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ABSTRACT 

Orthogonal frequency division multiplexing (OFDM) is an attractive 

technique for wireless communications. However, in high-mobility scenarios, the 

time-variation of mobile radio channels over an OFDM symbol leads to a loss of 

subcarrier orthogonality, and resulting in intercarrier interference (ICI) which 

severely degrade the OFDM performance and introduce an irreducible error floor. In 

this thesis, a novel scheme is proposed to estimate the channel in OFDM systems.  

The key idea is to distort the data of OFDM symbol in frequency domain, such that 

an impulse signal is used to estimate the channel, in time domain at pilot samples. 

Then, a piecewise linear model is used to estimate the channel variation over an 

OFDM symbol. Simulation results show the proposed scheme can achieve a 

substantial improvement in the bit error rate (BER) performance of OFDM compared 

with Zhao, Chang, and Mostofi schemes. Moreover, the error floor significantly is 

reduced, particularly, at low signal to noise ratio (SNR) regions compared with the 

previously mentioned schemes. Recently, Mostofi proposed a channel estimation 

scheme to mitigate ICI in OFDM system by approximating the channel variation 

over OFDM symbol by piecewise linear model. But, for high Doppler spread the 

channel over OFDM symbol exhibit high order variation. Thus, a generalisation of 

Mostofi scheme is proposed, where a general polynomial model is used to estimate 

the channel. Simulation results show that at a high Doppler spread, the generalised 

scheme show remarkable improvement in the BER performance of OFDM over the 

Mostofi scheme. Additionally, in this thesis, a modified of “better than” raised cosine 

pulse-shape is proposed to improve the performance of OFDM in the presence of 

frequency offset. Simulation results demonstrate that the proposed pulse outperforms 

raised-cosine pulse and “better than” raised cosine pulse in terms of BER 

performance, ICI reduction and SIR enhancement.  



vi 

ABSTRAK 

Pemultipleksan pembahagian frekuensi ortogon (OFDM) adalah satu teknik 

yang menarik untuk komunikasi wayarles. Walau bagaimanapun, dalam senario-

senario mobiliti tinggi, perubahan masa saluran radio mudah alih lebih simbol 

OFDM membawa kepada kerugian keortogonan subpembawa, serta menghasilkan 

gangguan antara pembawa (ICI) yang boleh mengakibatkan kemerosotan prestasi 

OFDM secara serius dan mewujudkan lantai ralat yang tidak boleh direndahkan lagi. 

Dalam tesis ini, satu skim baru telah diperkenalkan untuk menganggar perubahan 

saluran dalam sistem OFDM. Idea utamanya adalah untuk mengganggu data simbol 

OFDM pada frekuensi domain melalui penggunaan isyarat denyut bagi menganggar 

saluran dalam domain masa pada isyarat perintis. Kemudian, model linear sesecebis 

digunakan untuk menganggar variasi saluran atas simbol OFDM. Keputusan simulasi 

menunjukkan bahawa skim yang dicadangkan boleh mencapai peningkatan besar 

dalam prestasi kadar bit kesalahan (BER) berkaitan OFDM dibanding dengan skim-

skim yang diperkenalkan oleh Zhao, Chang, dan Mostofi. Tambahan pula, ia adalah 

signifikan bagi merendahkan lantai ralat terutamanya pada bahagian isyarat kepada 

nisbah bunyi (SNR) rendah dibandingkan dengan skim terdahulu. Baru-baru ini, 

Mostofi telah memperkenalkan skim penganggaran saluran untuk mengurangkan ICI 

dalam sistem OFDM dengan mengganggarkan variasi saluran atas simbol OFDM 

mengunakan model linear. Walau bagaimanapun, bagi saluran dengan sebaran 

Doppler yang tinggi atas satu simbol OFDM, hasil keputusan menunjukkan variasi 

tertib yang agak tinggi. Maka, satu skim Mostofi umum dicadangkan, di mana model 

polinomial am digunakan untuk menganggar saluran. Hasil simulasi menunjukkan 

bahawa pada sebaran Doppler yang tinggi, skim umum yang dicadangkan 

menunjukkan peningkatan memberansangkan dari segi prestasi BER OFDM 

berbanding skim asal yang dicadangkan Mostofi. Disamping itu, dalam tesis ini, 

dedenyut berbentuk “lebih baik” kosinus berbangkit yang diubahsuai telah 

dicadangkan untuk meningkatkan prestasi OFDM dalam keadaan ofset frekuensi. 

Keputusan simulasi menunjukkan bahawa denyut yang dicadangkan mengatasi 

prestasi BER, menunjukkan peningkatan SIR dan pengurangan kuasa ICI denyut 

kosinus berbangkit dan denyut “lebih baik” kosinus berbangkit.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction 

Future mobile communication systems should be able to support high data 

rate, high mobility, and high quality of services and applications such as multimedia 

streaming, wireless Internet access and high rate Internet surfing, and real-time 

video.  

In general, it is hard to realize a communication system that supports both 

high data rate transmission and high mobility of transmitters and/or receivers.  Since, 

high data rate and high mobility result in frequency- and time-selective, i.e., doubly 

selective fading channels. 

Orthogonal Frequency Division Multiplexing (OFDM) is one of the most 

attractive multicarrier transmission techniques for future wireless systems because of 

its spectral efficiency, robustness against frequency-selective channels, and high 

tolerance to multipath channels, such as combating intersymbol interference (ISI). 

However, a major drawback of OFDM is its vulnerability to the time-variation of the 

channel, which is a direct effect of high mobility.  A typical scenario of time-varying 

channel is a receiver mounted on high-speed trains, cars, or airplanes, where the 

channel becomes a rapid time-varying one.  In high mobility environments, large 

Doppler spread results in rapid channel variation in time that gives rise to a loss of 
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subcarrier orthogonality, resulting in intercarrier interference (ICI) and performance 

degradation.  ICI is a crosstalk between subcarriers, which describes the interference 

from other subcarriers into the subcarrier of interest. 

1.2 Background 

A multicarrier system in general and OFDM system, in particular, is much 

more sensitive to frequency offset than a single-carrier system.  OFDM is highly 

susceptible to frequency synchronization errors, due to the narrow spacing between 

subcarriers.  Such errors are generated by phase noise, sampling frequency, residual 

carrier frequency offset (CFO), and Doppler spread (  ).  

Firstly, random phase noise is occurred due to the imperfection of the 

transmitter and receiver local oscillators (Zou et al., 2007).  Secondly, sampling 

frequency offset is occurred due to the mismatch in sampling clock of the transmitter 

and receiver local oscillators.  Thirdly, residual frequency offset is defined as the 

residual value of CFO after compensation due to an imperfect carrier synchronization 

algorithm at the receiver.  While, Doppler spread is generated as a result of a user’s 

mobility and a relative motion of objects in the multipath channel.  Hence, a 

transmitted signal follows different paths before arriving at the receiver, where each 

path has different frequency offset.  

Since Doppler spread comprises a set of frequency offsets, it becomes 

difficult to get rid these frequency offsets by using frequency synchronization 

algorithms, where they developed to track a single-carrier frequency at a time.  

Therefore, the effect of Doppler spread on the performance of OFDM system became 

a serious problem. 

In OFDM, a high rate serial data is converted (mapped) into a low rate 

parallel data (that are transmitted simultaneously), which are used to modulate the 

orthogonal subcarriers, at which the OFDM symbol duration is increased.  However, 

thereby increasing the symbol duration the OFDM system became more vulnerable 
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to time selectivity of the channel.  That significantly destroys the orthogonality 

between subcarriers, leading to power leakage between subcarriers, known as ICI. 

The ICI is proportional to the received signal power and cannot be overcome 

by increasing the signal power.  It is also proportional to Doppler spread plus the 

square of the residual carrier offset and inversely to the subcarrier spacing (Chang, 

2004; Das et al., 2007).  In additional, ICI results in an irreducible error floor, which 

means the bit error rate (BER) curve flattens out in the high signal-to-noise ratio 

(SNR) region.  ICI is proportional to the symbol duration and Doppler frequency 

(Robertson and Kaiser, 1999; Zhang, 2004).  Therefore, channel estimation and ICI 

mitigation of the frequency offset is most critical in OFDM receivers (Edfors et al., 

1996a). 

1.3 Problem Statement 

One of the most attractive features of OFDM is its high spectral efficiency 

due to precisely overlapping orthogonal subcarriers.  However, one of the major 

drawbacks of such a modulation technique is its very high sensitivity to Doppler 

spread, which is the major factor of its performance degradation in a wireless 

multipath channel.  The Doppler spread is induced due to a mobile environment, 

where the multipath channel is time variant. 

In high-mobility scenarios, large Doppler spread results in rapid channel 

variation in time within one OFDM symbol period.  Such a variation gives rise to a 

loss of subcarrier orthogonality, resulting in ICI and causing an irreducible error 

floor, which cannot overcome by increasing the signal power.  As the mobility 

increases, the ICI increases and the performance of the OFDM system degrades 

severely. 

Even many researchers proposed different techniques to mitigate ICI in 

OFDM due to Doppler spread, the achievements which have been done, do not 

significantly eliminate the ICI or significantly lower the error floor level, particularly 
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at high Doppler spread. The ICI still make a limitation on the data rate and on the 

mobile speed, where the error floor still at high level (Hijazi and Ros, 2009; Jun-Han 

and Jong-Tae, 2010; Jun et al., 2012). 

1.4 Research Objectives 

The main objective of this study is to support reliable communication 

(transmission) over rapidly time-varying multipath channels by developing a 

mitigation technique that is capable to combat or reduce the ICI effects imposed on 

the OFDM system due to Doppler spread. 

More specifically: 

i) To investigate the effects of ICI problem due to frequency offset in OFDM 

system. 

ii) To investigate the performance of OFDM system over different propagation 

channels, including additive white Gaussian channel (AWGN) in the present 

of frequency offset, slow time-varying channel, and fast time-varying 

channel. 

iii) To develop a robust ICI mitigation technique for OFDM system in fast 

varying channel. 

iv)  To investigate the performance of OFDM system with existing ICI 

mitigation techniques, such as channel estimation techniques, self-cancelation 

techniques, and pulse-shaping over time-varying channel under high mobility 

condition. 

1.5 Scope of Work  

Future wireless communication systems demand to support high data rate 

with high mobility (100 Mbps for mobile application at speed 350 km/h).  Therefore, 

OFDM as a strong candidate for future wireless communication systems must be 

able to satisfy these requirements.  However, in high mobility scenarios, the time-
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variation of the channel sets a limit to the transmission rate of OFDM and degrades 

its performance severely.  Usually the rate of channel variation in time identifies by 

Doppler frequency, which is proportional to carrier frequency and vehicle velocity.  

Therefore, the ICI caused by the time-variation of channel is usually depends on the 

OFDM symbol duration   , and Doppler frequency   . 

However, in Fast fading channel conditions, the channel variation during one 

OFDM symbol period exhibit high order variations, which can be approximated by a 

general polynomial of time (Chen and Kobayashi, 2002; Yeh and Chen, 2004).   

On the other hand, OFDM is not a strong candidate for uplink data 

transmission, where it has a very high peak-to-average power ratio (PAPR), that 

requires an expensive power amplifier with high linearity, which drains the battery 

faster (Wang et al., 2009). 

Other impairments like phase noise, sampling frequency offset, residual 

frequency offset, and frequency offset due to synchronization errors between 

transmitter and receiver are beyond the scope of this thesis. 

1.6 Significance of Research Work 

OFDM system is highly attractive candidate modulation system for future 

wireless communications, which demand to support high data rate transmission at 

high mobility and high carrier frequency (Huang and Wu, 2006).  One of the main 

impairments of OFDM is its sensitivity to time-variation of mobile radio channels 

due to Doppler spread, that is, introduces ICI which severely degrades the 

performance of OFDM (Robertson and Kaiser, 2000; Xuerong and Lijun, 2003). 

Therefore, it is very important to develop a mitigation technique to overcome or to 

reduce the effects of Doppler spread in OFDM systems. 
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1.7 Thesis Contributions 

i) A novel scheme to estimate the variation of the channel in OFDM systems is 

proposed in this thesis.  The main idea is to distort the data of OFDM symbol 

in the frequency domain, such that zeros are generated in the time domain.  

Then, these zeros are gathered to use it as a guard interval for an impulse 

signal.  After that, an impulse signal is inserted as a pilot sample, which is 

used to estimate the channel at the pilot signal in OFDM symbol.  Finally, a 

piecewise linear model (PLM) is used to estimate the channel variation over 

an OFDM symbol. 

ii) Recently, Mostofi has been proposed a channel estimation scheme to mitigate 

ICI by approximating the channel variation over an OFDM symbol by a 

PLM.  However, for high Doppler spread the channel over an OFDM symbol 

exhibit high order variation.  In this thesis, a generalized scheme is proposed, 

where the channel variation over an OFDM symbol is approximated by a 

general polynomial model with more time domain samples instead of PLM 

with few time domain samples.  

iii) A modified of “better than” raised cosine pulse-shape is proposed in this 

thesis to improve the performance of OFDM in the presence of frequency 

offset.  The performance of the modified pulse is investigated and compared 

with a number of Nyquist pulses. 

1.8 Thesis Organization 

This thesis consists of six chapters.  Chapter 1 serves as an introduction to the 

thesis.  It covers topics such as problem statement, research objectives, scope of the 

work and its significance. 

Chapter 2 gives a literature review of OFDM principles, and its advantages 

and disadvantages.  Moreover, the ICI analysis and performance of OFDM in 
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AWGN channel with frequency offset impairment and in fast time-varying channel 

are given in this chapter.  Then, the mobile radio propagation, modeling, 

characteristics of the mobile radio channel is described.  Lastly, approaches for 

reducing ICI and recently related work are given. 

Chapter 3 describes how the research carried on.  The flow chart diagram of 

this research is presented. Then, the three proposed ICI mitigation techniques are 

described, the data-distortion based channel estimation scheme, the generalized of 

Mostofi channel estimation scheme and the modified pulse-shaping function.  

Additionally, the OFDM parameters, the simulation tools used in this research are 

given in this chapter. 

Chapter 4 describes the mathematical and system models of the three 

proposed ICI mitigation techniques, the data-distortion based channel estimation 

scheme, the generalized of Mostofi scheme and the modified pulse-shaping function. 

 Chapter 5 discusses the simulation and the mathematical results of the three 

proposed ICI mitigation techniques.  Where the performance of the data-distortion 

based channel estimation scheme, the generalized of Mostofi scheme and the 

modified pulse-shaping function are compared with other ICI mitigation techniques. 

Finally, Chapter 6 gives a summary of the work that has been done. Also, 

contributions, and conclusions of the thesis, along with suggestions for future work 

are given in this chapter. 
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