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ABSTRACT 

Based on the molecular similarity principle, functionally similar molecules 

are sought by searching molecular databases for structurally similar molecules to be 

used in rational drug design. The conventional 2-dimentional similarity methods are 

the most used methods to measure similarity of molecules, including fragments that 

are not related to the biological activity of a molecule. The most common methods 

among the 2-dimentional similarity methods are the vector space model and the 

Bayesian networks, which are based on mutual independence between fragments. 

However, these methods do not consider the importance of fragments. In this thesis, 

four reweighting approaches are proposed to identify the important fragments. The 

first approach is based on reweighting the important fragments, where a set of active 

reference structures are used to reweight the fragments in the reference structure. 

Secondly, a statistically supervised features selection and minifingerprint to select 

only the important fragments are applied. In this approach, searching is carried out 

by using sub-fragments that represent the important ones. Thirdly, a similarity 

coefficient based on mutually dependent fuzzy correlation coefficient is used. The 

last approach combined the best two out of the three approaches which are 

reweighting factors and fragment selection based on statistically supervised features 

selection. The proposed approaches were tested on the MDL Data Drug Report 

standard data set. The overall results of this research showed that the proposed 

fragment reweighting approaches outperformed the conventional industry-standard 

Tanimoto-based similarity search approach. 
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ABSTRAK 

 Berdasarkan prinsip persamaan molekul, molekul yang sama fungsi 

diperolehi dengan mencari molekul yang berstruktur sama dari pangkalan data 

molekul bagi kegunaan reka bentuk ubat secara rasional. Kaedah persamaan 2-

dimensi konvensional telah digunakan secara paling meluas untuk mengukur 

kesamaan molekul termasuk fragmen yang tidak berkaitan dengan aktiviti biologi 

sesuatu molekul. Kaedah yang paling biasa digunakan antara kaedah-kaedah 

persamaan 2-dimensi adalah model ruang vektor dan rangkaian Bayesian yang 

berasaskan fragmen saling-bebas. Walau bagaimanapun, kaedah-kaedah ini tidak 

mengambil kira kepentingan fragmen. Dalam tesis ini, empat kaedah bobot semula 

telah dicadangkan untuk mengenal pasti fragmen-fragmen yang penting. Keadah 

pertama adalah berdasarkan bobot semula fragmen yang penting, iaitu satu set 

struktur rujukan aktif telah digunakan untuk bobot semula fragmen dalam struktur 

rujukan. Kedua, pemilihan ciri terselia secara statistik dan cap jari mini untuk 

memilih fragmen-fragmen yang penting telah digunakan. Dalam kaedah ini, 

pencarian dijalankan dengan menggunakan sub-fragmen yang penting. Ketiga, satu 

pekali persamaan berasaskan koefisien korelasi kabur yang saling bersandar telah 

digunakan. Kaedah terakhir menggabungkan dua daripada tiga kaedah terbaik iaitu 

faktor pemberatan semula dan pemilihan fragmen berdasarkan pemilihan ciri terselia 

secara statistik. Kaedah-kaedah yang dicadangkan telah diuji pada set data piawai 

MDL Drug Data Report. Keputusan keseluruhan kajian ini menunjukkan bahawa 

kaedah-kaedah bobot semula fragmen yang dicadangkan mengatasi kaedah piawai 

konvensional di dalam industri ini iaitu carian persamaan berasaskan Tanimoto. 
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CHAPTER 1 

INTRODUCTION 

Cheminformatics (sometimes spelled as chemo-informatics) is a relatively 

new discipline, having emerged from several older disciplines such as computational 

chemistry, computer chemistry, chemometrics, QSAR and chemical information. 

Cheminformatics is a cross between Computer Science and Chemistry: the process of 

storing and retrieving information about chemical compounds. The term 

―chemoinformatics‖ also referred as  Chemoinformatics/Chemiinformatics/Chemical 

information/Chemical   informatics  has  been  recognised  in  recent  years  as  a  

distinct  discipline   in computational  molecular  sciences [1].  

 

 

Chemoinformatics was defined by Brown in [2] as:  

 

―Chemoinformatics is the mixing of those information resources to transform 

data into information and information into knowledge for the intended purpose of 

making better decisions faster in the area of drug lead identification and 

optimization.‖ 
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Cheminformatics is indeed a legitimate new field in which chemistry and 

computer sciences strongly intersect. Those employed in this field develop new 

substances, materials, and processes by organizing, analyzing, and visualizing the 

information available to them. The present chief application of cheminformatics is in 

the field of drug discovery, but it is finding increasing acceptance and use in other 

applied areas of chemistry.  

 

 

Cheminformaticians often work with massive amounts of data. They 

construct information systems that help chemists make sense of the data, often 

attempting to accurately predict the properties of chemical substances from a sample 

of data. Thus, through the application of information technology, cheminformatics 

helps chemists organize and analyze known scientific data to assist in the 

development of novel compounds, materials, and processes. People who work in 

cheminformatics may concentrate on molecular modelling, chemical structure coding 

and searching, chemical data visualization, or a number of other areas of 

specialization. Indeed, the various computer graphics codes for chemical structures 

that let us both view and search chemical structures via computer were developed by 

cheminformaticians. 

 

 

Greg Paris[3]  provided the following definition: 

 

―Chemoinformatics is a generic term that encompasses the design, creation, 

organization, storage, management, retrieval, analysis, dissemination, 

visualization and use of chemical information, not only in its own right, but 

as a surrogate or index for other data, information and knowledge.‖  

 

 

Hann and Green [4] suggest that chemoinformatics is simply a new name for an old 

problem. Many informatic methods and techniques used in chemoinformatics have 

been studied for many years; however, the broad and general definition was given by 

Gasteiger  [5]as: 
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―Chemoinformatics is the use of informatic methods to solve chemical problems‖.   

 

 

Virtual screening (VS) is a computational technique used in drug 

discovery research. Computers are used to quickly search large libraries of chemical 

structures in order to identify those structures which are most likely to bind to a drug 

target, typically a protein receptor or enzyme. Virtual screening process usually starts 

with a ‗query‘ to search the chemical database using one of the virtual screening 

tools, as the query can be a molecule with a desired biological activity. By using this 

process the chemist tries to identify other molecules in the database that can be tested 

in an appropriate assay. 

 

 

Currently virtual screening has become widely used in computer-based search 

for novel lead molecules. There are two types of virtual screening approaches: 

‗virtual screening by docking‘ which deals with the 3D structure of biological targets 

(proteins or enzymes) and ‗similarity-based virtual screening‘, where the structural 

information of one or more known molecules is used as a structural query. The 

second approach is the basis of this thesis. 

 

 

The storage and search for chemical structures and associated information in 

databases are probably the earliest beginnings of what might be called 

chemoinformatics.  Nowadays, chemoinformatics has attracted much recent 

prominence as a result of developments in computer power and the methods that are 

used to synthesize new molecules, followed by tests of their biological activity.  

These developments have led to a massive increase in the number of chemical 

compounds and biological information that is available for discovery programmes in 

pharmaceutical and agrochemical industries. 

 

 

In this thesis, different fragment-based similarity-based virtual screenings are 

presented. The background of the problem, objectives, importance of the study, and 

the scope of this research are discussed in the remainder of this chapter. 

http://en.wikipedia.org/wiki/Drug_discovery
http://en.wikipedia.org/wiki/Drug_discovery
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Receptor_(biochemistry)
http://en.wikipedia.org/wiki/Enzyme
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1.1     Background of the Problem 

 

 

There are seven sequential steps in the Drug discovery process: disease 

selection, target hypothesis, lead compound identification (screening), lead 

optimization, pre-clinical trials, clinical trials and pharmacogenomics optimization. 

These steps are carried out sequentially and delays in any of the steps results in 

delays in the entire process [6].These delays represent bottlenecks. 

 

 

Previously, the main bottlenecks in drug discovery were the time and cost of 

finding (making) and testing new chemical entities (NCE). The average cost of 

creating a NCE in a major pharmaceutical company was estimated at around 

$7,500/compound [7]. In order to reduce these costs, pharmaceutical companies have 

had to find new technologies to replace the old traditional ―hand-crafted‖ synthesis 

and testing NCE approaches. High throughput screening (HTS), combinatorial 

chemistry (CC) and virtual screening are examples of such technologies. 

 

 

In response to the increased demand for new compounds by biologists, 

chemists started using combinatorial chemical technologies to produce more new 

compounds in shorter time periods. By using HTS, it is possible to test hundreds of 

thousands of compounds in a short time. Computers can be used to aid this process in 

a number of ways, such as in the creation of virtual libraries, which can be much 

larger than their real counterparts.   

 

 

Recently, chemical search techniques have been called virtual screening; the 

main idea is that these methods test large number of compounds by computer instead 

of experience. Virtual screening involves a range of computational tools for 

searching chemical databases to filter out the unwanted compounds. These tools can 

be used to reduce drug discovery costs by removing undesired compounds as early as 

possible and providing only those compounds that have the largest a priori 

probabilities of activity for conventional biological screening. 
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Virtual screening approaches can be categorized as structure-based 

approaches, which can be used if the 3D structure of the biological target is 

available.  Examples of this type of approach are ligand-protein docking and de novo 

design. The second type of approach is ligand-based, which is applicable in the case 

of the absence of such structural information. Similarity methods and machine 

learning methods are examples of this type of approach. 

 

 

Similarity methods are the most common, as well as the simplest and most 

widely used tools for ligand-based virtual screening tools for ligand-based virtual 

screening of chemical databases. That is because these methods require just a single 

known bioactive molecule (the reference or target molecule) as a starting point for 

database search. Here, the database structures are ranked in decreasing order of 

similarity with active, user defined, reference structure (query), with the expectation 

that the nearest neighbours will exhibit as the reference structure. 

 

 

There are many studies in the literature associated with the measurement of 

the molecular similarity [4, 8-11]. However, the most common approaches are based 

on 2D fingerprints, with the similarity between a reference structure and a database 

structure computed by using an association coefficient such as Tanimoto coefficient 

[8, 12]. There are many other similarity methods in which the structural similarity 

between molecules can be computed. The effectiveness of any similarity method has 

found to vary from one biological activity to another in a way that is difficult to 

predict [9]. In addition, the use of any two methods has been found to retrieve a 

different subset of actives from databases, so it is advisable to use several search 

methods where possible. Current research focuses on three main areas: molecular 

similarity measures; the analysis of molecular diversity and the design of 

combinatorial libraries; and the representation and searching of biological 

macromolecules. Our research group directions focus on consensus clustering and 

shape-based molecular descriptor [13, 14]. 
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Many studies in chemoinformatics have proved that retrieval models based 

on inference networks give significant improvements in retrieval performance 

compared to conventional models[15, 16]. In more recent studies, the Bayesian 

inference network has been introduced as promising the similarity search 

approach[17, 18]. The retrieval performance of the Bayesian inference network was 

observed to improve significantly when multiple reference structures were used or 

more weights were assigned to some fragments in the molecule structure. 

Unfortunately, such information is unlikely to be available in the early stages of a 

drug discovery program when just a single weak lead is available. Unfortunately, 

such information is unlikely to be available in the early stages of a drug discovery 

program when just a single weak lead is available. In the literature, there are many 

methods used to improve Bayesian inference network [19-21]. 

1.2     Problem Statement 

 

 

Conventional Bayesian inference network similarity method has two implicit 

problems. First, it considers all molecular features as equal in importance; therefore 

all molecular features are used when we calculate similarity measure. Second, all 

weighting schemes calculate the weight for each feature independently with no 

relation to all other features [22]. In order to enhance the effectiveness of a retrieved 

active target, feature reweighting can enhance the recall of similarity measure. 

 

 

In order to enhance the effectiveness of Bayesian inference network 

similarity method, the aim of this research is to develop a ligand-based similarity 

method based on Bayesian network and reweighted fragments and 2D fingerprints to 

search large chemical databases to retrieve compounds with the most similar 

biological activity to the reference structure. This method applies four different 

approaches to fragment reweighting; the first approach is based on fragment 
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reweighting factors; fragment reweighting is the process of adding new weight to the 

original weight in order to improve retrieval performance in information retrieval 

systems[6]. Turbo Similarity Searching (TSS)  and relevance feedback [23, 24] are 

two examples of reweighting fragments or features in Ligand-based virtual 

screening. The second is the implementation of the idea of reweighting in terms of 

sub-fragments which apply two techniques: selecting the important fragment and 

using the idea of Minifingerprint, the main idea of Minifingerprint is to limit or 

reduce features or fragments and correctly identify the percentage of compounds 

with similar biological activity. The third approach develops a novel of fuzzy 

correlation coefficient based on mutual dependence between fragments, while the 

last approach is combination of first two approaches. 

1.3     The Research Question 

 

 

The main research question is: 

 

Can reweighted molecular fragments or features positively effect and 

increase the retrieval recall of Bayesian Inference Network.? 

 

 

Thus, the following issues will need to be addressed in order to answer the 

main research question stated above: 

 

 Can we develop fragment reweighting using reweighting factors and 

relevance feedback to improve the retrieval recall of Bayesian Inference 

Network? 
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 Can we identify important sub-fragments using a supervised statistical 

feature selection model and minifingerprints to improve the retrieval 

recall of Bayesian Inference Network? 

 

 Can we develop a novel fuzzy correlation coefficient based on mutual 

dependence between molecular fragments? 

 

 Is effectiveness of the proposed approaches better than conventional 

Bayesian Inference Network virtual screening model? 

1.4     Objectives of the Research 

 

 

The main goal of this research is to develop a similarity-based virtual 

screening approach using reweighted fragments and Bayesian Inference Network, 

with the ability to improve the retrieval effectiveness and provide an alternative to 

existing tools for ligand-based virtual screening. 

 

 

To achieve this goal, the following objectives have been set: 

 

 To investigate reweighting factor and relevance feedback for use in 

similarity calculations to enhance the retrieval effectiveness of Bayesian 

Inference Network model. 

 

 To determine the retrieval performance of the reweighted fragment 

Bayesian Inference Network model for molecular similarity searching. 
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 To investigate the selected of important fragments based on feature 

selection and minifingerprints for molecular similarity searching when 2D 

fingerprint and several reference structures are available. 

 

 To investigate a novel similarity based virtual screening for molecular 

similarity searching based on mutual dependence between fragments for 

molecular similarity searching. 

 

 To combine the different methods of fragment reweighting. 

 

 To compare the retrieval performance of reweighted fragments and fuzzy 

correlation coefficient with conventional similarity methods. 

1.5     Importance of the Study 

 

 

The similarity principle states that structurally similar molecules will exhibit 

similar physicochemical and biological properties [8, 11, 12, 25, 26],which has 

become the basis for many rational drug design efforts. In fact, the observation that 

common fragments lead to similar biological activities can be quantified from 

database analysis [27]. This concept leads to the term molecular similarity, which has 

become widely used in chemical literature [8, 11, 12].  

 

 

Over the past last decade, technological advances in synthesis and high 

throughput screening have increased the capability to synthesize large libraries of 

compounds and the capability to screen hundreds of thousands of compounds in a 

short time. These developments increase the necessity for the application of 

computer based methods for compound selection and evaluation. In addition, 
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increases in computer power have enabled similarity applications to be performed on 

very large databases of compounds. 

 

 

The development of new drugs is both time consuming and cost-intensive, 

where the estimated cost for discovering and bringing a new drug to the market costs 

at around $7,500/ compound , taking an average of 12 to 13 years [28]. This is due to 

the high failure rates in the later stages of drug development. 

1.6     Scope of the Study 

 

 

This study will focus on 2D fingerprint-based similarity methods. These 

methods are used to quantify the degree of structural resemblance between a pair of 

molecules characterised by 2D fingerprints. These methods are applied with binary 

and non-binary 2D fingerprints. 

 

 

In addition, this study focuses on the different approaches of fragment 

reweighting methods. Typically, four different approaches are used to enhance the 

effectiveness of molecular retrieval.  Reweighting factor is used to reweight the input 

query fragment weights. A statistical supervised feature selection model is applied to 

select only the important fragments that will be used later in similarity calculation; 

the study also develops a novel fuzzy correlation similarity method based on mutual 

dependence between fragments.   

 

 

The similarity approaches in this study evaluated a large dataset derived from 

MDL Drug Data Report (MDDR) database [29], where single and multiple reference 

structures are available.  The performance of this method is evaluated against the 
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performance of conventional 2D similarity methods (Tanimoto and conventional 

Bayesian inference network). 

1.7     Thesis Outline 

 

 

This thesis consists of seven major parts, excluding the introductory chapter.  

While the first two parts describe the background as well as the previously published 

work in the field of molecular similarity, the third part describes the research 

methodology for the work in this thesis.  Finally, the last four parts present the 

algorithmic details of the reweighting fragment virtual screening method. 

 

 

Chapter 2, Molecular Similarity, begins with an overview of computer 

representations of chemical structures and various types of searching mechanisms 

offered by chemical information systems.  In the third section, we present molecular 

representations which can be employed for molecular similarity searching as well as 

for molecular analysis and clustering.  Here, we also describe in detail the 2D 

fingerprint-based similarity methods and different types of similarity coefficients.  

This chapter discusses the implementation of machine learning techniques to 

molecular similarity. Similarity searching in text database has been reviewed in this 

chapter. We conclude with a discussion and summary of the applicability of the 

mentioned methods to molecular similarity searching and the best ways to improve 

the performance of these methods. 

 

 

Chapter 3, Research Methodology, describes the overall methodology 

adopted in this research to achieve the objectives of this thesis. In that part, we try to 

give a general picture about each phase in our research framework. In this chapter, 

also we discuss the implementation reweighting fragment techniques to molecular 
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similarity.  We give an overview of the relevant feedback and query expansion 

methods that are used in molecular similarity searching.  Ligand-based virtual 

screening based on sub-fragments is also reviewed in this chapter.  Here, we discuss 

two methods of selecting sub-fragments, using either supervised feature selection 

algorithm to select the important fragments, or using the idea of minifingerprint, 

which can be considered an unsupervised feature selection method. In addition, the 

implementation of reweighting factor for reweighting molecular fragments has been 

addressed. The implementation of fuzzy correlation coefficient has also been 

introduced. We conclude this chapter with a discussion and summary. 

 

 

Chapter 4, Similarity-based Virtual Screening using Reweighted Fragments, 

describes the fragment reweighting methods as an enhancement to a virtual screening 

tool.  Here, we present a novel approach to molecular similarity searching recall 

problems using various reweighting methods and approaches. This approach works 

with a multiple reference structure and a single fingerprint.  At the end of this 

chapter, an evaluation of the results of this approach is presented. 

 

 

Chapter 5, Similarity-Based Virtual Screening Using Sub-Fragments, 

describes the similarity searching problem which occurs when the molecular 

fragments are too numerous but may contain important active parts that consists of 

very important fragments.  This chapter describes supervised and unsupervised 

approaches ways to select for important fragments.  In the results and discussion 

section, the results are presented and discussed. 

 

 

Chapter 6, Fuzzy Correlation Coefficient for Similarity-Based Virtual 

Screening, describes a new approach for solving the similarity searching problem 

when different 2D fingerprints and multiple reference structures are available.  This 

chapter describes using current correlation coefficients and introduces a novel 

correlation coefficient based on mutual dependence between molecular fragments.  

In the results and discussion section, the FCC results are presented and discussed. 
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Chapter 7, Combination of reweighting fragment approaches, this chapter 

describes a new approach of fragment reweighting by combining reweighting factors 

and fragment selection approaches. At the end of this chapter, an evaluation of the 

results of this approach is presented and compared with all previous reweighting 

approaches as well as the standard similarity measures. 

 

 

Chapter 8, Conclusion and Future Work, is the last chapter, which discusses 

and concludes the overall works of this thesis highlights the findings and 

contribution made by this study and provides suggestions and recommendations for 

future research. 

1.8     Summary 

 

 

In this chapter, we give a broad overview of the problems involved in the 

molecular similarity.  This chapter serves as an introduction to the research problem 

set out earlier in this thesis.  The goal, objectives, the scope, and the outline of this 

thesis are also presented. 
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