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ABSTRACT 

 

 

 

 

Stock prices usually appear as a series of zigzag patterns that move in upward 

and downward trends. These zigzag patterns are learned as a tool for predicting the 

stock market turning points. Identification of these zigzag patterns is a challenge 

because they occur in multi-resolutions and are hidden in the stock prices. 

Furthermore, learning from these zigzag patterns for prediction of stock market 

turning points involves vagueness or imprecision. To address these problems, this 

research proposed the swarm-based stock market turning points prediction model 

which is a combination of a zigzag patterns extraction method, and a mutation- 

capable particle swarm optimization method.  This model also includes the stepwise 

regression analysis, adaptive neuro-fuzzy classifier, and subtractive clustering 

method. This study explores the benefits of the zigzag-based multi-ways search tree 

data structure to manage the zigzag patterns for extracting interesting zigzag patterns.  

Furthermore, the mutation capable particle swarm optimization method is used to 

optimize the parameters of subtractive clustering method for finding the optimal 

number of fuzzy rules of adaptive neuro-fuzzy classifier. Stepwise regression 

analysis is used to select the important features from the curse of input dimensions. 

Finally, adaptive neuro-fuzzy classifier is used for learning the historical turning 

points from the selected input features and the extracted zigzag patterns to predict 

stock market turning points. The proposed turning points prediction model is tested 

using stock market datasets which are the historical data of stocks listed as 

components of S&P500 index of New York Stock Exchange. These data are stock 

prices that are either moving upward, downward, or sideways. From the findings, the 

proposed turning points prediction model has the potential to improve the predictive 

accuracy, and the performance of stock market trading simulation. 

 

 

 

 



vi 

ABSTRAK 

 

 

 

 

Pasaran saham selalunya muncul sebagai siri dalam corak zigzag yang 

bergerak sama ada dalam bentuk indeks meningkat atau indeks menurun. Corak 

zigzag ini dikenalpasti sebagai salah satu alat untuk untuk meramal titik perubahan 

pasaran saham. Untuk mengenalpasti corak zigzag adalah merupakan satu cabaran 

kerana kerana ianya berada dalam pelbagai resolusi dan tersembunyi di dalam nilai 

pasaran saham. Tambahan pula, pola pembelajaran di dalam meramal titik perubahan 

pasaran saham melibatkan kesamaran dan ketidaketepatan terhadap corak, dan kajian 

ini mencadangkan teknik titik perubahan pasaran saham secara kelompok melalui 

kombinasi di antara kaedah pengekstrakan corak zigzag dan pengoptimuman 

kerumunan partikel boleh mutasi. Model ini juga merangkumi analisis regrasi 

berperingkat, pengkelas neuro kabur, dan juga pengklusteran penolakan. Kajian ini 

mengkaji kelebihan struktur data zigzag berdasarkan pelbagai kaedah carian yang 

mempunyai ciri-ciri yang menampung corak zigzag yang mengekstrak corak zigzag 

yang menarik. Kaedah pengoptimuman kerumunan partikel boleh mutasi digunakan 

untuk mengoptimum nilai parameter daripada kaedah pengklusteran penolakan untuk 

mencari nilai optimum bagi pengkelas neuro kabur. Analisis regrasi berperingkat 

digunakan untuk memilih ciri-ciri yang penting daripada dimensi input. Bagi 

pengkelas neuro kabur pula, kefahaman mengenai statistik titik perubahan pasaran 

saham yang di ekstrak dari corak zigzag dan ciri-ciri input yang terpilih digunakan 

bagi meramal titik perubahan di masa akan datang. Ramalan titik perubahan pasaran 

saham yang telah diuji dengan set data pasaran saham yang terdahulu yang tersenarai 

sebagai komponen  indeks S&P500 yang terdapat dalam Bursa Saham New York di 

mana data pasaran saham  yang diuji adalah merangkumi statistik pasaran saham 

yang meningkat, menurun dan pergerak sisi. Melalui kajian ini, model titik 

perubahan saham yang telah diusulkan mempunyai potensi bagi meningkatkan 

ketepatan ramalan dan juga prestasi simulasi perdagangan pasaran saham. 
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CHAPTER 1

INTRODUCTION

1.1 Overview

A large fraction of attention from the data mining community has focused on 

time series data. This is plausible and highly anticipated since time series data is a 

by-product in virtually every human endeavor, including biology (Titsias et al., 

2012), finance (Liu et al., 2012), geology (Morton et al., 2011), space exploration 

(Lafleur and Saleh, 2010), and human motion analysis (Akiduki et al., 2011). The 

study of time series dates back to the 1960s, where the analysts focused mainly on 

financial data such as stock market movements. Common tasks on classic time series 

analysis include prediction, finding trends, seasonality, etc.

Financial or stock market prediction can be considered as an attractive task 

since it is able to gain amount of money which people who trade in financial or stock 

markets usually focus their determination to the market timing for taking action to 

buy, hold, or sell (Chang et al., 2011). Unfortunately, stock market prediction is not 

an easy task, due to the fact that stock market is essentially dynamic, nonlinear, 

complicated, nonparametric, imprecise, and chaotic in nature (Jung et al., 2011; Liu 

et al., 2011; Ozer and Ertokatli, 2011; Peters, 1994).

Financial time series has high volatility, where the time series change as the 

stock markets move in and out of different periods, or in other words, stock market 

shows the variation of stock prices as upward and downward direction overtime
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(Golosnoy et al., 2011). In addition, stock market's movements are affected by many 

macro-economic factors such as political events, firms’ policies, general economic 

conditions, investors' expectations, institutional investors' choices, movement of 

other stock markets, and psychology of investors (Chang et al., 2009). Those 

factors drive stock prices moving in upward, downward, or sideways trends. Stock 

prices are determined solely by interaction of demand and supply. Furthermore, stock 

prices tend to move in trends (Edwards et al., 2007b) . Shifts in demand and supply 

causes reversals in trends and can be detected in charts (Bauer and Dahlquist, 1999). 

Finally, chart patterns tend to repeat themselves (Brown, 2012; Canelas et al., 2012; 

Edwards et al., 2007a). Hence the shifts of demand and supply influence the stock 

and will affect the stock price. However, technical analysts believe that the market is 

always correct , all factors are already factored into the demand and supply curves, 

and, thus, the price of the company’s stock (Kirkpatrick, 2007; Schwager, 2012).

As mentioned above, the stock prices often move up and down. Obviously, 

considering price movement behaviors after an uptrend movement, the stock often 

oppositely changes the trend to the down trend movement. Conversely, after the 

down trend ends, the stock trend often changes the direction to the uptrend again. 

The trends frequently change the directions to upward and downward trends sub- 

sequentially. The changing points of upward trends to the downward trends are 

known as peaks and the changing points of the downward trends to the upward 

trends are known as troughs. In other words, a peak will appear when the stock prices 

which is in an upward trend is interrupted and the stock prices start to move in the 

downward trend, and conversely, a trough will appear when the stock prices which is 

in a downward trend is interrupted and the stock prices start to move in the upward 

trend. The term “zigzag pattern” has been used to describe the peaks and troughs that 

investors can lay down on a chart that they are viewing (Edwards, et al., 2007b), 

however, the significant zigzag patterns are unobvious, contaminated with noise, or 

hidden in the data and, hence, are difficult to be discovered and interpreted.

Zigzag patterns is one of stock price patterns that experts use along with some 

other patterns such as reversal patterns (Bouchentouf et al., 2011), or Elliott waves 

(Brown, 2012; Richard, 2003) to predict the future price movement. Unfortunately,
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experts predict the stock market based on vague, imperfect and uncertain knowledge 

representation because they usually use the raw data which usually consist of high 

dimensionality, is imprecise, and uncertain, in their stock market time series. Along 

with the development of artificial intelligence; for example, machine learning and 

data mining, a number of researchers attempted to build automatic decision support 

systems to predict stock market (Chan and Franklin, 2011; Wen et al., 2010). A 

number of artificial intelligent methods have been applied for stock prediction such 

as neural networks (Chaigusin et al., 2008; Chang et al., 2012; Hajizadeh et al., 

2012; Pino et al., 2008), evolutionary methods (Hsu, 2011; Wang et al., 2012), 

support vector machine (Wen, et al., 2010; Zhao et al., 2012), etc. However, as 

stock market prediction relates to imprecise concepts and imprecise reasoning 

decision (Zadeh, 1975), therefore fuzzy logic is seen as a choice for knowledge 

representation and is applied in stock market prediction (Atsalakis and Valavanis, 

2009a; Boyacioglu and Avci, 2010a; Liu et al., 2012; Wei, 2011).

Fuzzy logic, introduced by Zadeh (1965, 1975), is a form for reasoning 

method with vague knowledge. A fuzzy based model is known as a preferable 

approach among a number of available models for making prediction. It is essential 

for the prediction model that closely corresponds to the way experts work like 

interactive problem solving and explanation facilities to justify the decision making.

However, among above approaches, using a single method for stock market 

prediction may produce the poor result with low accuracy or high error comparing to 

the actual values. Obviously, by nature, the stock market prediction problem 

requires the combination of a number of techniques together instead of exclusive 

single technique to increase the prediction performance (Atsalakis and Valavanis, 

2009b; Wang, et al., 2012). Recently, researchers combined fuzzy logic technique 

with neural networks (Agrawal et al., 2010; Boyacioglu and Avci, 2010b), particle 

swarm optimization (Liu, et al., 2012) , genetic algorithms (Chang, et al., 2012) etc. 

in order to improve the prediction performance. The results reported that, obviously, 

the hybridizations of fuzzy logic with other methods produce better prediction 

performance than their basic single methods. However, in the fuzzy based methods, 

the appropriate number of generated fuzzy rules is important because it affects the
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prediction performance, thus the optimal number of fuzzy rules is still an issue and 

required to be improved.

Searching for the appropriate number of fuzzy rules has been widely studied. 

However, a number of researchers used the subtractive clustering method (Chiu,

1994) to solve the problems (Esfahanipour and Mardani, 2011; Torun and 

Tohumoglu, 2011; Zanaganeh et al., 2009) because it is able to find an appropriate 

number of clusters which correspond to a number of fuzzy rules. However, the 

subtractive clustering method requires some predetermine parameters to search a 

number of clusters. Some optimization methods; e.g. particle swarm optimization, 

and genetic algorithm were used to find the optimal values of these parameters (Chen 

et al., 2008; Shahram, 2011; Zanaganeh, et al., 2009).

1.2 Background of Problem

Prediction of stocks is generally believed to be a very difficult task. There are 

several attempts to predict stock market in order to help investors to make decision 

of buying a stock at the bottom and selling it at the top in the range. The points where 

stock prices change their trend directions are called turning points (Bao and Yang,

2008). The turning point of changing the trend direction from an upward trend to the 

downward trend is called the peak, and the turning point of changing the trend 

direction from a downward trend to an upward trend is called the trough point 

(Siegel, 2000). Predicting price behaviors on the financial market such as trends and 

turning points have been considered as important tasks and have been widely 

discussed (Bao and Yang, 2008; Chang, et al., 2012; Li and Deng, 2008; Ni et al., 

2011; Poddig and Huber, 1999).

In general, the markets do not exclusively move in one direction, but they 

move in upward and downward directions sub-sequentially by a series of zigzag 

directions (Edwards, et al., 2007b). These zigzag directions form a series of 

consecutive zigzag waves which represent the obvious peaks and troughs. The
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direction of each pair of a peak and a trough constitutes a market trend of upward, 

downward, and sideways trends. An upward trend is a series of consecutively higher 

peaks and troughs; a downward trend is a series of consecutively lower peaks and 

troughs; finally, a sideways trend is a series of horizontal peaks and troughs 

(Edwards, et al., 2007b; Siegel, 2000).

Naturally, the prediction of financial time series trends relies on the discovery 

of strong empirical turning points in observations of the system (Li, 2009; Liu and 

Kwong, 2007). Turning points, obviously, position nearby or at the peaks and 

troughs of the time series (Bao and Yang, 2008). Nevertheless, since these turning 

points are often masked by noise, and hidden in the price movement, thus, the 

accurate prediction of trends and turning points is very difficult. Many researchers 

have attempted to predict stock market based on learning from turning points, which 

the experimental results showed that learning from the historical turning points 

affected the stock market prediction performance (Bao, 2007; Bao and Yang, 2008; 

Chang, et al., 2012; Li, 2009). In order to predict the stock market in the accurate 

way, discovery and learning from the zigzag patterns are very important since the 

zigzag patterns represent the zigzag moving trends of prices consisting of the sharp 

top points or “peaks” and the deep bottom points or “troughs”. Peaks and troughs are 

cooperated as patterns that are developed by the price action of all securities. The 

straight line connecting between a pair of a peak and a trough or a trough and a peak 

represents a trend (Kirkpatrick, 2007). Peaks bring an appreciation on stocks, 

consumer-spending surges, and there is obviously high consumption. When a series 

of rising or falling of peaks and troughs is interrupted, it is a signal that a trend 

reversal may be taking place, or in other words, a turning point occurred (Lan et al., 

2011; Siegel, 2000). The example of demonstration of peaks, troughs, trends, and 

turning points are shown in Figure 1.1.
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Figure 1.1: Plot of stock prices with trends and points of peaks and troughs which 

represent the turning points for stock of Akamai Technologies Inc. (AKAM)

Points of changing of trends which are called peaks and troughs, can be 

generally called as turning points. If the stock price is at the trough turning point, 

good investors need to buy the stock, but, conversely, if the stock price is at the peak 

turning point, good investors need to take profits by selling that stock. The example 

representing of selling/buying points is shown in Figure 1.2. As mention above, the 

identification of the turning points is a challenge of stock market prediction.
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Figure 1.2: Plot of stock prices and trends representing of buying/selling points for 

stock of Akamai Technologies Inc. (AKAM)

1.3 Problem Statement

In the few past decades, a number of scholars studied and looked at stock 

price movement direction or trend by using various kinds of data mining techniques 

(Atsalakis and Valavanis, 2009a; Chang, et al., 2012; Dai et al., 2012; Edwards, et 

al., 2007b). In general, the trend is the direction of the market of moving up, or 

down. The trend always moves upward and downward directions subsequently. Or in 

other words, after the market moves in one direction e.g. upward direction the 

markets change its direction to opposite direction like downward direction and after a 

period it move upward gain (Edwards, et al., 2007b).

Identification of zigzag patterns is a challenge since zigzag patterns usually 

hide in the high dimensions of stock prices. The high dimensions of stock prices 

indicate as the frequently changing of stock prices over time. Moreover, the zigzag 

patterns also usually occur in multi-resolutions, or in other words, the zigzag patterns
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occur in either short or longer time frames. Fu et al (Fu et al., 2008) used the 

perceptually important points (PIPs) identification method to collect important points 

and used the specialize binary tree (SB-Tree) to structurally index those collected 

PIPs. SB-Tree is a kind of multi-way search tree (M-Tree) or a tree with maximum 

available having M children where M is two. However, the retrieved patterns do not 

exactly form zigzag patterns. The patterns that characterize the behavior of stock 

prices always form a series of consecutive zigzag waves which clearly represent the 

peaks and troughs. For stock trading activities, early detection of turning points is the 

key of success. Investors decide to buy a stock if it is at a trough turning point and 

they decide to sell a stock if it is at a peak turning point.

However, if the stock is along in an upward trend investors need to decide to 

hold the stock and wait for the price movement until the stock price reaches the peak 

turning point, oppositely, if the stock is along in a downward trend investors surely 

do not enter to buy the stock but they have to wait for the price moving until reaches 

the trough turning point. Such that, the way how to identify the turning point is a 

challenge because the turning points usually occur in multi-resolutions and hide in 

the high dimensionality of stock prices. Many attempts have been used to identify or 

predict the turning points by using statistical approaches (Giot and Petitjean, 2011; 

Marsh, 2011), or artificial intelligent (AI) approaches (Chang, et al., 2011; Li, 2009). 

However, the statistical approaches like autoregressive model, it is limited to only 

single predictor, in the real world, there are many factors affect the stock price 

movement.

AI methods are widely used to improve the prediction performance such as 

neural networks (Asadi et al., 2012; Dai, et al., 2012) and fuzzy logic (Atsalakis et 

al., 2011; Liu, et al., 2012). Neural networks represent their remarkable feature to 

learn how to work with tasks based on the given training data (Gallant, 1993; Rao 

and Cecchi, 2011). On the other hand, fuzzy logic is known as the technique that can 

solve the problems with imprecise data and linguistic concepts like the ones 

generated from stock markets (Atsalakis et al., 2012; ElAal et al., 2012). Stock 

prediction involves vagueness or imprecision of concepts and reasoning. However,
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although fuzzy logic can uncover the imprecise problem, fuzzy logic does not have a 

learning ability.

Recently, a number of researchers introduced hybrid methods of neural 

networks and fuzzy logic (Jang, 1993; Sun and Jang, 1993). Jang (1993) introduced 

an Adaptive Network based-Fuzzy Inference System (ANFIS) which is a 

hybridization of neural networks and fuzzy inference system. ANFIS learns from a 

given training data by using the hybrid of gradient descent and least-squares method 

for parameters updating. Sun and Jang (1993) proposed adaptive neuro-fuzzy 

classifier (ANFC) to solve the fuzzy classification problem. ANFC learns patterns 

from data by using gradient descent based method.

Since the prediction of turning points is a classification of the trend for future 

trading day as upward or downward trend thus ANFC based techniques can be 

suitably employed to solve turning points prediction with imprecision problem.

Although the networks concept in ANFC can be used for tuning the 

parameters of membership functions and other parameters of the fuzzy rule base of 

the learning process, however a number of fuzzy rules which related to the 

performance of ANFC is still the issue. The appropriated number of fuzzy rules can 

lead to the higher performance of fuzzy classification problem. A critical problem is 

how to find an appropriate number of fuzzy rules. Clustering based method is 

frequently used to determine a number of fuzzy rules. The number of clusters which 

are found by the subtractive clustering method indicates a number of fuzzy rules.

Most recent studies used subtractive clustering method to determine the 

number of clusters of the input space because it can automatically determine a 

number of clusters. However, subtractive clustering method requires the user to set 

some optimal parameters of input space radii and a squash factor. Many researchers 

used the optimization techniques, e.g. Genetic algorithm (GA) (Zanaganeh, et al.,

2009) or particle swarm optimization (PSO) (Chen, et al., 2008) to optimize these
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parameters. Nevertheless, these powerful optimization methods have their inherent 

shortcomings and limitations (Wang et al., 2007).

GA is known as the chromosome encoding based global optimization method 

developed by Holland (1975). GA can improve its performance by performing its 

operators e.g. selection, reproduction, mutation, and crossover. However, GA usually 

delays convergence speed and it may destruct good gene in a chromosome (Yang et 

al., 2007). PSO is a population based stochastic optimization technique developed by 

Kennedy and Eberhart (Kennedy et al., 2001). In PSO, each potential solution is 

assigned to a particle. PSO, as a relative new evolutionary algorithm has been 

successfully applied to unconstrained and constrained optimization with fast 

convergence. However, PSO may easily be trapped into local optimum (Hu et al., 

2004).

As can be seen, the combination of the computational intelligence 

methodologies can usually provide superior performances over employing them 

individually (Olmeda and Fernandez, 1997). A hybrid method of two single methods 

like PSO and GA are widely used for optimization problems (Alireza, 2011; Kuo and 

Han, 2011). However, these hybrids are done with different techniques. Aireza 

(2011) used adaptive mutation of GA method for combining to PSO algorithm while 

Kuo and Han (2011) integrated the mutation mechanism of GA to PSO then used 

elitist policy to enhance the evolutionary performance.

However, to integrate the mutation mechanism to PSO method is an issue 

since in each iteration process, PSO produces a global best particle which behaves 

the best performance among the swarm in the iteration. If the global best particle is 

mutated this may bring the global best particle lost the chance of getting better 

position based on current position updating in the next iteration. Thus, it is a better 

idea to prevent the global best particle from mutation operation in the iteration for 

keeping the best position of the particle.
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In this research, the fuzzy based stock market turning points prediction is 

focused. The idea of the prediction is since the stock markets always move upward 

and downward subsequently, or in other words, they always move in zigzag patterns, 

the identification of these zigzag patterns can benefit in the future movement 

prediction. However, the zigzag patterns consist of two major parameters to be 

specified; the oscillation size and the trading time frame. These two parameters are 

hidden in the stock prices and difficult to specify. Next, performance of the fuzzy 

based prediction method relates to a number of used fuzzy rules. A number of fuzzy 

rules can be specified by the subtractive clustering method. However, the subtractive 

clustering method requires the optimal parameters specification. The global 

optimization method is needed to search for optimal number of clusters in subtractive 

clustering method. The particle swarm optimization method (PSO) is known as a fast 

convergence optimization method, but it is easily be trapped in local optima. 

Additionally, the mutation operation in genetic algorithm (GA) is known as the 

global optimization operation, thus it is the good idea to incorporate the mutation 

operation into the PSO method. However, in PSO, each iteration of searching the 

global best particle (gBest) is found. The gBest particle is the best performance 

particle in PSO, it should be protected from the mutation operation during the PSO 

flying in the searching space. Finally, the stock market turning points prediction 

based on the learning from zigzag patterns and the fuzzy concept data is the major 

techniques used in this research.

The proposed framework for stock market turning points prediction can 

benefit for stock market investors to take actions in stock market trading strategy. 

Furthermore, if investors want to buy a stock, the investors are advised to wait until 

the stock price reaches the trough turning points and then they are advised to hold the 

stock until the stock price reaches the peak turning point, the investors are then 

advised to sell that stock. This aims to gain the high profit in stock market trading 

strategy. Although there are several stock market prediction models exists but the 

proposed model shows it’s excellent in the benefit of fuzzy based prediction since the 

used stock market data are imprecise and vague to interpret. Furthermore, the 

proposed model can learn from the historical turning points in order to predict the 

future turning points.
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displayed in Table 1.1.
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Table 1.1 : Issues in turning points prediction with solved and unsolved issues

Main Issue Solved Issue Unsolved Issue

Zigzag pattern 

extraction from stock 

time series

Collecting the important 

points and indexing them 

structurally (Fink and 

Pratt, 2003; Fink et al., 

2003; Fu, et al., 2008)

The retrieved patterns 

do not behave in the 

zigzag manner with 

specific of oscillation 

size and the trading 

time frame.

Global optimization 

method of hybrid PSO 

and GA

The mutation mechanism 

of GA is combined to all 

particles in PSO process 

(Alireza, 2011; Kuo and 

Han, 2011; Premalatha 

and Natarajan, 2009).

The global best particle 

in PSO of the iteration 

is not kept for the next 

iteration but it is still be 

mutated.

Turning points 

prediction based on 

imprecise data and 

learning from zigzag 

patterns.

- Turning points prediction 

without supporting 

imprecise data problem 

(Bao and Yang, 2008; Li, 

2009)

- Turning points with 

supporting imprecise data 

but not supporting 

learning from zigzag 

patterns (Atsalakis, et al., 

2011; Hsu, 2012)

Turning points 

prediction learning from 

imprecise data and 

learning from zigzag 

patterns.
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Mainly from the issues state above, the primary research question is:

“How to extract zigzag patterns from stock market time series, next, how to 

design the hybrid global optimization method in order to search for the optimal 

parameter o f subtractive clustering method which are used for identifying the 

appropriate number o f fuzzy rules, and finally, how stock market data can be 

classified using fuzzy based classifier with a number o f fuzzy rules which are 

initialized by the subtractive clustering method, and the extracted zigzag patterns, in 

order to identify the stock market turning points which are used for trading 

decision. ”

The secondary research questions that need to be addressed in order to 

complement the primary research questions and the solutions are given below:

Problem 1: How to structurally extract the zigzag patterns from stock market time 

series with specific interest size of oscillation and trading time frame?

Solution 1: Propose algorithm for zigzag patterns extraction which comprises of 

three sub-solutions; zigzag-perceptually important points (ZIP) identification 

method, zigzag based multi-way search tree (ZM-Tree), and zigzag patterns retrieval 

from the ZM-Tree based on the specifications of percentage of oscillation size and 

interest trading time frame.

Problem 2: How to design the hybrid global optimization method that meets the 

global convergence?

Solution 2: Construct the mutation capable particle swarm optimization (MPSO) 

which is a hybrid method of PSO and GA by incorporating the mutation operation of 

GA into the particles of PSO. Each particle in MPSO normally operates its velocity 

and position then the consideration of performing the mutation operation to the 

particle position. The consideration is done by determining whether each particle is a 

global best particle or not. If it is the global best particle, the mutation operation is 

prohibited otherwise the mutation operation is performed.
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Problem 3: How to uncover the hidden patterns of stock market time series for stock 

market turning points prediction which are used to conduct the trading strategy?

Solution 3: The swarm based fuzzy turning points prediction (SFTPP) model is 

constructed in order to learn the zigzag patterns and predict the turning points for 

conducting the trading strategy. SFTPP model is created based on adaptive neuro- 

fuzzy classifier which learns the historical information from the selected features and 

the extracted zigzag patterns. A number of the generated fuzzy rules of the ANFC is 

determined by the subtractive clustering method with the parameters optimization 

based on MPSO method. The learned model is used to predict the future turning 

points, and then these turning points are converted to trading signals and the trading 

strategy is conducted based on the generated trading signals.

1.4 Objectives of Research

The main objective of this research is to propose an approach in order to 

predict the stock turning points based on the extracted zigzag patterns by using the 

adaptive neuro-fuzzy classifier (ANFC) which the fuzzy rule generation technique is 

improved by applying the subtractive clustering method and the improved hybrid 

PSO and GA method. Therefore, this study investigates the hypothesis “zigzag 

pattern extraction method and fuzzy rules generated from the hybrid optimization 

method of PSO and GA can produce high accuracy of stock turning points 

prediction”. To achieve this goal, the following objectives have been set:

1. To develop a method for identifying zigzag perceptually important points 

that can be used to construct the zigzag based multi-way search tree 

which are essential to extract zigzag patterns from stock price time series.

2. To investigate the performance of the mutation capable particle swarm 

optimization method for the global optimization problem.
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3. To develop Improved Particle Swarm Optimization for Fuzzy Based 

Stock Market Turning Points Prediction method based on the extracted 

zigzag patterns, mutation capable particle swarm optimization, and 

adaptive neuro-fuzzy classifier.

1.5 Scopes of Research

The previous section has stated the objectives of this study which focuses on 

how to improve the stock turning points prediction problem. The following aspects 

are the scope of research for those objectives.

1. The study focuses on automatic stock turning points prediction through 

the zigzag patterns extracted from zigzag based multi-way search tree 

(ZM-Tree), and the retrieved zigzag patterns from the ZM-Tree are 

learned through adaptive neuro-fuzzy classifier (ANFC) which a number 

of fuzzy rules are generated by subtractive clustering method with the 

mutation capable particle swarm optimization (MPSO).

2. The study uses historical data of 9 stocks which are selected from stocks 

listed in S&P500 index of New York Stock Exchange (NYSE) since it is 

well-known and large in size stock market. The data covers the basic 

information of open, high, low, close and volume values which 500 

trading days during November 19, 2008 until November 14, 2010 are 

used as training set, and 150 trading days during November 15, 2010 until 

June 22, 2011 are used as testing set. However, for the selected stocks, the 

testing period must meet these constraints, the first three stocks must be in 

the upward trend, the next three stocks must be in the sideways trend, and 

finally, the last three stocks must be in the downward trend. The length of 

training period is 500 trading days and the testing period is 150 trading 

days. These are enough for using in training and testing processes because 

the trading time frames used in this research are in the short term periods. 

Thus the training and testing data above are enough for using in the
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model. The details of these time frames are explained in Chapter 3. All 

datasets are available to download from Yahoo finance (2012).

3. The performance of the proposed optimization method is compared to the 

standard particle swarm optimization (PSO) (Kennedy and Eberhart,

1995), standard genetic algorithms (GA) (Goldberg, 1989; Holland, 

1975), and a novel adaptive particle swarm optimization (APSO) 

(Alireza, 2011).

4. The performance of the proposed prediction model which is based on 

learning from the zigzag patterns is evaluated in terms of prediction 

accuracy. The model evaluation compares to some existing similar 

prediction models e.g. k-nearest neighbor classification (KNN) (Teixeira 

and de Oliveira, 2009), adaptive neuro-fuzzy inference system (ANFIS) 

(Esfahanipour and Mardani, 2011), and artificial neural networks (ANN) 

(Enke and Thawornwong, 2005).

5. The performance of trading results following up the prediction results by 

conducting the simple stock trading strategy. The performance 

evaluations are measured based on their rate of return (ROR) and rate of 

success trades (ROS). The comparisons are made to the results of the 

proposed model and the results of models based on KNN (Teixeira and de 

Oliveira, 2009), ANFIS (Esfahanipour and Mardani, 2011), and ANN 

(Enke and Thawornwong, 2005) as described above. Next, the trading 

results are also compared to the trading results generated from the 

technical analysis technique e.g. moving average convergence/divergence 

(MACD) which the trading signals are generated by Expert Advisor of 

MetaStock ® 10.1 (MetaStock, 2012). Finally, the comparison is made to 

the buy and hold (B&H) trading strategy as found in (Li, 2009).



17

1.6 Contributions of Research

In this section, the research contributions those lead to philosophy of the 

study in the problem domain perspective are highlighted. The contributions ordered 

by the related problems are stated as follows:

Problem 1: How to structurally extract zigzag patterns from stock market 

time series?

Contribution 1: Identification of zigzag patterns which is able to collect the 

zigzag patterns from stock time series and is able to specify the percentage of 

oscillation and the interest trading time frame for retrieval.

Problem 2: How to construct the global optimization algorithm for the global 

optimization problems?

Contribution 2: More effective global optimization method based on the 

hybridization of particle swarm optimization and genetic algorithms.

Problem 3: How to uncover the hidden patterns of stock market time series 

for prediction of stock market turning points which are further used to conduct the 

trading strategy?

Contribution 3: More effective stock turning points prediction for stock 

trading strategy based on the combination of the zigzag patterns extraction method, 

hybrid of particle swarm optimization method and genetic algorithms, and the 

adaptive neuro-fuzzy classifier.
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1.7 Thesis Organization

This thesis is structured into seven chapters as described follows:

Chapter 1, Introduction: this chapter presents the introduction of the research 

and the research background including discussion on the issues that need to be solved 

in this research area by stating the problems, the objectives, the scopes and 

contributions of this thesis.

Chapter 2, Literature Reviews: this chapter provides the literature and 

information of related area that leads to the problem statement and solution of this 

research. This chapter is covered by an overview of the survey in the research areas, 

some information and issues that related to stock turning points prediction, adaptive 

neuro-fuzzy classifier with learning algorithms, fuzzy rules generation methods, the 

global optimization methods and stock trading strategies.

Chapter 3, Methodology: This chapter describes the research methodology 

and justification for the solution approach to achieve the objectives of this research. 

The approach including zigzag patterns extraction, the design of hybrid particle 

swarm optimization and genetic algorithms for global optimization problem, and the 

swarm based fuzzy turning points prediction model are briefly presented.

Chapter 4, Zigzag Patterns Extraction: this chapter describes algorithm of 

extracting stock zigzag patterns based on the identified zigzag-perceptually important 

points and zigzag based multi-way search tree (ZM-Tree).

Chapter 5 A hybrid particle swarm optimization and genetic algorithms 

method for global optimization problems: this chapter introduces the proposed 

mutation capable particle swarm optimization (MPSO) method for global 

optimization problems.



19

Chapter 6, Swarm based fuzzy turning points prediction model: this chapter 

represents the stock turning points prediction model which is mainly constructed 

based on the zigzag patterns extraction method, the mutation capable particle swarm 

optimization method, and the adaptive neuro-fuzzy classifier. The stock turning 

points prediction results are converted to trading signals for simulating simple 

trading decision.

Chapter 7, Conclusion and future work: this chapter discusses and highlights 

the contributions and findings of the research work, and presents suggestions and 

recommendations for future study.
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