinear conjugate 

gradient methods, which have low memory requirement and at the same time 

converge to the optimal solution with less iterations than the classical nonlinear 

conjugate gradient methods.   
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1.3 Statement of the Problem     

 

 

 For this research, the modified and hybrid nonlinear conjugate gradient 

methods are employed for solving OCPMM.  

 

 

 

 

1.4 Objectives of the Study 

 

 

 Specifically, this research focuses on developing efficient numerical 

techniques for solving OCPMM as well as studying the effects of the control domain.  

In short, this research aims to achieve four objectives outlined in this section.   

 

1. To apply the operator splitting technique to OCPMM.  This technique is used 

to split the state and adjoint systems for OCPMM into sub-systems that are 

much easier to solve. 

 

2. To solve OCPMM using classical, modified and hybrid nonlinear conjugate 

gradient methods.  The performances of these three groups of optimization 

methods are then compared.   

 

3. To observe the effects of control domain positioning as well as size on 

OCPMM.  A number of test cases are considered in this research, which 

consist of different position and size of the control domain. 

 

4. To propose an ideal control domain for OCPMM which is capable of 

ensuring an efficient and successful defibrillation process. 
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1.5 Scope of the Study 

 

 

 For this research, the mathematical modeling is based on the cardiac tissue 

rather than the whole heart.  Moreover, the cardiac tissue is assumed to be located at 

either one of the chambers of the heart, depending on where the cardiac arrhythmia 

occurs.  For example, if the cardiac arrhythmia is occurring in the left ventricle, then 

the cardiac tissue is assumed to be located in the left ventricle.  In addition, the 

cardiac tissue is assumed to be insulated, i.e. surrounded by a non-conductive 

medium.   

 

 

 In the original OCPMM, Nagaiah et al. (2011a) ignored the constant scalar   

during the formulation of the optimal control problem.  For this research, this 

constant scalar is included in the formulation of OCPMM for the purpose to improve 

the original OCPMM.  As a consequence, the comparison of the results between 

Nagaiah et al. (2011a) and this research is unable to be performed due to the 

differences in the formulation of OCPMM. 

   

 

For the numerical experiments, two-dimensional domain for the cardiac 

tissue is considered instead of three-dimensional.  This is because the numerical 

solutions for the monodomain model are computationally demanding, especially in 

three-dimensional.  Moreover, as shown in the literature, the OCPMM only solved 

on two-dimensional computational domain.  Thus, two-dimensional computational 

domain is suitable and enough for this research. 

 

 

 Currently, there exist more than 40 nonlinear conjugate gradient methods 

which can be further categorized as classical, modified, hybrid, scaled, parameterized 

and accelerated.  For this research, only the selected classical, modified and hybrid 

nonlinear conjugate gradient methods are chosen for solving OCPMM.      
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1.6 Contributions of the Study 

 

 

 There are three main contributions of this research, with each of them are 

listed in the following sub-sections. 

 

 

 

 

1.6.1 Contribution to Development of Efficient Numerical Technique 

 

 

 This research is the first attempt to apply the operator splitting technique to 

OCPMM for the purpose of reducing the complexity of the problem.  By utilizing the 

operator splitting technique, the nonlinear PDE in the state and adjoint systems is 

split into a linear PDE and a nonlinear ODE, which can be solved easily using 

different numerical schemes.  

 

 

 

 

1.6.2 Contribution to Numerical Solutions for Optimal Control Problem 

 

 

 This research attempts to solve OCPMM using modified and hybrid nonlinear 

conjugate gradient methods.  These two groups of optimization methods are proved 

to be superior to the classical methods in terms of optimization iterations.  Moreover, 

a new hybrid nonlinear conjugate gradient method is developed in this research for 

solving OCPMM.  This new developed method was proven to be performed better 

than other hybrid methods under the selected inexact line search in this research, that 

is, the Armijo line search.    

 

 

 

 

1.6.3 Contribution to Defibrillation Process  

 

 

 The effects of control domain positioning as well as size on OCPMM are 

studied in this research.  In the numerical experiments, the control domain 



11 

 

corresponds to the electrodes of implantable cardioverter defibrillator (ICD) 

implanted in the chest of a patient.  An ICD refers to a tiny device with the abilities 

of monitoring heart rhythm as well as delivering defibrillation shock to the patient 

when detecting an arrhythmia (Requena-Carrión et al., 2009).      

 

 

 Figure 1.2 shows ICD that implanted in the chest of a patient.  As shown in 

the figure, ICD consists of two components; a pulse generator and two thin wires 

called electrodes.  The pulse generator is a lightweight metal case that contains the 

battery and a tiny computer that continuously checks the heart rhythm.  On the other 

hand, a set of electrodes are inserted into the heart through a vein in the upper chest, 

which function as an electrical shock sender when an arrhythmia is detected by ICD, 

in order to restore normal heart rhythm.   

 

 

 

 

Figure 1.2 ICD that implanted in the chest of a patient (Taylor-Clarke, 2008) 

 

 

 Thus, from the numerical experiment results of this research, some interesting 

insights that can be applied to the science of cardiac electrophysiology were found.  

For example, the defibrillation performance can be improved by locating the 

electrodes nearer to the excitation region of the heart that is suffering from cardiac 

arrhythmia.  Consequently, the observed effects from the numerical experiments can 

be contributed to the defibrillation process.    

Pulse generator 

Electrodes 
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1.7 Organization of the Thesis 

 

 

 This thesis composed of six major parts.  First, an introduction is given at the 

beginning of Chapter 1 to explain the research background and objectives.  Next, the 

following sections identified the scope as well as the contributions of this study.  In 

short, the main purpose of Chapter 1 is to show how this research is different from 

other previous works by describing its novelty. 

 

 

 Chapter 2 describes the literature review of the anatomy and physiology of 

the heart as well as the cardiac electrophysiology.  Next, based on the literature 

review of cardiac electrophysiology, the bidomain and monodomain models used for 

simulating the cardiac electrical activity are then derived. 

 

 

 Next, Chapter 3 presents the formulation of OCPMM and the numerical 

approaches for solving it.  The operator splitting technique for OCPMM is described 

first, followed by the numerical discretization of PDEs and ODEs.  Besides that, this 

chapter also presents the strategy used for generating the computation mesh. 

  

 

 The numerical results for OCPMM using the classical, modified and hybrid 

nonlinear conjugate gradient methods are presented in Chapter 4.  The numerical 

result for each method is analyzed and comparisons of results between these three 

groups of nonlinear conjugate gradient methods are reported as well.     

 

 

 Chapter 5 aims to observe the effects of control domain for OCPMM.  The 

position and size effects are studied through some test cases and the observed effects 

are related to the science of cardiac electrophysiology, that is, the electrical 

defibrillation process.   

 

 

 Lastly, a conclusion of this research is provided in Chapter 6.  This chapter 

also gives some recommendations for further improvement of the numerical solution 

technique for OCPMM.   
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