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ABSTRACT 

 

 

 

 

Nowadays, meta-heuristic optimization algorithms have been extensively 

applied to a variety of Machine Learning (ML) applications such as classification, 

recognition, prediction, data mining and web mining, combinatorial optimization and 

so on. The majority of them imitate the behavior of natural phenomena to find the 

best solution. The algorithms find promising regions in an affordable time due to 

exploration and exploitation ability. Although the mentioned algorithms have 

satisfactory results in various fields, none of them is able to present a higher 

performance for all applications. Therefore, searching for a new meta-heuristic 

algorithm is an open problem. In this study, an improved scheme of Particle Swarm 

Optimization (PSO) based on Newtonian’s motion laws called Centripetal 

Accelerated Particle Swarm Optimization (CAPSO) has been proposed to accelerate 

learning process and to increase accuracy in solving ML problems. A binary mode of 

the proposed algorithm called Binary Centripetal Accelerated Particle Swarm 

Optimization (BCAPSO) has been developed for discrete (binary) search space. 

These algorithms have been employed for problems such as non-linear benchmark 

functions, Multi-Layer Perceptron (MLP) learning and the 0-1 Multidimensional 

Knapsack Problem (MKP). The results have been compared with several well-known 

meta-heuristic population-based algorithms in both continuous (real) and binary 

search spaces. From the experiments, it could be concluded that the proposed 

methods show significant results in function optimization for real and binary search 

spaces, MLP learning for classification problems and solving MKP for binary search 

space. 
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ABSTRAK 

 

 

 

 

Kini pengoptimum algoritma meta-huristik sudah digunakan dengan 

meluasnya dalam pelbagai aplikasi mesin pembelajaran (ML) seperti 

pengklasifikasian, pengecaman, ramalan, pencarian data dan pencarian jaringan, 

pengoptimum kombinasi dan sebagainya. Kebanyakan aplikasi ini meniru keadaan 

fenomena semulajadi bagi mendapatkan penyelesaian terbaik. Algoritma akan 

mendapatkan ruang yang sangat sesuai dalam jangkamasa tertentu mengikut 

keupayaan eksplorasi dan eksploitasi. Walaupun algoritma tersebut memberi 

keputusan yang memuaskan di dalam banyak bidang, namun tidak satu pun 

diantaranya dapat mneghasilkan prestasi yang lebih tinggi untuk semua aplikasi. 

Maka, untuk mencari algoritma meta-huristik yang baru merupakan suatu cabaran 

yang nyata. Di dalam kajian ini, skim Particle Swarm Optimization (PSO) yang 

diperbaharui berdasarkan hukum gerakan Newtonian yang dipanggil Centripetal 

Accelerated Particle Swarm Optimization (CAPSO) telah dicadangkan bagi 

mempercepat proses pembelajaran dan meningkatkan ketepatan untuk menyelesaikan 

masalah-masalah ML. Mod binari algoritma  yang dicadangkan yang dinamakan 

Binary Centripetal Accelerated Particle Swarm Optimization (BCAPSO) 

dibangunkan untuk pencarian ruang diskret (binari). Kesemua algoritma tersebut 

telah digunakan bagi mengatasi beberapa kesulitan seperti fungsi penanda aras bukan 

linear, pembelajaran Multi-Layer Perceptron (MLP) dan 0-1 Multidimensional 

Knapsack Problem (MKP). Keputusan telah dibandingkan dengan beberapa 

algoritma meta-huristik berdasarkan populasi yang terkenal carian ruang nyata dan 

binari. Daripada eksperimen, boleh disimpulkan bahawa kaedah yang dicadangkan 

menunjukkan hasil yang signifikan bagi fungsi pengoptimum untuk nyata dan 

pencarian ruang binari, pembelajaran MLP bagi masalah-masalah klasifikasi dan 

penyelesaian MKP untuk pencarian ruang binari. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1  Overview 

 

 

Machine Learning (ML) (Shavlik and Dietterich, 1990; Michie et al., 1994; 

Mitchell, 1997, Bishop, 2007; Marsland, 2009) is a branch of Artificial Intelligence 

(AI) concerned with many learning algorithms and problems. Different ML 

algorithms have been successfully employed to solve real-life problems. The goal of 

ML research is computer learning based on training data to recognize complex 

patterns of datasets, or to make intelligent decisions based on data. In ML, 

optimization provides a valuable framework for thinking about, formulating and 

solving many problems.  

 

 

Optimization problems have located at the heart of most ML approaches. 

Many algorithms from the class of exact and approximate optimization algorithms 

have been presented to deal with ML applications. However, exact optimization 

algorithms such as dynamic programming, branch-and-bound and backtracking 

(Neapolitan and Naimipour, 2004; Tanaka et al. 2009; Ferrer et al., 2009; Manerba 

and Mansini, 2012; Smet et al., 2012) have shown good performance in addressing 

ML applications, they are not efficient in a high-dimensional search space. In the 

applications, the search space increases exponentially with the problem size, hence 

solving these problems using the algorithms (such as exhaustive search) is not 

practical. Therefore, many researchers are interested in utilizing approximate 

algorithms like meta-heuristic algorithms in this regard. 
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Artificial Immune System (AIS) (Farmer et al., 1986), Genetic Algorithm 

(GA) (Holland, 1975; Tang, 1996), Ant Colony Optimization (ACO) (Dorigo et al., 

1996), Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995; Shi and 

Eberhart, 1998), Artificial Bee Colony (ABC) (Karaboga, 2005), Imperialistic 

Competitive Algorithm (ICA) (Atashpaz-Gargari and Lucas, 2007), Gravitational 

Search Algorithm (GSA) (Rashedi et al., 2009) and Charged System Search (CSS) 

(Kaveh and Talatahari; 2010) are samples of meta-heuristic algorithms. 

 

 

The meta-heuristic algorithms have applied as learning algorithm in for tackling 

complex problem such as neural network learning (Dehuri et al., 2011; Qasem and 

Shamsuddin, 2011), image processing (Lu and Chen, 2008; Yang, 2011), function 

optimization (Kaveh and Talatahari, 2010; Rashedi et al., 2010), data mining (Sousa 

et al., 2004; Freita and Timmis, 2007), pattern recognition (Senaratne et al., 2009; 

Zhao and Davis, 2011), control objectives (Baojiang and Shiyong, 2007; Karakuzu, 

2009; Xie et al., 2009) and combinatorial optimization problems (Al-Dulaimi and 

Ali, 2008; Defersha and Chen, 2010; Angelelli et al., 2010).  

 

 

Even though, they have been illustrated good performance, there is no a 

specific algorithm to find the best solution for all problems in continuous (real) and 

discrete (binary) search spaces. In other words, some algorithms have a better 

solution for a number of particular problems. Therefore, searching for a new meta-

heuristic algorithm which can operate on two-valued functions, real and binary 

search spaces, would be beneficial. 

 

 

In this thesis, the proposed methods of Centripetal Accelerated Particle 

Swarm Optimization (CAPSO), Local topology of Centripetal Accelerated Particle 

Swarm Optimization (LCAPSO), Binary Centripetal Accelerated Particle Swarm 

Optimization (BCAPSO) and Local topology of Binary Centripetal Accelerated 

Particle Swarm Optimization (LBCAPSO) are proposed for real and binary search 

spaces. The methods are evaluated by some ML applications in continuous and 

discrete search spaces such as function optimizations, Multi-Layer Perceptron (MLP) 

learning for classification problems and Multi-dimensional Knapsack Problem 

(MKP). The rationale of proposing this study is given in the problem background 
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followed by the thesis statement with research questions, goal of the study, 

objectives, scope and importance of the research.  

 

 

 

 

1.2  Problem Background 

 

 

Traditional algorithms such as branch-and-bound, dynamic programming, 

backtracking which are in the class of exact algorithms are inefficient in solving 

many high-dimensional optimization problems of ML. In these problems, the search 

space grows exponentially with the problem size hence; the exhaustive search is not 

practical using the algorithms. Also, the algorithms are inflexible to adapt a solution 

with a problem (Chan and Tiwari, 2007). In these algorithms, a problem is modeled 

in such a way that can be solved by these algorithms. This generally requires making 

several assumptions which might not be easy to validate in many situations. 

Therefore, a set of more adaptable and flexible algorithms are required to overcome 

these limitations.  

 

 

Based on this motivation, a numerous algorithms inspired by nature have 

been proposed in the literature. Among them, meta-heuristic algorithms have shown 

satisfactory abilities to handle such problems. In these algorithms, the goal is to 

explore efficiently the search space in order to find (near-) optimal solutions. These 

algorithms have various advantages (Jin and Branke, 2005; Du and Li, 2008, Zhan et 

al., 2009, Sarıçiçek and Çelik, 2011; Valdez et al., 2011, Mezmaz et al., 2011; Kim 

et al., 2012) to name a few: 

 

1. They are robust and can adapt solutions with changing conditions and 

environment. 

2. They can be applied in solving complex multimodal problems. 

3. They may incorporate mechanisms to avoid getting trapped in local 

optima. 

4. They are not problem-specific algorithm. 

5. These algorithms are able to find promising regions in a reasonable time 

due to exploration and exploitation ability. 
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6. They can be easily employed in parallel processing. 

To achieve the above advantages and to have better solution in different 

applications, many meta-heuristic population-based algorithms have been proposed 

so far and employed in many ML problems.   

 

 

GA is one the oldest meta-heuristic algorithms. It has been widely used in 

ML (Goldberg, 1989; Shapiro, 2001). A combined ML with GA was proposed for 

controller design by Filipic (1999). Also, a general method was presented for 

identification of an optimal non-linear mixed effects model (Bies et al., 2006). This 

included structural, inter-individual random effects and residual error models using 

ML and GA. In other research, Sarkar et al. (2012) offered an accuracy-based 

learning system called DTGA (Decision Tree and GA) to enhance the prediction 

accuracy of classification problems. Moreover, a Two-stage Genetic Clustering 

Algorithm (TGCA) was suggested by He and Tan (2012) to determine the 

appropriate number of clusters and partition of dataset.  

 

 

D’Souza et al. (2012) used several meta-heuristic algorithms such as 

Simulated Annealing (SA), PSO, GA and AIS to optimize Dial-A-Ride Problem 

(DARP). From the results, it could be concluded that AIS method provided more 

efficient optimal solutions. Al-Obeidat et al. (2010) developed PSO for PROAFTN 

which is a classification method and belongs to the class of supervised learning 

algorithms. The method applied PSO to elicit the PROAFTN parameters during the 

learning process. To evaluate the quality of approach, it was tested on some datasets 

and compared with several ML techniques. The method had considerably 

performance better than other ML techniques used. Furthermore, a hybrid of 

improved PSO algorithm with Wavelet Neural Network (WNN) was introduced 

(Yue-bo et al., 2012) to simulate the aerodynamic model for flight vehicles. The 

proposed method was compared with some well-known method such as the hybrid of 

GA with WNN and SVM. The simulated results indicated that the presented method 

has more efficiency than the others for aerodynamic modeling. 

 

 

Another meta-heuristic algorithm applied in ML is ACO. Azar and Vybihal 

(2011) proposed a method using ACO to optimize the accuracy of software quality 
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predictive models for classification new data. In other study, Loyola et al. (2012) 

presented an approach to predict web user behavior using learning-based ACO.  

 

 

Xu and Duan (2010) provided a shape-matching approach to visual target 

recognition for aircraft at low altitude using ABC algorithm. Also, Sulaiman et al. 

(2012) employed a hybrid of ABC and Least Square Support Vector Machine (LS-

SVM) for solving real and reactive power tracing problem. The compared results 

with LS-SVM, the hybrid of GA and SVM demonstrated that the proposed method 

was more efficient than others in terms of determining the optimal values of hyper-

parameters of LS-SVM. 

 

 

Tayefeh-Mahmoudi et al. (2009) employed ICA to optimize the weights of 

MLP network for classification problems and compared the results with PSO, GA, 

Resilient Back-Propagation (RPROP) and Min Finder. The results illustrated that 

ICA performed better results. 

 

 

Also, GSA was applied for function optimizations by Rashedi et al. (2009). 

The algorithm offered a better performance than PSO and GA in many cases. In 

another study, Bahrololoum et al. (2012) used GSA for a prototype classifier in 

multiclass datasets. The results of proposed method were compared with PSO, ABC 

and nine other classifiers on some well-known datasets. The results indicated that 

GSA was more efficient than the others. 

 

 

Although the mentioned algorithms have obtained satisfactory results in 

various fields of ML, there are some unavoidable disadvantages. For instance, GA 

has the inherent drawbacks of prematurity convergence (Leung et al., 1997; Hrstka 

and Kučerová, 2004; Hong et al., 2011; Pavez-Lazo and Soto-Cartes, 2011) and 

unpredictable results. Also; it uses complex functions in selection and crossover 

operators and sometimes, the encoding scheme is difficult (Moslemipour et al., 

2012). PSO suffers from trapping into local optima and slow convergence speed 

(Deep, M. Thakur, 2007 (a), 2007 (b); Tsoulos, 2008; Zhan et al., 2009; Zhan et al., 

2011; Gao, 2012), whereas GSA and ICA take long computational time to achieve 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DHrstka,%2520Ond%25C5%2599ej%26authorID%3D6507260306%26md5%3Dbb09cdcff188920e37ebc119dfa3535a&_acct=C000013278&_version=1&_userid=167669&md5=46d00bae04f145ce09d66c85a4a93203
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the results. Furthermore, some of these algorithms have several parameters to tune 

and often parameters setting is a challenge for various optimization problems 

(Tashkova, 2011). Meanwhile, none of meta-heuristic algorithms are able to present 

a higher performance than others in solving all problems. Another noteworthy point 

is that many problems are expressed in a binary representation. In other words, some 

solutions are encoded binary form or some problems are binary in nature. 

Nevertheless, some meta-heuristic algorithms are designed for only continuous (real) 

or discrete (binary) search space and sometimes, they have good performance just on 

one of the search spaces. For example, ICA and the original of ACO have been 

designed for continuous and discrete search space respectively. Also, binary PSO 

(Kennedy and Eberhart, 1997) has some inherent disadvantages such as poor 

convergence rate and failure to achieve desired results (Nezamabadi-pour et al., 

2008) which bring about a decrease in performance of algorithm in the binary search 

space. Therefore, the enhancement of performance of previous meta-heuristics or 

even introduction of new ones in minimizing the disadvantages seems to be 

necessary. Hence, a new optimization meta-heuristic algorithm has been proposed 

based on Newtonian’s motion laws and PSO algorithm to improve convergence 

speed and to avoid trapping into local optimum and setting many parameters. The 

algorithm is named Centripetal Accelerated Particle Swarm Optimization (CAPSO) 

and can be applied for both continuous and discrete high-dimensional search spaces.  

 

 

 

 

1.3  Research Statement with Research Questions 

 

 

Traditional optimization algorithms cannot provide proper results for ML 

problems with high-dimensional search space since the search space exponentially 

increases with the size of problem and exhaustive search is impractical. Also, 

existing meta-heuristic algorithms suffer from different drawbacks such as lack of 

providing optimum solution for all problems, getting stuck in local optima, tuning 

many parameters, slow convergence rate and high run-time. Also, some meta-

heuristic algorithms are designed for only continuous (real) or discrete (binary) 

search space and sometimes, they have good performance only in one of the search 
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spaces. However, the algorithms are robust and have the ability of adapting with 

changing environment.  

 

 

Therefore, more works are still required to develop the performance of meta-

heuristic algorithms in ML. Hence, new meta-heuristic algorithms are introduced in 

the study for both continuous and discrete search spaces to cope with the 

shortcomings.  

 

 

Consequently, based on the above issues, the main research question is: 

 

 

Are the proposed meta-heuristic algorithms beneficial for learning process 

enhancement in ML? 

 

 

Thus, the following issues need to be addressed: 

 

1. Could the proposed methods improve the learning process and accelerate 

the convergence rate in ML? 

2. Is it possible that the algorithms need no parameters setting? 

3. Could the proposed algorithms have good performance in both real and 

binary search spaces? 

 

 

 

 

1.4  Goal of the Research 

 

 

The aim of this research is to propose an improved scheme of Particle Swarm 

Algorithm (PSO) based on the Newtonian’s motion laws, which is called Centripetal 

Accelerated Particle Swarm Optimization (CAPSO) to accelerate the learning and 

convergence procedure of classifiers in real and binary search spaces.  
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1.5  Objectives of the Research 

 

 

In order to answer the above questions, the objectives of this thesis have been 

identified as:  

 

1. To propose efficient meta-heuristic algorithms for both real and binary 

search spaces. 

2. To improve the performance of meta-heuristic algorithms for optimizing 

non-linear functions in both real and binary search spaces. 

3. To enhance ANN learning using the proposed method. 

4. To evaluate the performance of combinatorial optimization problems in 

binary search space. 

 

 

 

 

1.6  Scope of the Study 

 

 

To achieve the mentioned objectives, the scope of this study is bounded as 

follows:  

 

1. Twenty three unimodal and multimodal high-dimensional non-linear 

benchmark functions have been chosen to validate and to compare the 

performance of proposed algorithms with some meta-heuristic algorithms 

in real search space (Yao et al., 1999; Rashedi et al., 2009).  

2. Twenty four unimodal and multimodal high-dimensional non-linear 

benchmark functions have been selected to assess the efficiency of 

proposed algorithms in binary search space (Yao et al., 1999; Rashedi et 

al., 2010).  

3. Six datasets on binary class classification problems 

(http://www.ics.uci.edu/~mlearn/MLRepository.html) have been used to 

validate the hybrid learning of proposed algorithm with MLP. The 

datasets are: Hepatitis, Heart Disease, Pima Indian Diabetes, Wisconsin 

Prognostic Breast Cancer, Parkinson’s disease and Echocardiogram 

(Heart attack). The performance of the proposed method is measured 
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based on convergence towards error, Sensitivity, Specificity, and 

classification accuracy.  

4. Twenty five datasets for MKP (OR-Library: 

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html) are applied 

to test the performance of proposed methods for combinatorial 

optimization problems in binary search space. 

5. All meta-heuristics used in the study are in the class of population-based 

global search meta-heuristic algorithms. 

6. The programs have been customized, developed and applied to the 

problems using MATLAB R2011a software. 

 

 

 

 

1.7  Importance of the Study 

 

 

The study investigates the capabilities of meta-heuristic algorithms in 

Machine Learning (ML). The performance of the proposed methods is evaluated 

using some applications in ML such as function optimization, Multi-Layer 

Perceptron (MLP) learning for pattern classification tasks and solving the 0-1 

Multidimensional Knapsack Problem (MKP). The approaches are tested to detect 

whether the methods are efficient in the applications.  

 

 

 

 

1.8  Thesis Organization 

 

 

This thesis consists of eight chapters. The first is the introductory chapter. 

The second and third chapters describe the background as well as the previously 

published work in the field of meta-heuristic algorithms and Machine Learning 

(ML). The fourth chapter describes the research methodology of this study. Chapter 

5, 6 and 7 provide the proposed methods and their analysis of results on some ML 

applications. Finally, the summary of this study is presented in Chapter 8. The details 

of each chapter are as follows: 
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Chapter 2, Meta-heuristic Algorithms, provides a review on concept and 

techniques applied in meta-heuristic algorithms. Also, related works are elucidated in 

real and binary search spaces. Finally, the discussion and summary of this chapter are 

given. 

 

 

Chapter 3, Machine Learning and Its applications, presents ML algorithms 

and the related problems. Some ML applications are reviewed in this chapter such as 

ANN learning, combinatorial optimization problems in binary search space and the 

optimization of unimodal and multimodal high-dimensional function. Moreover, a 

broad overview about the basic concepts and traditional techniques of ANN learning 

are described especially, the hybrid learning of MLP network with meta-heuristics is 

elucidated in details. Furthermore, the hybrid of the 0-1 MKP and meta-heuristics is 

discussed in this chapter. Lastly, the chapter will be finished by a summary.  

 

 

Chapter 4, Research Methodology, comprises of research methodology, a 

general framework for each phase of the study and descriptions about the overall 

solving-tools and standard techniques adopted.  

 

 

Chapter 5, Centripetal Accelerated Particle Swarm Optimization (CAPSO) in 

Real and Binary Search Spaces, presents the encoding of the proposed algorithms 

and evaluates their performance using some non-linear benchmark functions in the 

search spaces. 

 

 

Chapter 6, Enhancement of Multi-Layer Perceptron (MLP) Learning Using 

Centripetal Accelerated Particle Swarm Optimization (CAPSO), uses the hybrid 

learning of proposed algorithm and MLP network to improve the ability of the 

network in term of accuracy for classification problems. Finally, the results and 

discussion of the proposed method on several medical datasets are compared with 

some previous methods in the literature.  

 

 

Chapter 7, Binary Centripetal Accelerated Particle Swarm Optimization 

(BCAPSO) For Solving 0-1 Multidimensional Knapsack Problem (MKP), presents 
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the methods of solving the 0-1 MKP using meta-heuristic algorithms. Three methods 

of Penalty Function (PF) technique, Check-and-Dropt (CD) and Improved Check-

and-Repair Operator (ICRO) algorithms are proposed to improve the 0-1 MKP 

solutions. Also, the performance of each method is compared, analyzed and 

benchmarked with previous methods.  

 

 

Chapter 8, Conclusion and Future Works, discusses and highlights the 

contributions and findings of the research work and provides suggestions and 

recommendations for future studies.  
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