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ABSTRACT 

 

 

 

 

The area of research is the study of iterative diagnosis.  Diagnosis to find 

faults in semiconductor devices is a well researched field, with most logic diagnosis 

efforts using the inject-and-evaluate algorithm.  However, most diagnosis tools are 

unable to resolve faults to a single gate/device.  Because of this, fault isolation (FI) 

engineers are forced to use probing techniques such as IREM logic state imaging 

(LSI) in order to further isolate the fault to the gate/device level before performing 

failure analysis.  The current method of selecting probe sites is simply to take the list 

of fault candidates and probe them sequentially or by determining the optimal probe 

order through manual analysis of the circuit cone.  However, in cases where a large 

list of fault candidates are returned by the diagnosis tool, it is difficult to manually 

analyze the fault cone as it is too large and complex.  This work implements a basic 

algorithm which allows the diagnosis tool to recommend probe candidates, read in 

the result of the probe, and continue this cycle iteratively until the fault is fully 

isolated to a single gate/device.  The algorithm is based on a binary search, and 

shows that a 5-6X reduction in the amount of probing needed can be achieved if the 

diagnosis tool is used iteratively in the fault isolation flow.  
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ABSTRAK 

 

 

 

 

Bidang penyelidikan yang dikaji adalah diagnosis iteratif (iterative 

diagnosis).  Diagnosis untuk mencari kecacatan dalam alat semikonduktor 

merupakan suatu bidang yang banyak dikaji.  Kebanyakan usaha diagnosis lojik 

menggunakan algoritma “inject-and-evaluate”.  Walau bagaimanapun kebanyakan 

alat diagnostik tidak dapat menyelesaikan kesalahan mengenai alat/pintu asas (single 

gate/device).  Oleh itu, jurutera pencarian kecacatan (fault isolation) terpaksa 

menggunakan teknik penyelidikan seperti “IREM logic state imaging” (LSI) untuk 

mengasingkan lagi kecacatan terhadap paras alat/pintu sebelum menjalankan analisis 

kegagalan.  Kaedah sekarang yang digunakan untuk memilih tapak kajian (probe 

sites) ialah dengan menggunakan senarai tapak-tapak kesalahan (fault candidates) 

dan mengkajinya secara satu demi satu, atau dengan menentukan susunan tapak 

kajian optimis (optimal probe order) melalui menganalisis kun litar (circuit cone).  

Walau bagaimanapun dalam kes dimana banyak tapak kesalahan dikesan oleh alat 

diagnostik, amatlah sukar untuk meneliti kun kesalahan (fault cone) kerana ianya 

terlalu rumit dan besar.  Kajian ini melaksanakan suatu algoritma asas yang 

digunakan oleh alat diagnostik untuk mencadangkan tapak yang perlu dikaji.  Setiap 

keputusan kajian kemudian dihantar semula kepada alat diagnostik dan pusingan ini 

diteruskan sehingga kecacatan diasingkan ke hanya satu pintu/alat (single 

gate/device).  Algoritma ini berasaskan pencarian binari dan telah menunjukkan 

bahawa kekurangan kerja sebanyak 5-6 kali boleh dicapai sekiranya alat diagnostik 

digunakan secara iteratif dalam proses pengasingan kecacatan.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

As transistors continue to shrink, fault isolation needs to improve in 

resolution in order to have accurate failure analysis [1].  As a result, more probing is 

done in each subsequent technology generation, resulting in greater throughput time 

for the fault isolation (FI) and failure analysis (FA) process.   

 

 

During the integrated circuit (IC) manufacturing cycle, manufacturing tests 

are generated that either functionally or structurally (using scan or other design for 

test (DFT) mechanisms) test the device under test (DUT).  These tests are applied 

using a tester (sometimes called Automated Test Equipment, or ATE).  The tests are 

simply vectors of 1’s and 0’s and the outputs of the DUT are strobed for outputs that 

match the “golden” output that was generated during test generation [2].   

 

 

During this process, certain parts will be found to be defective and will be 

sent for FI, in order to narrow down the physical location of the defect, and then FA 

using scanning electronic microscopy (SEM) systems can be performed in order to 

determine the exact defect mechanism.  Once the defect mechanism is determined, 

the fabrication process can then be examined in order to understand and fix the root 

cause in the fabrication process, equipment or methodology causing the defect.  This 

cycle is the process used by all semiconductor manufacturing companies to improve 

yield, which ultimately lowers the cost of the product.  
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Figure 1 shows the feedback loop between manufacturing, yield analysis and 

failure analysis. The time taken to complete a cycle of the loop is of utmost 

importance, as it determines how much yield learning can be done in a period of 

time. If cycle time reduces, yield learning is faster, and results in an equivalent drop 

in the cost of production. 
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Figure 1.1 Manufacturing-yield analysis-FI/FA feedback loop 

 



3 

  

 This study will focus on the Fault Isolation step in Figure 1.1.  We will 

introduce the current workflow in fault isolation, and suggest a workflow that will 

improve the throughput time of fault isolation, and thereby speed up the overall time 

to complete the manufacturing-yield analysis-FI/FA loop. 

 

 

 

 

1.2 Motivation and Problem Statement 

 

 

As the number of gates on a single IC continue to grow, the effort of finding 

defects on silicon also increases.  As a result, failure analysis teams continue to rely 

on optical probing tools such as photoemission microscopy (PEM) in order to reduce 

the region-of-interest (ROI) before physical failure analysis (PFA) can be carried out. 

This activity is called Fault Isolation (FI), as it attempts to isolate the fault into a 

small region for imaging.  Figure 1.2 illustrates that the ability of several techniques 

in slowly reducing the ROI.  These activities are often done sequentially, in order to 

reduce the ROI. For example, analyzing scan test fails allow us to narrow the ROI to 

a block in design. The scan fails are then entered into as an input to the diagnosis 

tool, which produces a list of diagnosis candidates (further narrowing the ROI to a 

list of gates/wires). These candidates can then be probed by various tools, which 

narrow down the list to a single gate/wire, then further on to part of a wire or 

transistor. 
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Figure 1.2 Resolution vs. effort in fault isolation techniques.  

 

 

Due to the increase in effort between running the diagnosis tool and 

performing optical probing, it is critical that the diagnosis tool returns the minimal 

number of defect candidates.  There has been much effort by researchers to improve 

the resolution of diagnosis, and there have been multiple improvements in the past 

years.  These improvements include layout aware diagnosis, diagnostic test pattern 

generation, intra-cell diagnosis and additional fault types.  These efforts are further 

elaborated in section 2.1.3. Despite these improvements, there are still many 

instances whereby the diagnosis tool is unable to return a small number of 

candidates.  When this happens, the optical probing activity effort increases 

substantially, as the list of diagnosis candidates that have to be probed is very large.  

Therefore, there is a need to improve the workflow of optical probing activity by 

reducing the probing time for cases with unsatisfactory diagnosis tool output.  
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Figure 1.3 shows a typical FI/FA flow.  This diagram sheds further detail on 

the optical and physical probing activities.  Both activities require pre-work to find 

the correct location to probe, and then actually using the tool/equipment to probe the 

area.  In this study, we will limit ourselves to the diagnosis tool and optical probing 

activities, as shaded in Figure 1.3.  We will also only restrict our discussion on 

optical probing to the photoemission microscopy (PEM) and infrared microscopy 

(IREM) tools. 

 

 

In the current shaded flow in Figure 1.3, the steps of the flow are run 

sequentially (diagnosis, then optical probing).  This is the main problem in the 

current flow.  It assumes that after diagnosis is run, the diagnosis tool can no longer 

contribute to FI.  As a result, the probing activity takes a long time if the diagnosis 

tool returns a large list of possible candidates, as they all have to be probed.  Probing 

can take from hours to days depending on how many signals have to be observed.  
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Figure 1.3 Typical fault isolation flow. 

 

 

Besides long probing time, another challenge for the FI engineers is that 

IREM logic state imaging (LSI) probing (detailed further in section 2.2.1) can only 

be performed on certain devices.  The conditions where a sufficiently bright emission 
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can be detected by the IREM tool differ for each fabrication process, as well as the 

IREM tool detection sensitivity.  Inverters have generally have high enough 

subthreshold leakage to appear clearly on IREM results.  However, other gates may 

have stacked transistors, which will not produce emissions.  Therefore, not every 

signal that is returned by the diagnosis tool can be physically probed by the IREM.  

FI engineers often have to trace forward or backward in the circuit to find a “probe 

point” that allow accurate probing and also will imply the logic value on the 

diagnosis signal.  This information is already present in the diagnosis tool, but due to 

the sequential nature of the flow, the FI engineer has to manually determine the 

correct devices to probe.  

 

 

 

 

1.3 Objectives 

 

 

This study attempts to find and implement a basic algorithm which allows the 

diagnosis tool to recommend probe candidates, read in the result of the probe, and 

continue this cycle iteratively until the fault is fully isolated to a single gate.  The aim 

will be to minimize the number of probe frames needed by introducing a feedback 

and feed forward mechanism between probing and diagnosis applications.  

 

 

In the current flow (Figure 1.3), the diagnosis tool merely returns the list of 

probe candidates.  This list could be large, in cases where the diagnosis tool has not 

been able to narrow down the list of candidates sufficiently.  In our new proposed 

flow (Figure 1.4), we extend the diagnosis tool to return a carefully chosen small list 

of candidates to probe first, if the list is too large.  The probe results of the small list 

are then returned to the diagnosis tool. The tool then performs an incremental 

diagnosis run, taking as input probe results and producing another small list of 

candidates to probe.  This iterative process continues until the list of candidates have 

been narrowed to one.  The shaded portion of Figure 1.4 shows the process that has 

just been described.   
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Figure 1.4 Iterative diagnosis workflow 

 

 

There is no documentation of this iterative loop between the diagnosis tool 

and probing activity in our literature search.  This study attempts to improve the fault 

isolation process with the iterative diagnosis workflow shown in Figure 1.4. 

 

 

 

 

1.4 Scope of Work 

 

 

In this study, we implemented the new workflow, as seen in Figure 1.4. The 

large majority of our focus is on determining the area to probe.  However, in order to 
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obtain results from the new workflow, we executed all the shaded steps in the new 

workflow.  We also obtained results based on the new flow which show 5-6X 

improvement over the original flow.  The results are however only based on a single 

testcase, with a single defect.  

 

 

In order to determine the area to probe, the algorithm goes through the 

following steps: First, it parses the diagnosis report file from the diagnosis tool in 

order to identify the candidates and mismatches.  (Further explanation of diagnosis 

candidates, mismatches and diagnosis algorithms are available in section 2.1.1).  It 

then creates a graph from the diagnosis cone.  Then, it prunes the graph and drops 

non-probeable gates.  (Probe-able gates are explained in section 2.2.1).  The graph is 

then weighted and bisected.  (Graph bisection is discussed in section 2.3 and 2.4).   

 

 

Although we have limited our scope to IREM LSI probing in this study, this 

flow can also be used in other observational, non-destructive probing techniques 

such as Laser Voltage Probing (LVP) and Time Resolved Emission (TRE) [3].  

 

 

 

 

1.5 Report Outline 

 

 

Chapter 1 has provided a brief introduction to the problem of fault isolation, 

and the different methods used to narrow down defect candidates to a small ROI 

(part of a device/interconnect) in order to perform defect imaging.  We have also 

introduced the current flow between diagnosis and optical probing, and have 

proposed a new flow which iterates between them to improve efficiency.  
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Chapter 2 presents background information on semiconductor diagnosis, 

photoemission microscopy, binary search and graph partitioning.  The workings and 

algorithms used in semiconductor diagnosis are explored in section 2.1.1, and the 

various efforts to improve diagnostic resolution in section 2.1.3. A brief introduction 

to PEM and IREM are given in section 2.2, and the concept of Logic State Imaging 

(LSI) is explained in section 2.2.1.  Binary search and graph partitioning are both 

tools used in our algorithm, and the algorithms commonly seen in literature are 

introduced in sections 2.3 and 2.4. 

 

 

Chapter 3 presents the basic algorithm which determines the probe locations.  

The steps involved are extracting a circuit cone from the candidates list, converting 

the cone into a graph, pruning the graph, and bisecting it to determine the probe 

points, and deriving the probe frames.  In Chapter 4, we discuss the detailed 

implementation of the algorithm.  This includes the programming language, data 

structures and search algorithms that were used in implementation.  We also present 

the experimental setup and test case used to generate the results on this report.  

 

 

Chapter 5 presents and compares the results from 2 different constraints applied 

to the graph bisection algorithm.  In Chapter 6, we discuss other learnings and 

analyze the results gleaned from the testcase.  Chapter 7 presents the conclusion of 

the thesis, and recommendations for future work.  This is followed by the 

bibliography. 
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