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ABSTRACT

Estimation of flood magnitude is a crucial component in planning, designing,

and managing of water resources projects. Flood frequency analysis (FFA) provides

a practical means of determining a robust probability distribution that fits streamflow

data at a location of interest. The main focus in hydrology design is the estimation of

high flow quantile. L-moments, popular among hydrologist in FFA is known to be

oversensitive towards the lower part of the distribution and give insufficient weight

to large sample values. As an alternative, the method of partial L-moments (PL-

moments) is proposed to give weightage to the upper part of distribution and large

values in censored sample. The aim of this study is to compare the performance of

PL-moments and L-moments in FFA. The method of PL-moments was developed for

generalized extreme value (GEV), generalized logistic (GLO), generalized pareto

(GPA), extreme value type 1 (EV1) and logistic (LOG) distributions. Monte Carlo

simulations from population distributions of known and unknown samples were

conducted to assess the performance of PL-moments compared to L-moments.

Simulation results showed that PL-moments give comparable and slightly better

parameter estimates than those by L-moments particularly when estimating the high

flow quantiles. In regional flood frequency analysis, new statistical tests based on

PL-moments were developed to measure discordancy, regional homogeneity and

identify a best regional distribution. The quantile estimates based on the regional

distribution using PL-moments are more efficient than L-moments in estimating

flood quantiles at higher return periods. The overall results strongly support that PL-

moments method would improve the flood quantiles estimation particularly for

higher quantiles and thus serves as a useful tool for application in flood frequency

analysis.



vi

ABSTRAK

Anggaran magnitud banjir adalah satu komponen yang penting dalam

merancang, merekabentuk dan mengurus bagi projek sumber air. Analisis frekuensi

banjir (FFA) menyediakan satu kaedah berguna dalam menentukan taburan

kebarangkalian terbaik untuk dipadankan dengan data aliran sungai di lokasi yang

diminati. Fokus utama dalam rekabentuk hidrologi adalah penganggaran kuantil

aliran tinggi. L-momen yang popular di kalangan ahli hidrologi dalam FFA

dikatakan terlalu sensitif terhadap bahagian bawah taburan dan tidak memberikan

pemberat yang mencukupi untuk nilai sampel yang besar. Sebagai alternatif, kaedah

separa L-momen (PL-momen) dicadangkan untuk memberi pemberat pada bahagian

atas taburan dan nilai yang besar dalam sampel yang ditapis. Tujuan kajian ini adalah

untuk membandingkan prestasi PL-momen dan L-momen dalam FFA. Kaedah PL-

momen dibangunkan untuk taburan nilai ekstrim teritlak (GEV), logistik teritlak

(GLO), pareto teritlak (GPA), nilai ekstrim jenis I (EV1) dan logistik (LOG).

Simulasi Monte Carlo dari sampel taburan populasi yang diketahui dan tidak

diketahui dilakukan untuk menilai keupayaan PL-momen berbanding L-momen.

Hasil simulasi menunjukkan bahawa PL-momen memberikan anggaran parameter

yang setara dan lebih baik sedikit berbanding L-momen apabila menganggar kuantil

aliran tinggi.  Dalam analisis frekuensi banjir serantau, ujian statistik baru

berdasarkan PL-momen dibangunkan untuk mengukur keserasian data,

kehomogenan rantau dan mengenalpasti taburan terbaik rantau. Anggaran kuantil

berdasarkan taburan serantau menggunakan PL-momen didapati lebih efisyen

berbanding L-momen apabila menganggar kuantil banjir pada tempoh ulangan yang

panjang. Hasil keseluruhan menyokong sepenuhnya bahawa kaedah PL-momen

berupaya memperbaiki anggaran kuantil banjir terutamanya pada kuantil tinggi dan

oleh itu bertindak sebagai satu kaedah berguna dalam aplikasi analisis frekuensi

banjir.
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CHAPTER 1

INTRODUCTION

The main interest of this research is the application of flood frequency

analysis based on L-moments and Partial L-moments approaches. Therefore, this

chapter basically introduces the background of flood frequency analysis and

highlights the problems arising in the analysis. This chapter also includes the

objectives, scope, contribution of the research and organization of the thesis.

1.1 Research Background

A flood is an unusually high stage of water levels that generally happened in

river that overflows and submerges land and inundates the adjoining area. The basic

cause of river flooding is the incidence of heavy rainfall (monsoon or convective)

and the resultant large concentration of runoff, which exceeds river capacity

Flooding can caused damages of private and public properties, loss of life and

economic problems. In terms of the number of population affected, frequency, area

extent, duration and social economic damage, flooding is the most natural hazard in

Malaysia. The flood events occur in various states in Peninsular Malaysia.

Several efforts have been done to overcome the floods including flood

protection projects such as construction of barrages, dams, water reservoirs and

widening or deepening the rivers. The barrages which act as an embankment have
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been constructed along a body of water to prevent water flooding onto the land from

the sea or river. Dams and water reservoirs which are generally built to store water

can also be used to prevent floods. However, the constructions of barrages and dams

require high financial cost from the government while the process of widening and

deepening the rivers have high potential in destroying the ecosystems of the river

itself. Thus, these flood protection projects without proper planning and designing

will only create drawbacks. In order to reduce the drawbacks, information related to

these aspects need to be carefully considered. First, how long and high should the

barrages be built? Second, how big should the water reservoirs and dams be

constructed? Third, how wide and deep should the rivers be excavated?

Consequently, a clear knowledge related to magnitude and frequencies of the

flood occurrences are fundamentally needed to deal with all of those questions. A

similar circumstance is applied in designing of hydraulic structures and water-related

projects such as spillways, culvert, highways, etc. Information regarding accurate

estimation of flood magnitudes and their frequency of occurrence are of great

importance in the planning, designing and management of such structures at the

location or station of interest. The structures need to be designed by considering the

maximum flows that exceed certain level in a given return period. On the other hand,

the flows below the critical value are less important since they do not negatively

affect the structure.

Estimating flood magnitudes and their frequencies need knowledge related to

distributions of flood flow series. Probability for future events can be predicted by

fitting past observations to selected probability distributions.  The primary objective

is to relate the magnitude of these extreme events to their frequency occurrence

through the use of probability distributions (Chow et al., 1988). In this case, flood

frequency analysis is a most suitable method in order to determine a robust

probability distribution that fit to streamflow data at a certain location of interest.

The most widely used methods in predicting the flood magnitudes are at-site and

regional flood frequency analyses. In general, flood frequency analysis is defined as

an estimation of how often a specified event, in this case, flood will occur (Hosking

and Wallis, 1997).
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There are two important components in frequency analysis which are

parameter estimation method (or estimator) and probability distribution being used

for describing flood occurrences. Before a probability distribution can be fitted to the

data, parameters of the particular distribution need to be estimated from the data

samples. Many estimators have been introduced in estimating distributional

parameters, but the most commonly used estimators in hydrology are method of

moments (MOM), the maximum likelihood estimation (MLE) and the probability

weighted moments (PWMs) or generally known as L-moments. The MOM is a

conventional and relatively easy parameter estimation method. Although long

established in statistics, this method is not always satisfactory. The MOM estimates

are usually inferior in quality and generally not as efficient as the MLE and L-

moments especially in the case where the distributions have a large number of

parameters. The MLE often regarded as the most efficient method. However, the

MLE might be hard to compute and involves numerical algorithm especially if the

number of parameters is larger than three. This will in turn make it hard and might

also be impossible to obtain MLE of small samples.

During the past three decades, major developments in flood frequency

analysis revolved around the idea of probability weighted moments (PWMs)

introduced by Greenwood et al. (1979) and the theory of L-moments proposed by

Hosking (1986, 1990) as the parameter estimation method. L-moment estimators are

an exact analogue to conventional MOM estimators, but are weighted linear sums of

the expected order statistics. The L-moment estimates are comparable to the MLE

estimates and in certain cases superior than the MLE particularly in small sample

sizes. Recent studies on statistical analysis of annual maximum flood series have

shown that L-moments provide simple and reasonably efficient estimators of

characteristics of hydrologic data and of a distribution’s parameters (Hosking, 1990;

Hosking and Wallis, 1993; Stedinger et al., 1992).

The second component in frequency analysis is the probability distributions

function being used. In determining a correct distribution function, the concern is to

find the one that would be capable of describing the recorded sample and more

importantly, extrapolating correctly to large return periods. Many distribution

function forms have been proposed for describing flood occurrences. However,
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previous studies have been reported in the literature that there is no ‘universal’

distribution function that is best representing floods trend at all streamflow locations

of interest. The extreme value Type I (EV1), II, and III distributions have recently

gained considerable acceptance for describing annual maximum flows on the

theoretical consideration that the distribution of the maximum of a sample tends to

converge to one of the three extreme value distributions as the sample size increases

(Wang, 1996). Other distributions also have been proposed to be used in flood

frequency analysis including three-parameter distributions; generalized extreme

value type I (GEV), generalized logistic (GLO), generalized Pareto (GPA),

lognormal (LN3), Pearson Type III (P3) and log-Pearson Type III (LP3), and two-

parameter distributions; extreme value Type I (EV1), logistic (LOG), normal and

Pareto distributions.

Flood frequency analysis may suffer from sampling variability when applied

to data for a single site, especially for estimating return periods that exceed the length

of the observed record at a site (Hosking and Wallis, 1993; Cunnane, 1988). The

observed flood data at a particular station are generally insufficient to obtain reliable

estimates of the flood quantiles, especially in developing and undeveloped countries.

This is due to lack of technology and other problems which affect the process of data

collection. In a relatively young country like Malaysia, majority of stations having

data record dated back from 1960 with the average record length of 35 years. This is

inadequate to allow for reliable estimation of flood magnitudes especially for larger

return period than the available length of data record.

One way of providing more reliable estimation is to use several records from

a region with identical behavior of flood, rather than only single site information

(Hussain and Pasha, 2009). This is known as regional flood frequency analysis

(RFFA). In RFFA, estimates at a single site can be enhanced by pooling the data

from other sites which confirmed to have similar frequency distribution. The

information from other sites however, only can be appropriately transferred within a

homogenous region. Studies have shown that, even though a region may be

moderately heterogeneous, regional frequency analysis will still yield much more

accurate quantile estimates than at-site frequency analysis (Lettenmaier et al., 1987).
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Recent advance in RFFA involves the use of L-moment estimators as

reported by Hosking and Wallis (1997). In RFFA, the objectives are to identify a

robust regional distribution for each identified homogenous region and to estimate

the quantiles at the station of interest for a given return period. Therefore, the

following procedures of RFFA based on L-moments approach have been employed

to attain the goals. The procedures include the detection of outliers, identification and

verifying of homogenous regions, identification and testing of regional frequency

distribution, and estimation of flood quantiles at stations of interest. This

methodology has been applied successfully in modeling floods in a number of case

studies from Malaysia (Lim and Lye, 2003; Zin et al., 2009; Shabri et al., 2011),

New Zealand (Pearson, 1991, 1995;  Madsen et al., 1997), South Africa (Kachroo et

al., 2000; Kjeldsen et al., 2002), China (Jingyi and Hall, 2004), UK (Fowler and

Kilsby, 2003), Pakistan (Hussain and Pasha, 2009; Hussain, 2011), Turkey (Saf,

2009a, 2009b), Iran (Abolverdi and Khalili, 2010) and Italy (Norbiato et al., 2007;

Noto and Loggia, 2009).

1.2 Problems Statement

The purpose of analyzing hydrological extreme events such as annual

maximum series of floods is, in most cases, to predict magnitude of flood of

relatively large return period such as 100 years and above (Wang 1990). Hence, it is

actually advantageous to intentionally censor (or eliminate) low-value observations

because using only the larger value flood ensures that the extrapolation to large

return periods flood is carried out by exploring the trend of these larger flows only.

Cunanne (1987) suggested that in such cases a censored sample should be used and

the analysis will be based on only those floods whose magnitudes have exceeded a

certain threshold.

Since L-moments were first introduced by Hosking (1990) as a parameter

estimation method, it has been widely applied in many fields of hydrology. Although

L-moments result in quite efficient estimate in parameter estimation, this may not be

so for predicting large return period events. The question arose whether L-moments
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are oversensitive to the lower part of distributions and give insufficient weight to

large data values that actually contain useful information on the upper distribution

tail (Wang, 1997; Bobee & Rasmussen, 1995).

Wang (1990) has introduced the L-moments method based on the concept of

partial probability weighted moments (PPWMs), which are called partial L-moments

(PL-moments) for fitting distribution functions to censored samples. PL-moments are

variants of L-moments and also analogous to the PPWMs. PL-moments are

introduced for characterizing the upper part of distributions and larger events in data.

Using PL-moments reduce undesirable influences that small sample events may have

on the estimation of large return period events.

However, there is no further research investigating on flood frequency

analysis of censored sample thus far. Hence, this research will provide further

investigation and more comprehensive evaluation of censored sample based on PL-

moments approach in flood frequency analysis especially on evaluating the

performance of PL-moments compared to L-moments.
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1.3 Research Objectives

In this research, a comprehensive evaluation of PL-moments estimator in

flood frequency analysis will be investigated particularly on evaluating the

performance of PL-moments compared to L-moments. The PL-moments at various

levels of censoring, 0F will be considered in this research. Five probability

distributions with three-parameter; GEV, GLO and GPA distributions and two-

parameter; EV1 and LOG distributions will be used in flood frequency analysis of

this research.

The main objectives of this research are:

i. To derive the parameters estimation models of PL-moments approach for

GLO, GPA, EV1 and LOG distributions and to enhance the parameters

estimation for GEV distribution.

ii. To evaluate the sampling properties of PL-moments compared to L-moments

in characterizing larger events in sample using Monte Carlo simulation data

generated from known and unknown parent distribution function.

iii. To develop the PL-moments approach in regional flood frequency analysis

based on L-moments approach in modeling the annual maximum streamflow

over stations in Peninsular Malaysia.

iv. To assess performances of PL-moments compared to L-moments in all stages

of regional flood frequency analysis.

1.4 Research Scope

This research covers the following aspects:

i. This research covers the derivation of the parameters estimation models for

GLO, GPA, EV1 and LOG distributions and to enhance the parameters

estimation for GEV distribution based on PL-moments approach. The
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parameter estimation models for GEV, GLO, GPA, EV1 and LOG

distributions based on L-moments are revisited.

ii. Two types of data are utilized in this study. The first data are synthetic

“flood-like” data obtained from Monte Carlo simulation data. The Monte

Carlo simulation generates synthetic flows from various background

distributions of known and unknown parent distribution function. The GEV,

GLO, GPA, EV1 and LOG distributions are assumed as known parent

distribution function while six Wakeby distributions are assumed as unknown

parent distribution function.

iii. The second data are used in regional flood frequency analysis. Data of annual

maximum streamflow over stations located throughout Peninsular Malaysia

which ranges from 1960 to 2009 has been used. Records of daily streamflow

from 56 stations with record lengths of 15 to 50 years were acquired from the

Department of Irrigation and Drainage, Ministry of Natural Resources and

Environment, Malaysia.

iv. PL-moments with various levels of censoring, 0F are investigated in Monte

Carlo simulation study ranging from 0F = 0.1, 0.2, 0.3, 0.4 and 0.5.

1.5 Research Contribution

This research offers several contributions. The main contributions are:

i. This research contributes to the development of the several three-parameter

estimation models of GEV, GLO, GPA distributions and two-parameter

estimation models of EV1 and LOG distributions based on PL-moments

method to be used in application of flood frequency analysis. The PL-

moments method is developed as similar to L-moments method in estimating
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parameters of various probability distributions for extreme events in

hydrology.

ii. Since the choice of censoring values, 0F are still under discussion, by

investigating PL-moments with censoring levels, 0F ranging from 0.1 to 0.5,

the readers will have some ideas in choosing the  suitable censoring value to

improve the estimation of extreme events particularly in high return period

events in frequency analysis studies.

iii. This research also contributes to the development of regional flood frequency

analysis (RFFA) based on PL-moments approach in each stages of RFFA.

These include the process of screening out the data, verifying the

homogenous region using statistical measure, selecting suitable regional

probability distribution and estimating regional parameters and flood

quantiles according to L-moments approach.

iv. The results of this study give benefits to hydrological studies. The direct

beneficiaries of the study are the engineers and hydrologists working in the

research areas of applications from the result of specifying the probability

distribution of extreme events which in this case is flood. By knowing the

information regarding flood magnitudes and corresponding frequencies of

occurrence, engineering projects such as dams, spillways, highways, etc can

be planned, designed and managed effectively. Thus, this also helps our

country from unnecessary cost and economic losses as well as preventing

possible danger due to overflow of water in the country.
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1.6 Organization of Thesis

The rest of the thesis is organized as follows:

Chapter 2 reviews main subjects used in the study that includes flood

frequency analysis, parameter estimator, simulation of the estimator, censored data in

hydrology, regional flood frequency analysis, regional homogeneity measure and

selection of regional probability distribution.

Chapter 3 describes in detail the related theories and methodologies for the

development of flood frequency analysis. The main ideas behind the building of

flood frequency model are also discussed. The background of L-moments and Partial

L-moments are defined by explaining their population and sample theories.

Chapter 4 discusses on flood frequency analysis and quantile estimation

using probability distribution function. Several distributions, namely GEV, GLO,

GPA, EV1 and LOG distributions are considered to be used as possible candidates in

this study. The details of each distribution will be presented including their

probability distribution function (pdf), cumulative distribution function (cdf) and

quantile function. The parameter estimation using the methods of L-moments is

revisited and parameter estimation using the methods of PL-moments is derived for

each distribution.

Chapter 5 presents the results of Monte Carlo simulation study to investigate

the sampling properties of the proposed parameter estimation methods of L-moments

and PL-moments. The analyses of the simulations are for the cases of known parent

distribution function and unknown parent distribution function.

Chapter 6 develops the procedures of regional flood frequency analysis

(RFFA) for PL-moments based on the L-moments approach. The procedures include

four stages of RFFA such as screening of the data, identification of homogeneous

regions, identification and testing of regional frequency distributions, and estimation

of flood quantiles at recurrence intervals of interest.



11

Chapter 7 presents the analysis of the regional flood frequency analysis

(RFFA) based on L-moments and PL-moments for study data of daily streamflow

from 56 stations located throughout Peninsular Malaysia. Finally, capabilities of the

L-moments and PL-moments estimators in estimation of design flood quantiles are

evaluated at specific recurrence intervals.

Chapter 8 summarizes the procedures and analysis in the research, draws

some conclusions of the research and provides suggestions and recommendation for

future research.
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