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ABSTRACT 
 
 
 
 

Polyacrylonitrile (PAN) has been found to be the most suitable precursor for 
producing carbon fibers (CFs) for gas adsorption because of its advantages such as high 
thermal stability, high specific surface area and high adsorption properties. The 
objectives of this study were to prepare and characterize polyacrylonitrile (PAN)-based 
carbon fibers (CFs) prepared via solvent-free coagulation process and study the 
influence of heat treatment process parameters on its morphological structure and gas 
adsorption properties. The factors considered in this study were polymer PAN 
concentration (10 wt. % - 18 wt. %), effects of acrylamide (AM) addition (0 wt. % - 7 
wt. %), the stabilization temperatures (200 oC – 300 oC), and also the activation 
temperatures (600 oC – 900 oC). The PAN precursor fibers were produced via solvent-
free coagulation process. The coagulated PAN fibers were then collected and dried 
under stress in oven for three hours before being post-treated with KMnO4. The treated 
PAN fibers were then subjected to heat treatment process which involved stabilization, 
carbonization and activation steps up to 900 oC. The PAN fibers were characterized 
using scanning electron microscopy (SEM), Fourier transform infra-red (FTIR), x-ray 
diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetry analysis 
(TGA), X-ray photoelectron spectroscopy (XPS), Vario elemental analyzer, tensile 
testing machine, and Nitrogen Adsorption at -196.15 oC. Experimental results showed 
that PAN fibers containing 5 wt. % AM has the best mechanical properties as compared 
to those fabricated from pure PAN and PAN/ AM with 2 wt. % and 7 wt. % of AM with 
the Young Modulus of 5.54 GPa. In addition, the PAN fibers with 5 wt. % AM exhibited 
superior exothermic trend with the lowest initiation stabilization temperatures. The best 
stabilization temperatures were found to be at 275 oC in air atmosphere with the Young 
Modulus of 7.50 GPa. Meanwhile 600 oC were the best moderate carbonization 
temperatures for preparing the activated carbon fibers (ACFs). The activated carbon 
fibers prepared at 900 oC (ACFs 900) showed the best adsorption properties compared to 
the other ACFs with 626.94 m²/g specific surface areas and the average pore diameter of 
ACFs 900 is in the microporous range (18.6 Å). In conclusion, the PAN based CFs for 
gas adsorption processes were successfully prepared via environmentally friendly 
solvent-free coagulation process and suitable heat treatment processes. 
 

 
 
 
 
 
 
 
 



 v 

 
 

 
ABSTRAK 

 
 
 
 

 Poliakrilonitril (PAN) telah dikenal pasti sebagai prapenanda yang paling sesuai 
untuk menghasilkan gentian karbon (CFs) untuk penjerapan gas kerana beberapa 
kelebihannya seperti, kestabilan terma yang tinggi, kawasan pemukaan spesifik yang 
tinggi dan sifat kebolehjerapan yang tinggi.  Tujuan kajian ini adalah untuk 
menghasilkan dan mencirikan gentian karbon (CFs) dari poliakrilonitril (PAN) dengan 
menggunakan pengentalan dalam takungan bebas pelarut dan mengkaji kesan 
pemanasan ke atas struktur morfologi dan kebolehjerapan gasnya. Terdapat beberapa 
faktor yang dikaji dengan teliti dalam kajian ini termasuk kepekatan larutan polimer (10 
berat % - 18 berat %), kesan penambahan akrilamid (AM) (0 berat % - 7 berat %), suhu 
semasa penstabilan (200 oC – 300 oC), dan juga suhu pengaktifan (600 oC – 900 oC). 
Gentian prapenanda PAN dihasilkan menerusi teknik pengentalan dalam takungan bebas 
pelarut. Kemudiannya, gentian tersebut dikumpul dan dikeringkan di bawah tekanan 
dalam ketuhar selama tiga jam sebelum dirawat menggunakan KMnO4. Gentian PAN 
terawat kemudiannya menjalani langkah-langkah pemanasan yang melibatkan proses 
penstabilan, pengkarbonan dan pengaktifan sehingga 900 oC. Gentian PAN dicirikan 
menerusi imbasan elektron mikroskopi (SEM), infra-merah pengubahan Fourier (FTIR), 
teknik pembelauan sinar-X (XRD), pemeteran kalori pengimbasan kebezaan (DSC), 
analisis gravimetri haba (TGA), spektroskopi electron-foto sinar-X (XPS), penganalisis 
elemen Vario, mesin pengujian tegangan dan penjerapan nitrogen pada suhu -196.15 oC. 
Hasil kajian menunjukkan gentian PAN yang mengandungi 5 berat % AM adalah 
terbaik dari segi ciri mekanikal berbanding gentian PAN asli dan gentian PAN yang 
mengandungi 2 dan 7 berat % akrilamid dengan nilai modulus Young 5.54 GPa. 
Tambahan pula, ciri eksotermik bagi PAN yang mengandungi 5 berat % AM juga adalah 
yang terbaik dengan permulaan suhu penstabilan terendah. Suhu 275 oC dalam 
persekitaran udara didapati adalah suhu terbaik untuk proses penstabilan dengan nilai 
modulus Young 7.50 GPa. Manakala suhu 600 oC adalah suhu terbaik untuk proses 
pengkarbonan sederhana bagi penyediaan gentian karbon diaktifkan (ACFs). Gentian 
karbon diaktifkan pada suhu 900 oC (ACFs 900) pula menunjukkan sifat kebolehjerapan 
paling baik berbanding gentian karbon diaktifkan (ACFs) yang lain dengan kawasan 
permukaan spesifik 626.94 m²/g dan diameter purata liang berada dalam julat bahan 
berliang mikro (18.6 Å). Kesimpulannya, gentian karbon (CFs) berasaskan PAN untuk 
tujuan proses penjerapan gas telah berjaya dihasilkan melalui proses pengentalan di 
dalam takungan bebas pelarut dan proses pemanasan yang sesuai.                                            
.                                 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
  
 
 
 

1.1 PAN Based Carbon Fibers 

 

Carbon fibers can be made from various types of precursors such as pitch, 

polyacrylonitrile (PAN), coal, rayon and the latest development is through vapor grown 

fibers. However, the commercial production of vapor grown fibers is still in its infancy. 

The two most dominant classes of precursor fibers ar+e polyacrylonitrile-based (PAN-

based) and pitch-based carbon fibers. Established study recently shows that PAN-based 

carbon fibers are the most suitable and widely applied for making high performance 

carbon fibers (Farsani et al., 2007; Huang, 2009; Rahaman et al., 2007). Although 

carbon fiber can be made from pitch precursor, the processing cost and purifying it to 

the fiber form is very expensive compared to PAN precursor fibers (Chung, 2001). 

 

Carbon fiber is a new breed of ideal engineering fiber that can be produced from 

many different types of precursor but about 90 % of world’s total carbon fiber 

productions are polyacrylonitrile (PAN)-based (Sánchez-Soto et. al., 2001; Huang, 

2009; Morgan, 2005; Donnet, 1998; Sutasinpromprae et. al., 2006; Yusof and Ismail, 

2012a). As the performance of carbon fiber composites highly depends on its precursor 

and good precursor should have high carbon content (Ko et al., 1992b), high molecular 

weight (Hou et al., 2006; Sawai et al., 2006) and also high degree of molecular 

orientations (Sawai et al., 2006; An et al., 2006; Jie and Wangxi, 2005), PAN-based 

carbon fibers seems to satisfy all of these requirements.  

 



2 

 

Commercially, carbon fibers for composites materials are divided into general 

purpose such as for sporting goods and high performance carbon fibers e.g. in aerospace 

and aircraft industries (Chung, 2001). The general purpose type is characterized by an 

amorphous and isotropic structure, low tensile strength, low tensile modulus and low 

cost. Meanwhile, high performance type is characterized by relatively high in strength, 

stiffness and modulus which are the most important characteristics of an ideal 

engineering material. The urgency of structural requirement for the aircraft and 

aerospace industry led to improved high strength and high modulus fiber and their 

composites. Carbon fibers are seldom used alone but widely used as reinforcement with 

other matrices in composite materials such as carbon fiber reinforced plastics, carbon 

fiber reinforced ceramics, carbon–carbon composites and carbon fiber reinforced metals, 

because of their high specific strength and modulus (Donnet et al., 1998).  

 

Carbon fibers which are reinforced with other matrix, exhibit the highest specific 

stiffness. This will serve to transmit load from the point of impact further into the 

structure so that higher load can be absorbed without permanent damage (Savage et al., 

2004). Using carbon fiber-reinforced plastics in automobiles which replace half the 

ferrous metals in current automobiles would greatly reduce weight, emissions, and fuel 

consumption (Caprino et al., 2004).  Although the majority of fiber reinforced resins 

contain glass-fibers, the attractive properties like high strength and modulus makes 

carbon fibers useful as a reinforcement for polymers, metals, carbons, and ceramics, 

even though they are brittle (Chung, 2001). 

 

Latest advanced in commercial applications include carbon-fiber flywheels as 

energy storage devices in electric powered automobiles (Blankinship, 2007, Gupta, 

1996). Another important application of carbon fiber is for compressed natural gas 

(CNG) pressure vessel. The CNG storage tanks usually made from pressure vessels and 

are therefore constrained in their geometry, which are typically cylindrical, and are also 

rather heavy more than 1 kg/ L for steel tanks. Moreover, attainment of pressure higher 

than 20.7 MPa (3000 psi) pressure requires costly multi-stage compression facility 

(Menon and Komarneni, 1998). The major challenges for CNG vehicles are to have 



3 

 

pressure vessel that have high pressure strength, lightweight, high temperature resistance 

and high corrosive material resistance. The best way to meet the above demand is by 

selecting carbon fiber CNG vessel.  

 

Carbon-fiber composites are lighter, stronger and safer than massive steel 

flywheels. This enables more energy to be stored in a smaller, lighter package, 

eliminating much of the footprint and weight issues of conventional flywheels 

(Blankinship, 2007). Carbon fibers could be categorized in three categories which are, 

low modulus, intermediate modulus (IM) and high modulus (HM) types. The strength 

and the modulus of each type are listed in Table 1.1. High modulus (HM) types carbon 

fibers have high modulus, thus they have a low strain to failure.  When incorporated into 

structures, they give the highest stiffness per unit weight (Donnet et al., 1998).  

Intermediate modulus (IM) type carbon fibers, which are heat-treated to a lower 

temperature, have a medium modulus but a very high strength.  Meanwhile, low 

modulus carbon fibers have quite low elastic modulus and low tensile strength. 

 

Today, carbon fiber composite products are widely used. Although the 

worldwide production of carbon fiber has increased rapidly, it remains less than 30 

million pounds/year (Kadla et al., 2002). The cost of carbon fiber production and 

demand limits its widespread use. The basic difficulty is the combined result of 

precursor cost, yield, processing cost and the like. Thus, there is a lot room for 

improvement in the properties and production of precursor carbon fibers via solvent free 

coagulation process that is employed in this work since it does not involve solvent in its 

coagulation bath. The use of organic solvent in the conventional coagulation bath 

requires additional production cost and very carcinogenic. However, the solvent in the 

coagulation bath play an important role in controlling the counter-diffusion of solvent 

and non-solvent (Bajaj et al., 2002). Thus, the main challenge for precursor fibers 

produced from solvent-free coagulation process is to have good and comparable 

mechanical properties of fibers with the absence of solvents in the coagulation bath 
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Table 1.1 : Classification of carbon fibers based on Heat Treatment Temperature 

(Donnet and Bahl, 1987) 

 

Carbon Fiber category HTT 
(°C) 

Tensile 
Strength 

(GPa) 

Young’s 
Modulus 

(GPa) 

Low Modulus Type 1000 1.72-2.41 138-172 

Intermediate Modulus (IM) Type 1500 3.45-4.13 241-276 

High Modulus (HM) type 2500 2.41-2.76 345-482 
 

 

1.2 PAN Based Activated Carbon Fibers for Gas Adsorption 

 

In addition to its well known application as an excellent reinforcer for 

composites, PAN-based activated carbon fibers have also been receiving increasing 

attention in recent years as adsorbent for gas adsorption application and water treatment 

(Brasquet et. al., 2000; Sánchez-Soto et. al., 2001; Huang, 2009). An important and 

significant application for activated carbon fiber is as adsorbent media for low pressure 

natural gas storage. Burchell (2002) reported that natural gas can be stored at an 

adsorbed state of 3.5 MPa (500 psi) by using activated carbon fiber as the adsorbent 

media compared to conventional pressure requires in compressed natural gas storage 

vessel at pressure more than 20.7 MPa (3000 psi).  

 

As the source of fossil fuel (gasoline and diesel) is now decreasing, natural gas 

(NG) is definitely an attractive alternative fuel for vehicles as it is a relatively clean 

burning fuel compared with gasoline. It burns cleanly and efficiently, with very few non-

carbon emissions (Alcaniz-Monge et al., 1997; Yusof et al., 2012c). The combustion 

products of gasoline (petrol), diesel, and kerosene vehicles cause serious health and 

environmental problems. In addition, NG is much cheaper than conventional petroleum-

based gasoline (Shao et al., 2007). Unlike oil, gas requires limited processing to prepare 

it for end-use. These favorable characteristics have enabled natural gas to penetrate 

many markets, including transportation sectors. 
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However, there are difficulties in the use of natural gas especially in 

transportation and storage issues. This is because of its limited driving range as a result 

of its low volumetric energy density and gaseous form (Menon and Komarneni, 1998; 

Wang et al., 2010) and also public safety concerns. Therefore, many researchers attempt 

to make natural gas vehicles competitive with current ones using conventional fuels 

(Alcaniz-Monge et al., 1997; Shao et al., 2007). Natural gas for vehicular (NGV) 

application depends on the storage capacity in an onboard fuel tank. 

 

Current gas vehicles employ storage vessels at very high pressure (~20 MPa) by 

compressed natural gas (CNG) method. Although CNG is less expensive than gasoline 

on an energy basis, use of CNG requires significant additional upfront vehicle costs, 

mainly the cost of onboard CNG storage. The key factor in CNG vehicle market 

penetration is the payback period of the higher cost of a CNG vehicle with lower-priced 

natural gas. The high pressure involves in CNG method also contributes to the slow 

market of CNG vehicles because of the safety issue.    

 

Compared with the compressed natural gas (CNG) method, adsorbed natural gas 

on a suitable microporous adsorbent offers a promising opportunity for natural gas 

vehicles (NGV) technology. Natural Gas stored as an adsorbed phase in porous material 

is referred to as Adsorbed Natural Gas (ANG) (Menon and Komarneni, 1998). The 

adsorbed natural gas (ANG) requires lower storage pressure at 4 MPa compared to 

pressure requires ~20 MPa in compressed natural gas storage vessel at pressure 

(Burchell, 2002; Vasiliev et al., 2003). Furthermore, ANG technology can provide a 

satisfactory energy density at a moderate pressure 4 MPa and room temperature which 

presents a perspective in transport and other application (Shao et al., 2007). In addition, 

a low pressure ANG storage tank can be filled with natural gas from a domestic pipe-

line using an inexpensive single-stage compressor. 

 

 

 

 

http://en.wikipedia.org/wiki/Transport�
http://en.wikipedia.org/wiki/Natural_gas_storage�
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1.3 Adsorbed Natural Gas Application 

 

Microporous materials are widely used as adsorbents for various applications 

such as gas separation and purification, catalysis support, and gas storage. The use of 

adsorbent materials for storing natural gas is another application attempting to make 

natural gas vehicles (NGVs) competitive with current vehicles using conventional fuels. 

Adsorbed natural gas (ANG) uses adsorbents, such as activated carbons (ACs), activated 

carbon fibers (ACFs), silica gels, and zeolites to store natural gas at moderate pressures, 

(35 bars), compared to the high-pressures (200 bars) for current compressed natural gas 

(CNG) technology. 

 

ANG provides a method of storing gas at a substantially higher concentration 

that can be achieved with simple compression. Although not attaining the density 

typically found with method such as liquefied natural gas (LNG), it is potentially much 

simpler and not requiring the use of refrigerator method or significantly ancillary 

equipment. Although adsorption on carbon materials develop to date produces its 

greatest absolute enhancement at pressures around 35 bars, higher relative gains are 

obtained in the 3-10 bar range more appropriate to local storage and distribution 

systems. Thus ongoing researches are focusing on developing carbon materials to be 

used as adsorbent media in ANG technology at lower pressure. 

 

Activated carbonaceous adsorbents have drawn great attention for their strong 

adsorption capacities. The activated carbon fibers are characterized by the presence of a 

large number of micropores, which act as adsorption sites (Chung, 2001). Of the 

activated carbonaceous adsorbent, activated carbon fibers (ACFs) have attracted 

considerable concerns because of their high adsorption properties (Lee et al., 2004; 

Zaini et al., 2010), ease of synthesis (Lu and Zheng, 2001), and wide applicability 

(Brasquet et. al., 2000; Shao et al., 2007). As compared to the conventional activated 

carbons (AC), ACFs have very fast adsorption/ desorption rates in gas and liquid 

filtration (Lu et al., 2001). Moreover, ACFs are also easy to handle and avoid problems 
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arising from the packing of granules or powders of activated carbons (Lu and Zheng, 

2001).  

 

Therefore, current developing technology involves adsorbed natural gas (ANG) 

storage on a suitable micro-porous material such as activated carbons and activated 

carbon fibers (ACFs) (Menon and Komarneni, 1998; Wang et al., 2010; Yusof and 

Ismail, 2012a). The main requirement for adsorbent media is it has to be predominantly 

microscopic. The optimal storage capacity will be obtained when that fraction of storage 

volume that is micropore is maximized with no void or macropore volume (Menon and 

Komarneni, 1998; Shao et al., 2007). In addition, the adsorbents must have high surface 

area and high packing density. The porous texture of the fibers is strongly depends on 

the activation process and carbon precursor. In order to successfully achieve this 

requirements, the fabrication of carbon fiber plays a major part in obtaining fiber that 

have high surface area, no macrovoids and high packing density which will then be 

activated.  

 

 One of the biggest challenges of adsorption process is to obtain good adsorbent 

for specific applications. Those with well-controlled properties and can be produced in 

large quantities are more preferable but to be selected as a good adsorbent, it should be 

high packing density, high adsorptive capacity, high adsorption rate with maximum 

desorption capability. Methods of evaluating adsorbent effectiveness vary that involve 

either by measuring of gas adsorption capacity, adsorption isotherm, heat of adsorption, 

kinetics of adsorption, adsorbate-adsorbent interaction using FTIR or NMR 

spectroscopy, or pore characteristics using SEM or AFM observations (Cracknell et al., 

1993; Lozano-Castello et al., 2002; Hadjiivanov et al., 2003). 

 

 

1.3.1 The Adsorbed Natural Gas Technology 

  

Adsorption is the adhesion of molecules of liquids, gases, and dissolved 

substances to the surface of a solid. The ability of a solid to adsorb depends on the 
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chemical makeup of the solid and its physical structure. Activated carbon fibers (ACFs), 

for example, have a very large surface area because of its porous nature. This gives it the 

ability to adsorb large quantities of natural gas. In a conventional high-pressure CNG 

tank, gas is forced into the tank under pressure. The greater the pressure, the greater the 

volume of gas stored in the tank. The maximum pressure, and therefore volume of gas 

held in the tank, is limited by the physical properties of the tank and its valve. The 

addition of a microporous material into the tank, such as activated carbon fibers, makes 

it possible to store a larger volume natural gas in the tank at relatively lower pressure 

and at room temperature.  

 

There are various types of pores in the ACFs in ANG technology as shown in 

Figure 1.1. Referring to Figure 1.1, the ACFs are the adsorbent and the adsorbates are 

methane molecules, the major constituent of natural gas. Therefore, it is important to 

realize that the accessibility of gases (adsorbates) to the adsorption sites depends on the 

pore system and the pore size. Macropores (>50 nm) have small specific surface area 

and are thus insignificant to adsorption; however, these pores control the access of 

adsorbate and also serve as the space for deposition. 

 

Mesopores (2-50 nm) provide channels for the adsorbate to the micropores from 

the macropores. Special methods are required to create mesopores and micropores such 

as optimum activation temperature, optimum activation time, specific heating speed, and 

flow rate of activation agent. As reported in the literature, mesopore can function as 

capilary condensation, thus it is indispensable for the adsorption of liquid and gas. 

Micropores (˂1 nm) determine the adsorption capacity of the activated carbon. They 

have large specific surface areas and take the largest fraction of the adsorbed mass and 

act as the major adsorption sites. Therefore, micropores are the major area of interest in 

the research of activated carbon fibers. 
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Figure 1.1 The pore structure of activated carbon fibers in ANG technology 

(Mochida et al., 2000) 

 

 

1.4 Fabrication Processes 

 

Producing a high performance PAN-based carbon fibers and activated carbon 

fibers is not an easy task, since it involves many steps that must be carefully controlled 

and optimized. Such steps are the dope formulation, spinning and post spinning 

processes as well as the pyrolysis process as depicted in Figure 1.2. At the same time, 

there are several factors that need to be considered in order to ensure the success of each 

step. However, amongst all steps, the pyrolysis processes are the most important step 

and can be regarded as the heart of the carbon fibers and activated carbon fibers 

production. Pyrolysis processes involve stabilization, carbonization and activation steps 

that need to be optimized in order to get the suitable microporous carbon materials to be 

used as adsorbent media for gas adsorption. 
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Figure 1.2 General fabrication processes of carbon fibers and activated carbon fibers 

 

 

1.4.1 Precursor Selection and Dope Formulation 

 

Precursor fibers play a main role in carbon fiber quality as carbon fibers inherited 

characteristic of precursor fibers. The most widely employed carbon fibers precursor is 

PAN fibers due to their high carbon yield and high performance of the resultant carbon 

fibers. The polymer concentration in the spinning solution significantly influences the 

fiber morphology and density.  Thus, in this research, optimum polymer concentration 

was investigated thoroughly. In addition, numerous studies reported that addition of co-

monomers, i.e. itaconic acid (IA) methacrylic acid (MA), and acrylamide (AM) in 

precursor fibers are beneficial in the stabilization of the fibers by lowering the 

stabilization time and extending the thermal degradation (Wangxi et al., 2003; Bajaj et 

al., 2001; Funk, 1990; Mittal et al., 1997b). The optimum amount of co-monomers 

should be used in order to obtain the best quality of carbon fibers (Chand, 2000).  
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Nevertheless, there are still few reports on the effects of acrylamide loading in 

the overall mechanical and thermal properties of Polyacrylonitrile (PAN)/ acrylamide 

(AM)-based carbon fibers. Therefore, one of the objectives of this study is to investigate 

the manipulation of AM content in PAN fiber and studying its mechanical and thermal 

properties. However, the production of a high quality carbon fiber precursor via solvent 

free coagulation process is fairly new and a lot of new information is yet to be 

discovered.  This process may involve many steps that must be controlled and optimized 

in this research work to provide an avenue in enhancing the performance of PAN/AM-

based carbon fibers using solvent-free coagulation bath in the future. 

 

 

1.4.2 Spinning Method and Solvent-free Coagulation Process 

 

Spinning is the second step for making carbon fibers. Spinning can be defined as 

the transformation of a liquid material into a solid fiber (Ferguson, 2001). Dry spinning, 

wet spinning, melt spinning and dry-jet wet spinning are all referred to as solution 

spinning, as they all use a polymer solution, which is also known as dope. Wet spinning 

is the standard method for spinning PAN fibers. Dry and wet spinning can be combined 

to form a process known as dry-jet wet spinning. In brief, during dry-jet-wet spinning 

process, polymers dissolved in a suitable solvent is extruded into an air gap before 

entering a coagulation bath that is miscible with the solvent but not with the polymer. A 

phase inversion process takes place producing a solid fiber. 

 

Dry-jet-wet spinning is recently replacing wet spinning as it yields fibers of 

better mechanical properties and controlling noncircular cross sections. Through the dry-

wet spinning process, the dope is extruded into an air gap of less than one cm and 

followed by a conventional coagulation process. This will help in allowing the extruded 

dope to cool to a certain extent in the air gap before reaching the coagulation bath and to 

relax the high stresses develop inside the spinneret assembly (Bajaj et al., 2002). The air 

gap has been shown to produce fibers that are stronger and more extensible than fiber 

produced from the wet jet spinning method (Ferguson, 2001). 
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In the air gap, the extruded dope is allowed to cool to a certain level before 

reaching the coagulation bath. It will also provide relaxation towards the high stresses 

developed in the spinneret assembly. The dry-jet-wet spinning actually cleverly 

combines the advantage of dry spinning as well as the wet spinning. In example, it 

possesses the advantages of high speed of formation, high concentration of dope, and 

high degree of jet stretch that usually characterize the dry method of spinning. However, 

it still retains the capability of controlling the structure of as-spun fibers by adjustment 

of spinning bath parameters. 

 

Conventionally, the coagulation bath contains solvent and non-solvent. The 

common non-solvent used is water.  Meanwhile, the solvent used for controlling the 

mass transfer in the coagulation bath are sodium thiocyanate, dimethyacetamide 

(DMAc), nitric acid, ethylene glycol and dimethylformamide (DMF) (Edie, 1998). The 

solvent in the coagulation bath acts as a resistance to the solvent inside the as-spun fibers 

from diffusing into coagulation bath and sequentially reduces the possibilities of 

instantaneous coagulation. This reduces the formation of micro-pores in the cross 

section of PAN fiber (Rahman et al., 2007).  Usually the solvent used for controlling the 

mass transfer in the coagulation bath is similar with those uses in spinning dope (Funk, 

1990).  

 

Recently, interest on environmental issue has brought to the development of 

carbon fiber fabrication in solvent-free coagulation process using pure water in the 

coagulation bath (Ismail et al., 2008; Rahman et al., 2007; Yusof and Ismail, 2011;  

Yusof and Ismail, 2012b). The organic solvents such as dimethylformamide (DMF) 

which was normally employed in the conventional coagulation bath in the fabrication of 

PAN fibers could cause cancer for a long period of exposure due to its carcinogenic 

effects (Ismail et al., 2008; Yusof and Ismail, 2011). Therefore, in an attempt to reduce 

the carcinogenic effects during fabrication of carbon fibers, we investigated the 

properties of PAN precursor fiber develop using solvent-free coagulation bath. It is 

believed that it will benefit in creating safer environment for human healthiness. 
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Solvent-free coagulation process using multihole spinneret was employed in this 

research with 100 percent pure water in the coagulation bath. In order to compensate the 

absence of solvent, other spinning parameters e.g. residence time and coagulation bath 

temperature need to be optimized. Coagulation bath temperature is responsible for 

controlling the mass transfer and the counter-diffusion of the solvent and non-solvent 

thus influences microscopic and morphological structures as well as the mechanical 

properties of PAN-fibers (Rahman et al., 2007).  

 

 

1.4.3 Pyrolysis Processes 

 

Although the manufacturing processes for various precursors are different in 

details, all of them still follow same basic sequences which involve polymerization of 

precursor, spinning, stabilization, carbonization, graphitization, and surface treatment or 

sizing to facilitate handling (Luo, 2006). Carbon fibers contain at least 90 % carbon by 

weight obtained by pyrolysis of an appropriate precursor fiber. In the first pyrolysis 

process known as stabilization, the fibers are treated under tension condition in an 

oxidizing atmosphere at typical temperatures between 200 oC and 300 oC. This 

important step is conducted to prepare the fibers so that they can withstand higher 

temperatures during the carbonization treatment (Flock et al., 1999).  

 

Although at this stage, the fibers are not yet transformed into carbon fibers, 

oxidation stabilization is the most essential process since it allows the subsequent 

polymer degradation reactions during carbonization to proceed without collapse of the 

fiber or loss of orientation (Savage, 1993). In the step of oxidative stabilization, PAN 

fibers are heated in an oxygen-containing atmosphere to further orient and then cross-

link the molecules, such that they can survive higher temperature pyrolysis without 

decomposing (Farsani et al., 2007). 

 

Meanwhile, in carbonization step, fibers are treated at high temperatures in inert 

condition between 600oC and 800oC to remove the non-carbon elements as volatile 
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gases. During this step, most of the non-carbon elements within the fiber are volatized in 

the form of methane, hydrogen, hydrogen cyanide, water, carbon monoxide, carbon 

dioxide, ammonia and various other gases (Edie, 1998). The carbonized PAN-based 

carbon fibers will undergo subsequent pyrolysis process to get graphitized carbon fiber 

or activated carbon.  

 

Carbonized PAN fibers will be activated subsequently by heating process for one 

minute to one hour with the introduction of moisturized carbon dioxide gas. Activation 

is done to create porous structure in ACFs for adsorption purposes, at which carbonized 

fiber is subjected to a heat treatment temperature (HTT) in a temperature range of 600 to 

1200oC (Burchell, 2002). The resulting PAN-based activated carbon fibers are suitable 

for use as adsorption materials (Ko, 2000). The activated carbon fiber provides excellent 

gas-solid contact efficiency and high adsorption capacity, more importantly it can be 

fabricated in any shape owing to a good mechanical strength (Lee et al., 1997).  

 

 

1.5 Problem Statements 

 

Nowadays, nearly all vehicles run on either gasoline or diesel fuel, which 

contribute to global warming effects as green house gases were discharged continuously. 

Natural gas is definitely an attractive fuel for vehicles as it burns cleanly and efficiently, 

with very few non-carbon emissions compared to gasoline. Natural gas possesses 

remarkable qualities whereby it emits the lowest carbon dioxide per unit of energy 

generated than other fossil fuels. However, there are difficulties in the use of natural gas 

especially in transportation and storage issues because of its low energy density and 

gaseous form. The development of PAN-based activated carbon fiber as the precursor 

for natural gas storage is beneficial to overcome the environmental problem that has 

become a huge global issue nowadays.  

 

Unfortunately, high production costs, up to $20 per pound have limited the 

widespread use of carbon fibers. The price of carbon fibers is high mainly because of 

http://en.wikipedia.org/wiki/Transport�
http://en.wikipedia.org/wiki/Natural_gas_storage�
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two reasons which are the high price of precursor PAN fibers and the high cost of 

production (Farsani et al., 2007). In order to suppress this drawback, the local PAN-

based carbon fiber being developed with the condition processes of producing carbon 

fiber are to be optimized. In addition to its environmental unhealthy issue, the high 

amount of solvent usage in conventional coagulation bath contributed to the increase of 

the production cost (Ismail et al., 2008). The use of solvent-free coagulation bath is 

believed able to produce precursor PAN fibers in huge amount with low in cost that 

make it feasible to be used as adsorbent media for natural gas storage. 

 

Furthermore, in responds to environmental concerns, the free-solvent coagulation 

bath will be employed to decrease the impact of solvent usage to environment. However, 

as it had already known, solvents play important role in controlling the mass transfer as 

well as acts as a resistance to solvent inside the as-spun fibers from diffusing into 

coagulation bath and sequentially reduces the possibility of instantaneous coagulation. 

Therefore, several strategies need to be employed in order to compensate the absence of 

the solvent in coagulation bath such as optimizing the residence time during fabrication 

process and also decreasing the coagulation bath temperature. The other fabrication 

process parameters namely spinning dope temperature, amount of additives and polymer 

concentration will also being taken into consideration to find the optimum condition of 

fabrication high performance carbon fibers in solvent-free coagulation process.  

 

Meanwhile, in order to produce a good adsorbent media for gas adsorption, the 

suitable activation temperatures are needed. Thus, in this study the thorough 

investigation on finding the optimum activation temperatures is the main focusing area 

of study. In this study, the aim is to locally produce high performance and low cost 

polyacrylonitrile-based carbon fibers via solvent-free coagulation process using dry-jet-

wet spinning method. Later on, the carbon fibers produced are meant to be used as 

precursor for natural gas storage either material for carbon fiber composites pressure 

vessel for compressed natural gas (CNG) or as adsorbent media for adsorbed natural gas 

(ANG).  
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1.6 Objectives of the Study 

 

Based on the research background and the problem statements, therefore the 

research objectives were outlined as below:-    

 

(a) To prepare and characterize PAN fibers as a precursor for PAN-based 

 carbon fibers and PAN-based activated carbon fibers via solvent free 

 coagulation process   

 

(b) To study the influence of heat treatment process parameters on the 

 morphological structure and  mechanical properties of carbon fibers.  

 

(c) To study the influence of heat treatment process parameters on the 

 morphological structure and adsorption properties of activated carbon 

 fibers. 

 

 

1.7 Scopes of the Study 

 

In order to accomplish the objectives, the following scopes of work have been 

drawn:- 

 

a) Preparing the polymer solution formulation for the fabrication of PAN-based 

carbon fiber based on data available in the open literatures. 

 

b) Fabricating PAN precursor fibers via solvent-free coagulation process by using 

dry-jet-wet spinning methods. 

 

c) Characterizing the thermal and mechanical properties of PAN precursor fibers 

using Scanning Electron Microscopic (SEM), Attenuated Total Reflection 

Fourier Transform Infrared Spectroscopy (FTIR–ATR), Wide Angle X-ray 
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diffraction (WAXD), Differential Scanning Calorimetric (DSC), thermal 

gravimetric analysis (TGA) and tensile testing machine. 

 

d) Studying the effect of stabilization conditions of the PAN fibers at 200-300 oC in 

an oxygen-containing environment on mechanical and thermal properties of the 

resultant carbon fibers. 

 

e) Studying the effect of carbonization conditions of the PAN stabilized fibers in an 

inert environment on mechanical and thermal properties of the resultant carbon 

fibers. 

 

f) Studying the effect of activation conditions on the PAN-based carbon fibers in 

carbon dioxide gas on thermal and adsorption properties of the resultant activated 

carbon fibers (ACFs). 

 

g) Characterizing the pore structure and adsorption properties of PAN-based 

activated carbon fibers using Scanning Electron Microscopic (SEM), Attenuated 

Total Reflection Fourier Transform Infrared Spectroscopy (FTIR–ATR), Wide 

Angle X-ray diffraction (WAXD), Differential Scanning Calorimetric (DSC), 

Nitrogen Adsorption Isotherm using BET method.  

 

 

1.8 Significant of the Study 

 

This study is expected to suppress the drawbacks of high manufacturing 

production cost of carbon fibers and activated carbon fibers precursor. In addition, the 

free-solvent coagulation bath that was employed in this study is able to decrease the 

impact of solvent usage to environment. Furthermore, this is a new fabrication technique 

to produce polyacrylonitrile-based activated carbon fibers via solvent-free coagulation 

process, to be used as a natural gas adsorbent media. In addition, this study represents 

the first reported data on adsorption characteristics of polyacrylonitrile-based activated 
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carbon fibers prepared via solvent-free coagulation process, intended to be used as a 

natural gas storage media in the open literature. Hence, the issue on natural gas storage 

problem because of its low density can be solved. 

 

 

1.9 Thesis Outline 

 

This thesis aims to establish a thorough analysis for PAN-based carbon fibers 

and PAN-based activated carbon fibers prepared via a solvent free coagulation process. 

The major part of this thesis concentrates on the precursor fibers preparation and heat 

treatment steps including stabilization, carbonization and activation at various conditions 

involved during the fabrication of PAN-based carbon fibers and activated carbon fibers. 

To date, there is no systematic study on the effects of using solvent-free coagulation 

process to the PAN-based carbon fibers properties and its structure evolution during 

stabilization, carbonization, and activation.  

 

Chapter 1 explores the background information regarding to PAN-based carbon 

fibers and activated carbon fibers, spinning methods and also the novel solvent-free 

coagulation process. The details of problem statements, objectives and scopes of this 

research also have been discussed thoroughly in this chapter. Chapter 2 contains 

background information relevant to a review of precursor selection and steps involved in 

the fabrication of PAN-based carbon fibers. The spinning method using solvent-free 

coagulation process, post spinning activities and pyrolysis process involved were 

discussed in detail together with the results obtained from previous researches using 

conventional coagulation bath. 

 

Chapter 3 focuses on the experimental methods as well as the characterization 

tools which were utilized during the course of this research. In order to clearly elucidate 

the thermal behavior, structure properties, mechanical properties and adsorption 

properties of the PAN-based activated carbon fibers, a meticulous investigation using 

DSC, TGA, FTIR, SEM, XRD, Nitrogen Adsorption Isotherm, Vario Elemental 
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Analyzer, AFM, XPS and tensile testing machine is presented. Chapter 4 described in 

detail the influence of PAN composition and acrylamide addition on the fibers properties 

of the prepared PAN/AM based carbon fibers prepared via solvent free coagulation 

process. The results obtained are compared with the carbon fibers prepared using 

conventional coagulation bath. 

 

Chapter 5 presents the microstructure properties, thermal and mechanical 

properties of PAN/AM-based carbon fibers prepared at different stabilization and 

carbonization conditions. The effects of activation process parameters are covered in 

Chapter 6. The activation temperature is varied systematically in order to investigate the 

optimum activation temperature for activation process. Meanwhile, Chapter 7 provides 

the summary, conclusions and recommendations drawn from this study. The future 

directions of the activated carbon fiber in industrial application were also provided. 
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