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ABSTRACT 

Spiking Neural Network (SNN) utilizes individual spikes in time domain to 

communicate and to perform computation in a manner like what the real neurons 

actually do. SNN had remained unexplored for many years because it was considered 

too complex and too difficult to analyze. Since Sander Bothe introduced SpikeProp 

as a supervised learning model for SNN in 2002, many problems which were not 

clearly known regarding the characteristics of SNN have now been understood. 

Despite the success of Bohte in his pioneering work on SpikeProp, his algorithm is 

dictated by fixed time convergence in the iterative process to get optimum initial 

weights and the lengthy procedure in implementing the sequence of complete 

learning for classification purposes. Therefore, this thesis proposes an improvement 

to Bohte’s algorithm by introducing acceleration factors of Particle Swarm 

Optimization (PSO) denoted as Model 1; SpikeProp  using  Angle driven Learning 

rate dependency as Model 2; SpikeProp using Radius Initial Weight as Model 3a, 

and SpikeProp using Differential Evolution (DE) Weights Initialization as Model 

3b.The hybridization of Model 1 and Model 2 gives Model 4, and finally Model 5 is 

obtained from the hybridization of Model 1, Model 3a and Model 3b.    With these 

new methods, it was observed that the errors can be reduced accordingly. Training 

and classification properties of the new proposed methods were investigated using 

datasets from Machine Learning Benchmark Repository. Performance results of the 

proposed Models (for which graphs of time errors with iterative timings, table of 

number of iterations required to reduce time error measurement to saturation level 

and bar charts of accuracy at saturation time error for all the datasets have been 

plotted and drawn up) were compared with one another and with the performance 

results of Standard SpikeProp and Backpropagation (BP). Results indicated that the 

performances of Model 4, Model5 and Model 1 are better than Model 2, Model 3a 

and Model 3b. The findings also reveal that all the proposed models perform better 

than Standard SpikeProp and BP for all datasets used. 
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ABSTRAK 

Rangkaian Saraf Pepaku (SNN) menggunakan dedenyut tunggal dalam 

domain masa untuk mewujudkan komunikasi dan penghitungan seperti yang 

dilakukan oleh saraf tabii. SNN tidak diterokai dengan mendalam disebabkan oleh 

mekanisme pelaksanaannya yang amat sukar untuk dianalisa. Sejak diperkenalkan 

oleh Sander Bothe pada tahun 2002 sebagai model pembelajaran terpandu, banyak 

masalah yang tidak jelas pada masa lampau berkenaan dengan ciri-ciri SNN sudah 

boleh diperjelaskan pada masa kini. Walaupun SpikeProp sudah berjaya digunakan 

secara meluas sorotan kejayaan Bohte terhadap algoritma Spikeprop, algoritma ini 

masih lagi mempunyai masalah dalam konteks tetapan masa penumpuan dalam 

proses jujukan bagi mendapatkan pemberat awalan yang optimal dan prosedur yang 

lama untuk melaksanakan pembelajaran lengkap bagi tujuan pengelasan. Oleh yang 

demikian, tesis ini mencadangkan pembaikan terhadap algoritma Bohte dengan 

memperkenalkan  faktor pecutan  dalam SpikeProp menggunakan PSO dan dilabel 

sebagai Model 1; SpikeProp menggunakan Kadar Pembelajaran Sudut Terpandu 

Bersandarkan  , Model 2; SpikeProp menggunakan Pemberat Awalan Jejari, Model 

3a; dan SpikeProp menggunakan Pemberat Awalan Jejari Evolusi Pembahagi, Model 

3b. Penhibridian Model 1 dan Model 2 memberi Model 4 dan akhirnya Model 5 

dicadangkan hasil penhibridan Model 1, Model 3a dan Model 3b. Berdasarkan model 

baru ini, didapati bahawa ralat boleh disusutkan dengan baik dan pantas. Sifat 

pengelasan dan latihan bagi kaedah cadangan telah dikaji menggunakan set data 

daripada Storan Piawaian Pembelajaran Mesin. Prestasi keputusan bagi kaedah 

cadangan (iaitu dengan graf ralat masa terhadap masa lelaran, jadual bilangan lelaran 

yang diperlukan untuk menyusutkan pengukuran ralat masa kepada tahap tepu dan 

carta bar ketepatan pada ralat masa tepu bagi semua set data telah diplot) di 

bandingkan dengan prestasi SpikeProp and Rambatan Balik piawai. Hasil kajian 

menunjukkan bahawa prestasi Model 4, Model 5 dan Model 1 lebih baik berbanding   

Model 2, Model 3a dan Model 3b. Hasil dapatan juga mendapati bahawa prestasi ke 

semua model cadangan ini adalah lebih baik berbanding dengan prestasi SpikeProp 

and Rambatan Balik piawai bagi semua set data. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1    Overview 

 

 

Classification is one of the most frequently encountered processing tasks for a 

decision support system. Classification is necessary when a scattering of data needs 

to be sorted into the predefined groups or classes based on certain criteria and 

attributes. Classification problems are encountered in areas such as business, science, 

industry and medicine. They include bankruptcy prediction, credit scoring, medical 

diagnosis, quality control, handwritten character recognition, and speech recognition.  

 

 

Traditional statistical classification procedures such as discriminant analysis 

are built on the Bayesian decision theory (Duda and Hart, 1973; Qasem and 

Shamsuddin, 2010) In these procedures, an underlying probability model must be 

assumed in order to calculate the posterior probability upon which the classification 

decision is made. One major limitation of the statistical models is that they work well 

only when the underlying assumptions are satisfied. The effectiveness of these 

methods depends to a large extent on the various assumptions or conditions under 

which the models are developed. Users must have a good knowledge of both data 

properties and model capabilities before the models can be successfully applied. 

Neural networks have emerged as an important tool for classification because they 

do not depend much on prior knowledge of the statistics of the data.   
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Several neurobiologists believe  that the working   process of  a brain is similar 

to  that  of  a huge parallel computer  which  has  at its  disposal  about 10 billion 

simple processors, where each needs a few milliseconds to react according to input 

values. There are similarities between the function of parallel processing methods 

and conventional Artificial Neural Network (ANN) methods in many real-time 

applications.  

 

 

For this reason ANN has been conceived with a structure which resembles 

closely to the human brain (DKlerfors, 2004). Because of this structure, computation 

property of ANN has been designated many names which include parallel distributed 

processing, neuron-computing, natural intelligent systems and machine learning 

algorithms. 

 

 

 

1.2   Background of the Problem 

 

 

The earliest models and schemes of ANN (the first generation ANNs) came 

nearly fifty years ago. In the earlier models which are theoretically incredibly 

straightforward, the primary generation of ANN consists of McCulloch-Pitts 

threshold neurons (Y.-J. Jin et al., 2013; Maass, 1997). A strand of neurons sends a 

binary signal (higher value signal) only if the summation of the weighted signals 

which it receives rises above a certain threshold level. As the output from these 

neurons are digital, it is convenient to treat interconnected neurons  to behave as a 

function with a Boolean output type which can be modeled mathematically  as multi-

layer perceptron (MLP) and Hopfield Nets (Rebizant, 2011). 

 

 

Signal responses of second generation ANN are not calculated using threshold 

or step activation type functions. Instead,  they are  calculated  using  continuous 

activation type functions  which  are   formulated so that responses are  analog  for  

the two cases: input  and output. Generally, the activation functions take the form of 
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the sigmoid. Sigmoidal Neural Nets, (these include Adaline Perceptrons and Radial 

Basis Function) have been considered under the class of second generation ANNs  

 

 

Back propagation (BP) and recurrent neural networks have been applied to 

many applications. They are the most famous instances of neural networks consisting 

of neurons which make up the second generation of ANN. Obviously they 

outperform the first generation of ANN which are merely simple networks of binary 

neural units, each exhibiting either an active or an inactive, firing or non-firing states.   

 

 

ANN can perform digital computations to get universal functions 

approximation which can also be calculated using fewer neurons in a network of the 

first generation whereby the corresponding circuits are resolved with Boolean 

threshold gates (Y.-J. Jin, et al., 2013; Maass et al., 1991).  

 

 

Usually, the learning process for updating the weights of ANN interconnectors 

will require some form of optimization. One useful optimization technique uses PSO 

(Eberhart and Kennedy, 1995), which is inspired by how the biological swarm of 

animals works to achieve a desirable objective for the group. Since its introduction, 

PSO has been widely used to solve many real world problems. (X. Jin, 2011; 

Kennedy and Eberhart, 1997) also introduced the binary version of PSO. There have 

been a lot of developments and improvements in this area (Khanesar et al., 2007) 

(Srinivasan and Shanmugalakshmi., 2012; Yuan et al., 2009). PSO has been applied 

to derive universal function approximations for any analog function with random 

updating of weights.  

    

    

For the first generations of ANN, the neurons are restricted to binary inputs and 

outputs.  These binary impulses have a definite width, phase and time and these types 

of signals could be considered driven by stabilized frequencies of the neuron. 

However, recently it has been discovered that neurons communicate by firing short 

electrical pulses which operate in a mode referred to as rate coding. Higher output 

signal is brought about by firing at higher rate. Communication is carried out using 
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real spikes only at the two exclusive instants known as spiking time or no spiking 

time. With a communication window of this type, the value of output of a neuron can 

be computed and the response of the network to the values of input is known or 

identified only after all the neurons have fired. Each neuron can be modeled since it 

has a basic firing-rate and a continuously constant activation function. This model 

which is referred to as Spiking Neural Networks (SNN) is considered to constitute 

the third generation of ANNs (Gr¨uning and Sporea, 2011). 

  

 

For all the three generations of neural networks, the output signals can be 

continuously altered by variation in synaptic weights (synaptic plasticity). Synaptic 

plasticity is the basis for learning in all ANN. As long as there is non-variant  

activation function , accurate classification based  on a certain vector input values 

can be implemented with the help of  a  BP learning algorithm like  gradient-descent 

(Y.-J. Jin, et al., 2013; Kempter and Hemmen, 1999). 

 

 

Spiking Neural Network (SNN) utilises individual spikes in time domain to 

communicate and to perform computation in a manner like what the real neurons 

actually do (Belatreche and Paul, 2012; Ferster and Spruston, 1995). This method of 

sending and receiving individual pulses is called pulse coding where information 

which is transmitted is carried by the pulse rate. Hence, this type of  coding permits 

multiplexing of data (Gerstner et al., 1999).  

 

 

For instance, analysis of visual input in humans requires less than 100ms for 

facial recognition.  Yet, facial recognition was performed by Thorpe & Delorme (S. 

Thorpe et al., 2001) by using SNN with a minimum of 10 synaptic steps on the retina 

at the temporal lobe, allowing nearly 10ms for the neurons to process. Processing 

time is short but it is sufficient to permit an averaging procedure which is required by 

pulse coding (Gerstner, et al., 1999; Kasabov, 2012b; S. Thorpe, et al., 2001). In 

fact, pulse coding technique is preferred when speed of computation is the issue (S. 

Thorpe, et al., 2001).  
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1.2.1     Spiking Neural Networks (SNNs)  

 

 

Neural networks which perform artificial information processing are built 

using processing units composed of linear or non-linear processing elements a 

sigmoid function is widely used (Bishop, 2000; Haykin, 1998; Kasabov, 2012a). 

SNN had remained unexplored for many years because it was considered too 

complex and too difficult to analyze.  Apart from that: 

 

 

1) Biological cortical neurons have long time constants. Inhibition speed can be of  

the order of  several  milliseconds while excitation speed can reach several 

hundreds of milliseconds. This dynamics can considerably constrain applications 

that need fine temporal processing (Gewaltig, 2000; Kasabov, 2009). 

 

 

2) Little is known about how information is encoded in time for SNNs. Although it 

is known that neurons receive and emit spikes, whether neurons encode 

information using spike rate or precise spike time is still unclear (Thorpe and 

Gaustrais, 1998). For those supporting the theory of spike rate coding, it is 

reasonable to approximate the average number of spikes in a neuron with 

continuous values and consequently process them with traditional processing 

units (sigmoid, for instance).  Therefore, it is not necessary to perform 

simulations with spikes, as the computation with continuous values is simpler to 

implement and evaluate (Kasabov, 2010). 

 

           An important landmark study by Maass (Maass, 2001) has shown that SNN 

can be used as universal approximations of continuous functions. Maass proposed a 

three-layer SNN (consisting of the input layer, the generalization layer and the 

selection layer) to perform unsupervised pattern analysis. Mishra (Mishra et al., 

2006) applied spiking neural networks to several benchmark datasets (which include 

internet traffic data, EEG data, XOR problems, 3-bit parity problems, iris dataset) 

and performed function approximation and supervised pattern recognition (Gr¨uning 

and Sporea, 2011).  
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         One of the ongoing issues in SNN research is how the networks can be trained. 

Much research has been done on biologically inspired local learning rules (Gerstner 

and Kistler, 2002a, 2002b; Kasabov, 2010), but these rules can only carry out 

supervised learning for which the networks cannot be trained to perform a given task.  

Classical neural network research became famous because of the error-

backpropagation learning rule. Due to this, a neural network can be trained to solve a 

problem which is specified by a representative set of examples. Spiking neural 

networks use a learning rule called SpikeProp which operates on networks of spiking 

neurons and use exact spike time temporal coding (Bohte et al., 2002). This means 

that the exact spike time of input and output spikes encode the input and output 

values.  

1.2.2 Learning in Spike Neural Networks (SpikeProp) 

 

 

Supervised learning (SpikeProp) in Spiking Neural Networks (SNNs)  is 

usually performed by a gradient descent method which explicitly evaluates the 

gradient of an error function  on the back-propagation algorithm (ˇS´ıma, 2009; 

Bohte, et al., 2002; Gr¨uning and Sporea, 2011).  Using this algorithm, SNN learns 

the desired firing times of the output neurons by adapting the weight parameters in 

the Spike Response Model (Gerstner and Kistler, 2002b). Several experiments have 

been carried out on SpikeProp to clarify several burning issues such as the role of the 

parameters for initialization and the significance of negative weights (Moore, 2002). 

SpikeProp can be further enhanced with additional learning rules for synaptic delays, 

thresholds, and time constants (Schrauwen and Campenhout., 2007) which will 

normally result in faster convergence and smaller network sizes for given learning 

tasks. An essential speedup was achieved by approximating the firing time function 

using the logistic sigmoid (Berkovec, 2005). Implementation of SpikeProp algorithm 

on recurrent network architectures has shown promising results (Tiˇno and Mills, 

2005). 
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SpikeProp does not usually allow more than one spike per neuron which makes 

it suitable only for ‘time-to-first-spike’ coding scheme (S. Thorpe, et al., 2001). Its 

adaptation mechanism fails for the weights of neurons that do not emit spikes. These 

difficulties are due to the fact that spike creation or its removal due to weight updates 

is very discontinuous. ASNA-Prop has been proposed (Schrauwen and Campenhout., 

2007) to solve this problem by emulating the feed forward networks of spiking 

neurons with the discrete-time analog sigmoid networks with local feedback, which 

is then used for deriving the gradient learning rule (Gr¨uning and Sporea, 2011). It is 

possible to estimate the gradient by measuring the fluctuations in the error function 

in response to the dynamic neuron parameter perturbation (Fiete and Seung, 2006). 

Table 1 summarizes the differences among the EBP, SNN and SpikeProp algorithms. 

 

 

               Table 1.1 Summary of Differs of EBP, SNN and SpikeProp 

 

 

 

EBP 

They are second generation ANNs which do not use step- or 

threshold functions to compute their output signals. Their 

activation functions are continuous, making them suitable for 

analog in- and output operations. They are more powerful than 

their first generation predecessors. Software simulations 

associated with them are easy to implement (Y.-J. Jin, et al., 

2013; Zweiri et al., 2003). 

 

 

SNN 

They are third generation ANNs. Functionally, they operate 

like real biological systems because the neurons facilitate the 

use of   individual spikes. In the past, SNNs were considered 

too complex and difficult to analyze. Recently, many 

researchers have become aware of their potential to operate in a 

manner more powerful than the first generation and the second 

generation ANNs. (Kasabov, 2010; Negnevitsky, 2002). 

 

Spikeprop 

The firing time of SNNs can be shifted by adapting the 

incoming synaptic weights, the threshold and the membrane 

time constant.  Bohte et al. used this idea for developing an 

error-backpropagation learning method based on the exact 

timing of spikes called SpikeProp, (Bohte, et al., 2002; 

Gr¨uning and Sporea, 2011). 
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1.3    Problem statement  

 

 

Performance of SNNs is dictated by its architecture algorithm. It has been 

important for this research work to develop a learning algorithm for the SNN so that 

it is able to classify data. Biologically inspired SNN is normally capable of 

implementing supervised learning (ˇS´ıma, 2009). However, supervised learning rule 

is implementable if it operates in conjunction with backpropagation (ˇS´ıma, 2009). 

This learning rule is called SpikeProp which utilizes spike time temporal coding 

while the backpropagation is treated as a network of spiking neurons . In this case, 

the input and output variables perform encoding according to the correct spike time 

of both the output and input spikes.  

 

 

For the supervised learning rule of SpikeProp, the learning rate , the 

momentum, the bias, the minimum error for the transfer, the activation function and 

the initial weights are similar to that of other ANNs. The performance of SpikeProp 

is determined by the learning parameters of the BP network. Hence, it is necessary 

for this study to focus on finding ways to enhance the performance of SpikeProp by 

optimizing the back propagation initializing weights and the architectures of SNNs. 

Particle Swarm Optimization (PSO) is one technique which can be used for this 

purpose.  

In the course of this thesis, the aim is to highlight important issues and provide 

solutions to a number of general and specific research questions concerning SNNs. 

How will it be possible to enhance SpikeProp to enable them to efficiently 

process data?    
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This question is answered in Chapters 4 and 5, where this thesis has, among 

other things, suggested that accuracy (low error) and the use of less number of 

iterations (less time to optimize) can be achieved by using: 

1. Multi decision techniques to get to the optimum (Model 1). 

2. Use of Angle driven dependency Learning Rate (Model 2). 

3. Radial segmentation of the weights space to aim directly on to the optimum 

position (Model 3a). 

4. Use of chromosomes (agents)   to identify optimum positions quickly (Model 

3b). 

          What will be the optimum back propagation initializing weights and what will 

be the best architectures of SNNs for classification tasks? 

 This question is also answered in Chapters 4 and 5. This thesis stipulated that 

the best architecture of SNN for classification tasks is that which can guarantee so 

that SNN has components which get the initial weights as close as possible to the 

optimum positions and also has components which can search for the optimum 

quickly (Model 4 and Model 5).  

 

 

 

1.4    Objectives of the Research  

 

 

The goal of this study is to propose an optimum back propagation 

configuration for spiking neural network (using SpikeProp as the supervised learning 

rule) according to the following considerations:  

 

 

1. Adopt new initial weights methods.  
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2. Propose appropriate momentum factors which are needed to speed up 

convergence and estimate corresponding adaptive learning average or rate  

3. Suggest methods, for example, by using PSO rules to enhance architectures of 

SpikeProp.   

 

 

The objectives of this research are focused on. 

 

 

1. To enhancing  Spikeprop’s architecture by: 

 

I The implementation of PSO for learning optimization (Model 1). 

II Proposing the parameters  for  μ Angle Driven Dependency learning rate in   

SpikeProp (Model 2)   

III  Determining Radius Initial Weights (RIW) for SpikeProp to accelerate 

learning ( Model 3a). 

IV  The development of DE for SpikeProp weights initialization (Model 3b). 

 

2. To propose the hybridization  for better SpikeProp performance by: 

 

 

I PSO Spikeprop with learning rate μ Angle Driven Dependency (Model 4). 

II PSO SpikeProp with RIW and DEA weights initialization (Model 5). 

 

 

3. To evaluate and compare the proposed method with the conventional 

approaches SpikeProp and BackPropagation standard.  
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1.5   Scope of the Study 

      

 

1. Using C++ program to develop several SNN Models, each having its own 

learning characteristic. It has been established that in order for SNN to 

perform classification accurately and quickly, two important issues have to be 

resolved. The first issue is how to get the initial weights as close to the 

optimum as possible.  The second is how to get to the optimum with 

minimum error. For this reason many different novel BP SNN algorithms 

(SpikeProp) were tested. The development and testing of Models 1, 2, 3a, 3b, 

4 and 5 are described in Chapters 4 and 5. 

 

 

2. Data sets from breast cancer, Pima Indian diabetes, heart, BTX, hepatitis, 

liver and Iris were used for testing the different SNN models to ascertain and 

identify their classification properties. These datasets are known for their 

attributes, classes, samples, inputs and outputs (as mentioned in Table 5.1). 

For each of these datasets both Hold-Out Validation and K-Fold Cross 

Validation (training and testing procedure) were used to find-out which of the 

two has an advantage. XOR datasets is a test pattern to inspect the firing 

times of SNN. Therefore, XOR will bring about the worst case scenario in 

any model that is tested.   

 

 

3. Matlab 8.0 was used to look at the behavior of the output generated by 

supervised BP (standard ANN BP).  The behavior of the output generated by 

standard SpikeProp was studied using C++.  The results from the Matlab 8.0   

program (standard ANN BP) as well as the results from the C++ program 

(standard SpikeProp) were then compared to the models which have been 

developed.  
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1.6   Thesis Organization   

 

 

 

Lately, SNN has captured the imagination of researchers and scientists because 

SNN operates in a manner similar to biological neurons which communicate with the 

help of electrical pulses. The advantage of SNN over standard ANN is the fact that in 

SNN there is no attenuation of the communicated signals, the energy used is small 

and SNN allows ”refresh“ in the system so that no residual signal remains which can 

interfere with the function of classification .  

 

Chapter 2, Literature Review, give a review on error back propagation (EBP), 

Spiking Neural Networks and SpikeProp algorithm and the impact of error functions 

and learning parameters on BP and SpikeProp. The workings of PSO and DE are 

explained in some length because these two systems are the basis of important 

modification made to SNN architecture (SpikeProp algorithm) to improve 

performance (training and classification ANNs, SNN network design. SNN and 

SpikeProp are detailed in this chapter. Broad overview about the basic concepts and 

traditional techniques of Artificial Neural Network (ANN), Spiking Neural Network 

and SpikeProp are given. Furthermore, applicability of Spiking Neural Network in 

ANN learning and especially BP and SpikeProp Algorithm learning were discussed. 

 

Chapter 3, Research Methodology, comprises of research methodology, 

describing the overall solving-tools and standard techniques adopted. It also displays 

a general picture about each phase of the work. This chapter discussed the 

methodology which was used in this research and describes new techniques and 

parameters that are required for BP learning and Spikeprop. It discusses thoroughly 

the requirements, framework and phases of this research. It consists of standard 

algorithms of SpikeProp algorithm learning. 

 

Chapter 4, The Proposed Models For Spikeprop Learning Enhancements 

This chapter proposes the design and implementation technique which is 

improved the performance of SpikeProp. It was observed that the errors (MSE, 

RMSE, MAPE and MAD) of SpikeProp can be reduced by using μ Angle driven 

Learning rate dependency (Model 2 and used the PSO as a means of improving 



13 
 

SpikeProp. In other words, combining SpikeProp and PSO (to get Model 1- 

PSOSpikeProp) should result in an algorithm which will have many positive values. 

Model 1 -PSOSpikeProp. Therefore this chapter also looks at a technique of 

obtaining good initial weights by using RIW (Model 3a) and by using DE (Model 

3b). Just as we get good strain by cross –breeding two good genes, it may be possible 

to get good SpikeProp algorithm by hybridizing two good techniques. Therefore, this 

thesis looks at the hybridization of Model 1 and Model 2 (to get Model 4) and also 

the combination of   Model 1, Model 3a and Model 3b (to get Model 5).  

Chapter 5, Results and Discussion, correlates different techniques by comparing 

different results produced by the proposed Model 1, Model 2. Model 3a, Model 3b, 

Model 4 and Model for classification problems. Performance of the proposed 

methods is compared, analyzed and benchmarked with previous results. This thesis 

investigates ways in which the performance of SNN can be improved. Several SNN 

models were developed. For each model the architecture, the learning process and 

the testing procedure is uniquely different. This is discussed in detail in Chapters 4 

and 5. SpikeProp which is an algorithm that mimics the function of SNN is a useful 

tool for the investigation of SNNs.   

Chapter 6, Conclusion and Future Work, discusses and highlights the 

contributions and findings of the research work, and it provides suggestions and 

recommendations for future study. 
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