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ABSTRACT 

 

 

 

 

 

The evolutions of computer network attacks have urged many organizations 

to install multiple Network Intrusion Detection Systems (NIDSs) for complete 

monitoring and detection of intrusions. Such solution produces enormous number of 

alerts due to repeated and false positive alerts. This contributes to low quality alerts 

and makes manual Alert Correlation (AC) tedious, labour intensive and error prone. 

Besides that, alerts are also unformatted, unlabelled and unstructured. Thus, the 

actual attack strategy cannot be recognized. The existing AC models have few 

limitations. They only provide single type of correlation and rely on a large number 

of static predetermined rules to correlate alerts. Consequently, alerts are not being 

correlated completely and rules need to be manually updated regularly. Therefore, 

this research proposes a new automated Hybrid-based AC (HAC) model that 

provides complete correlation in terms of structural, causal and statistical. The 

purpose is to improve the quality of alerts as well as to recognize the attack strategy 

through alerts patterns. To accomplish this, it hybridizes Improved Unit Range 

(IUR), Principal Component Analysis (PCA), Expectation Maximization (EM) 

algorithm, Levenberg-Marquardt (LM) Backpropagation algorithm and statistical 

correlation tests to optimally recognize the known and new steps and stages of an 

attack strategy. New post-clustering algorithms are proposed and become part of the 

hybridization to filter out the low quality alerts. HAC is successfully experimented 

using DARPA 2000 benchmark dataset onto signature-based RealSecure Version 6.0 

NIDSs. The experimental results validate that HAC optimally correlate the alerts 

with 98.72% of correlation completeness (Rc) and 3.45 seconds of execution time. 

This shows that HAC is effective and practical in providing complete correlation 

even on high dimensionality, large scaled and low quality dataset. 
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ABSTRAK 

 

 

 

 

 

Evolusi dalam serangan rangkaian komputer menyebabkan banyak organisasi 

menggunapakai pelbagai Sistem Pengesan Pencerobohan Rangkaian (NIDSs) untuk 

pemantauan dan pengesanan pencerobohan yang sempurna. Penyelesaian ini 

menghasilkan sebilangan besar amaran yang disebabkan oleh amaran yang berulang 

dan palsu. Ini menyumbang kepada amaran berkualiti rendah dan membuatkan 

korelasi amaran (AC) secara manual merumitkan, meletihkan dan terdedah ralat. 

Selain itu, amaran juga adalah dalam bentuk tidak seragam, tidak berlabel dan tidak 

teratur. Oleh itu, strategi serangan sebenar tidak dapat dikenalpasti. Model-model AC 

sedia ada terdapat beberapa kekangan. Ia menawarkan hanya satu jenis korelasi dan 

bergantung kepada banyak penentuan peraturan statik untuk mengkolerasi amaran. 

Akibatnya, amaran tidak dapat dikorelasi secara menyeluruh dan peraturan perlu 

kerap dikemaskini secara manual. Oleh yang demikian, penyelidikan ini 

mencadangkan automasi model AC baru berasaskan hibrid (HAC) yang menawarkan 

kolerasi menyeluruh dari segi struktur, sebab dan statistik. Tujuannya adalah untuk 

menambahbaik kualiti amaran dan juga mengenalpasti strategi serangan melalui 

corak amaran. Bagi mencapai hasrat ini, ia menghibridkan Improved Unit Range 

(IUR), Principal Component Analysis (PCA), algoritma Expectation Maximization 

(EM), algoritma Levenberg-Marquardt (LM) Backpropagation dan ujian korelasi 

statistik bagi mengenalpasti secara optimum langkah dan peringkat yang telah 

diketahui mahupun baru bagi sesebuah strategi serangan. Algoritma post-clustering 

juga dicadangkan bersama penghibridan untuk menapis keluar amaran berkualiti 

rendah. HAC berjaya diuji menggunakan set data bertanda-aras DARPA 2000 ke 

atas RealSecure Versi 6.0 NIDSs. Hasil ujian menentusahkan HAC berjaya 

mengkolerasi amaran secara optimum dengan keseluruhan korelasi (Rc) sebanyak 

98.72% selama 3.45 saat masa perlaksanaan. Ini menunjukkan bahawa ia berkesan 

dan praktikal dalam menyediakan kolerasi secara menyeluruh walaupun ke atas set 

data yang berdimensi tinggi, berskala besar dan berkualiti rendah.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Overview 

Protecting information in organizations is crucial due to continuous increase 

of network attacks (Axelsson, 1999; Allen et al., 2000; Zhu and Ghorbani 2005). In 

effect, the Information Assurance and Security (IAS) becomes an important research 

field in networked and distributed information sharing environments. IAS involves 

all efforts and methods to protect and secure information whether in memory, 

processing or in the network transactions. Finding the effective way to protect 

information systems, networks and sensitive data within the critical information 

infrastructure is challenging even with the most advanced technology and trained 

professionals (Kruegel et al., 2005).  

 

The implementation of Intrusion Detection and Prevention System (IDPS) is 

one of the effective ways on protecting the information on a secured network 

(Mudzingwa and Agrawal, 2012). It provides a unified platform to monitor the status 

of a network and to prevent the attack from damaging the network via appropriate 

respond mechanism. IDPS consists of three domains: Intrusion Detection (ID), Alert 

Correlation (AC) and Intrusion Prevention (IP). Briefly, ID detects intrusion whether 

in a host or network and triggers the alerts; AC processes and analyzes the alerts for 

discovering the relationships among them and finally IP suggests suitable respond 

plan towards the detected intrusion for preventing information and resources loss in 

the network.  

 



2 

 

This research focuses on AC due to practitioners are still performing manual 

alert analysis which is tedious, time-consuming and error prone (Valeur et al., 2004; 

Julisch and Dacier, 2002). As mentioned in Pouget and Dacier (2003), the 

automation of alert analysis can be performed by correlation. Therefore, Alert 

Correlation (AC) defines an automated process that finds and discovers the 

relationships among unrelated alerts (Bateni et al., 2012) and their attributes. Such 

relationships are crucial to reveal the behaviour of the attacker (in terms of attack 

strategy) that would be useful in determining reasonable precautions in future.  

 

In a real attack scenario, an Attack Strategy comprises several of Attack 

Stages whereby each of them may contain one or more Attack Steps. Each attack step 

will produce a number of Network Events that shall be detected by NIDSs to decide 

whether it is an intrusion or not.  If it is, Alerts will be triggered and logged. This 

scenario is illustrated in Figure 1.1. In general, these terms can be defined as follows. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 1.1: The real network attack scenario 
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it contributes to y network events which their values will be evaluated by NIDSs for 

any intrusion pattern.  A network event (which positively identified as intrusion) is 

denoted as Ex, where x = 1, 2, ..., y and Ex⊆ Tp ⊆ Si. For any Ex occurred in the 

network, NIDSs will generate n alerts to report the details on intrusion detected. An 

alert is denoted as Am, where m = 1, 2, ..., n and Am ⊆ Ex ⊆Tp ⊆ Si. Set of alerts Am 

are logged and reported to SA for correlation process. SA can only rely on these 

enormous and unlabelled alerts in order to understand and study the attack strategy 

providing no prior knowledge or information on the causes of the alerts. This makes 

AC research challenging and thus, worth to be explored and appreciated. 

 

1.2 Problem Background 

Regarding to Mudzingwa and Agrawal (2012), Debar et al. (2004) and Allen 

et al. (2000), the most applied solution among organizations in order to optimally 

monitor and detect intrusions or threats in the network is the installation of multiple 

Network-based Intrusion Detection Systems (NIDSs). Such environment produces a 

diversity of alerts format. Worst, the number of alerts generated are huge and 

overwhelm. Even for a short period of time, the amount of alerts is enormous. 

Nevertheless, AC is important to recognize the attack strategy of an attacker that 

contains list of attack steps and stages.  Generally, there are two major issues that are 

needed to be considered in conducting AC research. 

 

First, alerts are in low quality in terms of high redundancy and dimensionality, 

false positives and invalid alerts. Such alerts can degrade the effectiveness of a 

correlation model or system. This is agreed by Sadoddin and Ghorbani (2009), Smith 

et al. (2008), Yu and Frinche (2007), Xu (2006), Bakar and Belaton (2005) and Ning 

et al. (2004). Even if the best NIDS implemented, the Security Analyst (SA) has to 

be assured that the alerts are free from low quality alerts to produce an accurate 

analysis results. This issue is caused by several problems:  

 

1) Low performance of NIDSs. NIDSs generates many false positive alerts 

since normal activities are mistakenly regard as intrusions (Lee et al., 
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2006; Wang et al., 2006; Pietraszek and Tanner, 2005; Valeur et al., 2004; 

Julisch and Dacier, 2002; Allen et al., 2000). 

 

2) Attackers launch intensive attacks simultaneously towards multiple hosts 

in the network (Zhu and Ghorbani, 2005). Such scenario could confuse 

the NIDSs and produce false positives. It also increases the redundancy of 

alerts. 

 

3) Organizations tend to implement multiple (either homogenous or 

heterogeneous) NIDSs in their networks. As a result, SA is overwhelm 

with enormous number of high-dimensionality alerts (Perdisci et al., 2006; 

Cuppens and Miege, 2002; Dain and Cunningham, 2001). 

 

Second, the attack strategy cannot be recognized and determined directly 

from the alerts. Knowledge about attack strategy is important to SA to design 

effective response mechanisms in order to prevent the attacks from damaging the 

networks. This issue is caused by the following problems: 

 

1) Alerts that are generated by multiple NIDS are in diverse format and 

represented by low level information (Valeur et al., 2004). Hence, 

revealing the attack strategy directly from such raw alerts is 

unmanageable (Tedesco and Aickelin, 2006; Debar et al., 2007).  

 

2) Continuous development of new network attacks. Since the networks are 

vulnerable to the attacks and methods used by the attackers are getting 

more sophisticated (Zhu and Ghorbani, 2005), this has contributes to new 

attack strategy and new pattern of detected alerts.  

 

Clearly, those AC problems need to be addressed for discovering useful 

knowledge from the alerts in terms of attack steps and stages involved in the attack 

strategy (Smith et al., 2008; Pietraszek, 2006). Such knowledge discovery is 

important to the SA for developing precise and effective response and preventive 

mechanisms, so that organizations can avoid the intrusions from happening or 

escalating since true actions can be activated at earlier stage.  
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1.3 Research Motivation 

Based on literature, previous AC models can be classified into three 

categories based on the criteria or approach used for finding relationships among 

alerts: 

 

1) Structural-based AC (SAC): Alerts are correlated based on similarity of 

attributes. Similarity index or function is used to determine the degree of 

relationships. Although it can discover known group of alerts or attack 

steps, Ning et al., (2004) and Pietraszek (2006) claimed that it cannot 

discover the causal relationships among alerts. 

 

2) Causal-based AC (CAC): The correlation is emphasized on recognizing 

which alerts cause an attack stage for a multi-stages network attack. In 

this category, it can be classified into three groups: 

 

a) Using attack modeling languages. Each attack stage needs to be 

specified, precisely in the model. But, it is only applicable to known 

attack stages (Sadoddin and Ghorbani, 2006) and heavily dependent 

to the SA expert knowledge. It also unable to determine correlation 

when the alerts are unseen/new. A few examples are State/transition-

based Attack Description Language (STATL) by Eckmann et al. 

(2000), Language Model Database for Detection of Attacks 

(LAMDBA) by Cuppens and Ortalo (2000) and A Language Driven 

Alert Correlation (ADeLe) by Totel et al. (2004).  

 

b) Using predefined knowledge and rules. As in Templeton and Levitt 

(2000) and Ning et al. (2004), they have to define the knowledge 

about correlating alerts based on series of rules at the early stage of 

the system development. It requires frequent manual updating and 

large database (Qin, 2005). Thus, such solution is less practical to be 

adopted. 
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c) Using supervised learning. Correlation of alerts is determined by 

learning from the collected alerts. Researches by Dain and 

Cunningham (2001), Qin (2005) and Smith et al., (2008) have showed 

that they can discover correlations of unseen alerts. 

 

3) Statistical-based AC (StAC): Works under this category correlate alerts 

based on statistical model to discover the relationships statistically. But, 

as discussed in Maggi and Zanero (2007), good performance strongly 

depends on good parameters setting which is very difficult to estimate.  

 

The existing works that used single approach can be referred as single 

correlation models. The limitation of such models is it offers only one type of 

correlation. The alert analysis is incomprehensive and may lead to improper response. 

Moreover, Lewis (1999) and Pouget and Dacier (2003) have mentioned that there is 

no single model that is best suited to manage the dynamic problems of AC. Since the 

field of AC is relatively young which just started in 2000, there is no significant 

precedent to guide the AC research in a clear way (Smith et al., 2008).  

 

Those arguments have motivated this research that is to offer multiple types 

of correlations (SAC, CAC and StAC) into a model. It is known as Hybrid-based 

Alert Correlation (HAC) where all advantages from single correlation models can be 

combined. The purpose is to provide comprehensive alert analysis that can discover 

complete relationships among unrelated alerts. In addition, HAC is proposed to 

overcome the weaknesses in the previous works which need enormous predefined 

rules at the early stage of development, recognize only known alerts and require 

manual parameters setting. Therefore, the taxonomy on research motivation that also 

summarizes the explanation in Section 1.1 until 1.3 is given in Figure 1.2. 
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Figure 1.2: Taxonomy on research motivation 
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1.4 Problem Statement 

In order to comply with the requirement of discovering complete 

relationships among alerts from multiple NIDSs, a more practical and effective AC 

model is needed. This is to address the problems of low quality alerts and 

unrecognized attack strategy as well as to overcome the limitations of existing works. 

Indeed, complete discovery on alert relationships can lead to effective respond and 

preventive mechanisms. Thus, the main research question is:  

 

How to discover complete relationship with optimal performance among 

known and unseen/new alerts generated by multiple NIDSs in order to improve the 

quality of alerts and recognize attack strategy? 

 

Based on this question, several supporting research questions are: 

 

1) What defines complete relationship? 

2) What are the aspects of correlations need to be performed?  

3) How to measure completeness in the correlation?  

4) How to define optimal performance? 

5) How to identify the low quality alerts in order to improve quality? 

6) How to learn the pattern of known alerts? 

7) How to recognize the pattern of unseen alerts? 

8) What are the elements of attack strategy in order to recognize it?  

 

Complete relationship is the key factor of this research. Therefore, it is crucial 

to determine its definition and measurement. Since alert relationships can be 

achieved by performing correlation, completeness should include all possible aspects 

of correlations that known and unseen alerts should be correlated together. In this 

case, the aspects are in terms of structural, causal and statistical. Each correlation is 

measured independently and the product of all produces the correlation completeness 

(Ning et al., 2004; Hussain et al., 2005). More importantly, the performance of 

correlation completeness must be optimal to show the effectiveness of the proposed 

model.   
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1.5 Research Goal  

Providing the above problem statement, the research goal is: 

 

To propose an alert correlation (AC) model that can discover complete 

relationships and offer optimal performance among known and unseen/new alerts 

generated by multiple NIDSs for improved quality of alerts and recognized attack 

strategy. 

 

In order to achieve the goal, the research hypothesis is: 

 

“If alert relationships are discovered by hybridizing structural, causal and 

statistical correlations, then relationships among known and unseen/new alerts 

generated by multiple NIDSs can be revealed completely and performed optimally.” 

 

1.6 Research Objectives 

In order to achieve the goal, three research objectives are required: 

 

1) To enhance the Structural-based AC (SAC) model using unsupervised 

learning algorithm for improving the quality of alerts and identifying 

attack steps. 

 

2) To enhance the Causal-based AC (CAC) model using supervised learning 

algorithm for recognizing membership of attack stages.  

 

3) To design a Hybrid-based AC (HAC) model by hybridizing structural, 

causal and statistical correlations for optimizing correlation completeness 

and determining attributes dependency strength. 
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1.7 Research Scopes 

The scope of this study is restricted to below limitations: 

 

1) An offline DARPA 2000 attack scenario specific dataset (Haines, 2000) is 

used to validate and evaluate the proposed correlation models. It is the 

only freely available benchmark dataset that is widely used by other 

researchers in AC area as well for examples Smith et al.(2008), Yu and 

Frincke (2007), Wang et al. (2006), Tedesco and Aickelin (2006), Zhu 

and Ghorbani (2005), Ning et al.(2004) and Pouget and Dacier (2003). 

2) This research focuses on analyzing the alerts that are generated by four 

RealSecure 6.0 NIDSs, as a guidance to design an appropriate responsive 

mechanism. The design of the responsive mechanism is excluded. 

3) Verification of false positive alerts and invalid alerts is based on the 

freely available signature files extracted from RealSecure Signatures 

Reference Guide Version 6.0 (Internet Security Systems, 2000).  

4) The improvement in the quality of alerts is referred to elimination or 

deletion of false positive alerts, invalid alerts and redundant alerts. 

5) The identification of attack strategy is referred to identification of the 

attack steps and recognition of attack stages. 

 

1.8 Research Framework 

A brief operational framework on conducting this research is depicted in 

Figure 1.3. The details on the framework, flowcharts, plan and measurements are 

presented in Chapter 3. The research is conducted by four phases: 

 

1) Alert Formatting and Representation. The raw alerts are formatted into a 

unified standard format called Intrusion Detection Message Exchange 

Format (IDMEF). Then, they are represented in numerical using Internet 

Protocol (IP) Obscuring technique and scaled based on Improved Unit 

Range (IUR).  
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2) Enhanced Structural-based Alert Correlation. It discovers the 

relationship among alerts based on their attributes using Expextation 

Maximization (EM) unsupervised learning algorithm to reveal the attack 

steps. Principal Component Analysis (PCA) is implemented to reduce the 

alerts dimensionality and optimize the performance. As to improve the 

alerts quality, post-clustering algorithms are proposed.  

3) Enhanced Causal-based Alert Correlation. It adopts Levernberg-

Marquardt (LM) supervised learning algorithm to discover the 

relationships among alerts based on their causes to recognize the attack 

stages. PCA is implemented to investigate whether it can improve the 

model’s performance as well. 

4) Proposed Hybrid-based Alert Correlation. It hybridizes IUR, PCA, EM, 

post-clustering, LM and statistical correlation tests to boost the overall 

correlation performance and measure the dependency strength among 

alert attributes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Design phases in this research 
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1.9 Research Contributions 

The summary of research contributions is illustrated in Figure 1.4. It shows 

the top-down contributions from the philosophy aspect until the model design. 

Advanced and new correlation models are proposed to accomplish the philosophy of 

“providing a complete and optimal alert correlation”. The specific contributions are: 

 

1) The enhanced SAC model called IPCAEMP.  It aims to improve the 

quality of alerts and reveal the list of attack steps by clustering the 

common alerts. 

2) The enhanced CAC model called IPCALM. It recognizes the 

memberships of several attack stages of a network attack. 

3) The proposed HAC model called IPEMPoLS. It hybridizes the artificial 

intelligent-based machine learning and statistical techniques to optimize 

the performance of the overall correlation and estimate the alerts attribute 

dependency. Details on the research contributions and suggested future 

works are provided in Chapter 8. The list of publications that support this 

research is provided in Appendix A. 

 

 

 

 

 

 

 

 

 
 

Figure 1.4: Top-down summary of research contributions 
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1.10 Research Significance 

1) Alerts generated by multiple NIDSs are meaningless unless they are 

analyzed through correlations. The knowledge extracted from the 

correlations give a significant impact to the SA to investigate, design and 

develop an accurate and appropriate responsive mechanism. 

2) Analyzing intrusion alerts is challenging (Manganaris et al., 2000), 

particularly due to the large amount of alerts produced by NIDSs. 

Minimizing the SA intervention with the automation of AC would 

certainly reduce the burden of SA. 

3) Updating rules frequently to discover attack strategy like in Ning et al. 

(2004) is less practical and required high costs (due to large database and 

labour intensive). Thus, a HAC model that has the capability of learn in 

order to recognize known and new alerts is more practical and cost saving.  

4) Discovering the attacker strategy at early stage of alert analysis would 

stop the attack from escalating and damaging the network.  

5) A complete AC that offers a comprehensive analysis through optimal 

relationships discovery of alerts could benefit SA to identify the steps and 

stages of a multi-stages network attack. 

 

1.11 Organization of the Thesis 

This chapter serves as an essential introduction to the research. Chapter 2 

surveys the area of AC research in terms of issues, existing models and techniques. 

Chapter 3 explains in detail the method and framework on designing and measuring 

HAC performance. Chapter 4 presents the initial work of the research that is 

formatting and representing the alerts. Chapter 5 discusses the design and validation 

on IPCAEMP. Chapter 6 deals with IPCALM design and its relevant validation. 

Chapter 7 explains the proposed IPEMPoLS. The last chapter concludes the thesis 

and provides a unified discussion of research contributions and further researches. 
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1.12 Definition of Terms 

Alert – a notification of the occurrence of specific events that matches 

the signatures (in signature-based NIDS) or deviates from 

normal activities (for anomaly-based NIDS). 

Alert correlation – multi steps process that receives raw alerts as input and acts as 

a platform to manage and understand the alerts. 

Attack graph –  is a relational/causal graph or Directed Acyclic Graph (DAG) 

that represents the causal relationship between attacks to 

reveal attack strategy. Edges represent action and nodes 

represent system’s state. 

Attack steps – steps involved in an attack stage. Technically, it represents the 

clusters produced by clustering in IPCAEMP. 

Attack stages –  stages involved in the attack strategy. Technically, it 

represents the classes defined by classification in IPCALM. 

Attack strategy –  a complete attack launched by attacker which consists of 

attack steps and attack stages.  

DDoS  – stand for Distributed Denial of Service. It referred to an attack 

which a multitude of compromised systems attack a single 

target, thereby causing denial of service for users of the 

targeted system. The flood of incoming messages to the target 

system essentially forces it to shut down, thereby denying 

service to the system to legitimate users. 

Event  – is a low level entity that used by NIDS to detect the sign of 

attacks, for examples network traffic or network packet. 

False positive – an alert that is not supposed to be reported by NIDS, typically 

because of flawed traffic modeling or weak rules/signatures/ 

anomalies specified. 

Known alert – a labelled alert that has class information based on previous 

data or domain experts knowledge. It is usually used for 

training the machine learning algorithm. 

Unseen/new alert – an unlabelled alert that has no class information. It is usually 

used for validation and testing the machine learning algorithm. 
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