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ABSTRACT

In automobile and aerospace industries, thin-walled tubular structures have been widely

used as key components to improve energy absorption capacity under axial compressive

loads, which play an important role in improving the vehicle crashworthiness without

increasing body weight. In this project, low carbon steel has been used to study the

effect of loading rate onto sheet metal. Metallurgical study carried out to identify

microstructure, chemical composition and hardness test of low carbon steel. From

tension test at 0.001/s strain rate, stress-strain curve develop to identify the mechanical

properties. Johnson –Cook model technique is adopted and parameters of Johnson –

Cook model (A, B, C, m and n) have been extracted and use in FE simulation. Strain

gauge rosette inserted on the center of the tube to determine strain at specific points on

the structure. Wood of 10mm inserted at the top and bottom of the tube to avoid

localized buckling. Then, axial compression test has been conducted experimental and

FE simulation to validate the results.
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ABSTRAK

Di dalam industri automobil dan aeroangkasa, struktur tiub berdinding nipis telah

digunakan secara meluas sebagai komponen yang penting untuk meningkatkan

keupayaan penyerapan tenaga di bawah beban mampatan paksi, yang memainkan

peranan penting dalam meningkatkan kebolehpercayaan kemalangan tanpa

meningkatkan berat badan kenderaan. Dalam projek ini, keluli karbon rendah telah

digunakan untuk mengkaji kesan kadar bebanan ke atas kepingan logam itu. Kajian

Metalurgi dijalankan untuk mengenalpasti mikrostruktur, komposisi kimia dan ujian

kekerasan untuk keluli karbon rendah. Lengkung tegasan-terikan dihasilkan daripada

ujian ketegangan pada kadar 0.001/s untuk mengenalpasti sifat-sifat mekanik. Teknik

model Johnson-Cook digunakan dan parameter seperti (A, B, C, m dan n) juga diestrak

dan digunakan untuk proses simulasi. Tolok tekanan roset diletakkan di tengah-tengah

tiub untuk menentukan tekanan pada titik tertentu pada struktur tersebut. Kayu

berukuran 10mm dimasukkan di bahagian atas dan bawah tiub untuk mengelakkan

lengkokan setempat. Kemudian, ujian mampatan dijalankan sebagai eksperimen dan

simulasi adalah untuk pengesahan keputusan.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Automobile structures as shown in figure 1.1 are usually made up of thin-walled,

steel plates and metal sheets, subjected to complex loading in a crash event. These

structures are widely adopted as main energy absorber for crashing protection

attributable to their deformation pattern and energy absorption capacity. The energy

absorption capabilities of such structures play an important role due to their high

efficiency and cost- effectiveness. With the aid of Finite Element simulation and

accurate constitutive model is employed, deformation and failure of sheet metal

structures can be characterized after considering careful designed aspects while

performing the simulation [1-2].
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Figure 1.1 Structure of automobile

1.2 Problem Definition

Thin-walled metal tubes with different cross-sections are widely used as energy

absorbing structural components in high-volume industrial products such as cars, trains

etc. Large deformation occurred when exposed to the crash event. However, expensive

apparatus need to conduct an experiment to analyze the behavior after subjected certain

loading rate. Thus, finite element simulation is utilized and validates the results with

experiment.
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1.3 Objectives

The objectives of the project are as follows:

1. To develop a validated FE model of thin-walled steel tube.

2. To establish large deformation characteristics of thin-walled tubular structures

when subjected to axial compressive load.

1.4 Scope of Study

The scope of study covers the following points which are as follows:

1. Tension test conducted of extracting Johnson-Cook parameters extraction.

2. Deformation behavior of thin-walled tubular structures involving large plasticity,

stress analysis, damage models for metallic materials.

3. Abaqus Finite Element software for simulation of deformation and failure of

thin-walled steel structures.

4. Low carbon steel applications consist of axial compression test of thin-walled

tube.
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1.6 Significant of results

The significance of result is to design a car structure to ensure passenger’s safety

during crashworthiness and is the desire for cost-to-weight effectiveness. And to

demonstrate the results from FE simulation using material Johnson Cook model with

experimental results. Predictive capability of the model is measured to establish the

behaviour of sheet metals when subjected to various rate of loading.
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