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ABSTRACT 

 

 

 

 

Manufacturing industries need to constantly adjust to the rapid pace of 

change in the market. Many of the manufactured products often have a very short 

life cycle.  These scenarios imply the need to improve the efficiency of capacity 

planning, an important aspect of machine allocation plan that is known for its 

complexity. Two common approaches to solve the machine allocation problem 

include optimization-based methods and heuristic oriented methods. Although 

optimization-based methods are robust in their applicability, they tend to become 

impractical when the problem size increases, while heuristic approaches are mainly 

dependent on rules and constraints of an individual problem. Due to this, heuristic 

approaches always face difficulties to estimate results in a changed environment. 

The use of new and innovative meta-heuristic searching techniques of population-

based algorithms in this research can overcome these limitations. The objectives of 

this research are to minimize the system unbalance and machine makespan 

utilization, and to increase throughput taking into consideration of the technological 

constraints. Population-based algorithms that consist of constraint-chromosome 

genetic algorithm (CCGA), constraint-vector harmony search (CVHS) and hybrid of 

constraint-chromosome genetic algorithm and harmony search (H-CCGaHs) were 

adopted. To ensure the feasibility of the results and to promote for a faster 

convergence, the right mapping chromosome or harmony memory representation 

was applied to the domain problem in all the three algorithms. Genetic algorithm is 

known for its exploitative ability, whereas harmony search is recognized for its 

explorative capability. H-CCGaHs combines these strengths to produce a more 

effective algorithm where both aspects will be optimized and helps avoid getting 

trapped in local minima. These three algorithms (CCGA, CVHS and H-CCGaHs) 

were tested on both benchmark data (10 datasets) and industrial data (5 datasets). 

The results indicated that the proposed H-CCGaHs achieves better results, with 

faster convergence and a reasonable time to run the algorithm. 
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ABSTRAK 

 

 

 

 

Syarikat pengeluar sentiasa memerlukan adaptasi untuk menghadapi 

perubahan pasaran. Kebanyakan daripada produk pengeluar mempunyai kitaran 

jangka hayat yang pendek. Senario ini membawa kepada keperluan untuk 

memperbaiki kelicinan  perancangan kapasiti, satu aspek penting yang mana 

perancangan pengagihan mesin yang terkenal dengan kekompleksan. Dua 

pendekatan lazim untuk menyelesaikan masalah pengagihan mesin termasuklah 

kaedah berdasarkan optimum dan kaedah berorientasikan heuristik. Walaupun 

kaedah-kaedah berdasarkan optimum adalah teguh dalam aplikasinya, ia 

berkecenderungan menjadi tidak praktikal apabila saiz masalah bertambah, 

sementara pendekatan heuristik bergantung kepada peraturan dan kekangan bagi 

setiap masalah. Oleh sebab itu, pendekatan heuristik selalu berdepan dengan 

masalah untuk menganggarkan hasilan apabila persekitaran berubah. Keterbatasan 

ini boleh diatasi dengan penggunaan teknik algoritma carian meta-heuristik 

berdasarkan populasi yang baru dan berinovasi dalam kajian terkini. Objektif kajian 

ini adalah untuk meminimakan ketidakseimbangan sistem dan penggunaan rentang 

buatan (makespan) mesin, dan untuk meningkatkan pengeluaran sambil 

mengambilkira kekangan teknologi.  Algoritma  berdasarkan-populasi yang 

mengandungi algoritma genetik berkekangan-kromosom (CCGA), algoritma carian 

harmoni berkekangan-vektor (CVHS) dan hibrid algoritma genetik berkekangan-

kromosom dan algoritma carian harmoni (H-CCGaHs) diadaptasikan. Untuk 

memastikan kelaksanaan hasilan dan untuk  mempromosikan pertembungan yang 

lebih cepat, perwakilan  pemantauan kromosom atau ingatan harmoni yang betul 

diterapkan pada masalah domain dalam ketiga-tiga algoritma tersebut. Algoritma 

genetik terkenal dengan kebolehan ekplotatif, manakala carian harmoni terkenal 

dengan kebolehan ekploratif. H-CCGaHs menggabungkan kekuatan-kekuatan ini 

untuk menghasilkan algoritma yang lebih efektif yang mana kedua-dua aspek 

tersebut akan dioptimakan dan membantu untuk mengelakkan daripada 

terperangkap dalam minima lokal. Ketiga-tiga algoritma (CCGA, CVHS and H-

CCGaHs) telah diuji ke atas data tanda aras (10 set data) dan data industri (5 set 

data). Keputusan menunjukkan bahawa H-CCGaHs mampu mencapai hasilan yang 

lebih baik dan pertembungan yang lebih cepat, juga mengambil masa yang 

munasabah untuk menjana algoritma. 
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

In manufacturing industry, many critical decisions are based on demand
forecast (Cakanyildirim, 2002). The demand forecast which is usually projected on
6-months rolling forecast, nevertheless, is always subjected to error when it comes to
a actual demand. Due to the various factors, the actual demand from the customers
which is within 2 - 4 months lead-time, is always different from the demand forecast.
Since most of the important and risky decisions such as machines or tools purchases
are made based on this unreliable forecast, it is always a goal for the manufacturing
industries to find a method to reduce this risk.

In spite of demand market volatility, manufacturing companies need to adapt a
strategy that makes them able to meet the expected demand. One of the approaches is
to keep their resources as lean as possible and put the emphasis on producing products
based on customer’s order (make-to-order). As a result of this growing requirement
of customized production environment, many companies are adopting the Flexible
Manufacturing System (FMS) to effectively and efficiently optimize available capacity
resources through machine allocation with the objective of producing high quality
products with a shorter leadtime.

FMS is a manufacturing system in which there is some amount of flexibility
that allows the system to react to any changes (Chunwei and Zhiming, 2001). It can be
classified as static or dynamic based on how the orders from the customers are being
handled, allocated and released to the production floor (Saravanan, 2006). In a static
machine allocation environment, the parts that were allocated are known beforehand;
while in a dynamic environment, which is the real manufacturing environment, the
allocation of the resources has to consider resource unavailability (machine) over time,
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such as machine break down or the unexpected demand that can adversely affect the
utilization level and efficiency of FMS.

Demand forecast is rarely accurate. Therefore, capacity planning with a good
strategy plays a very important role in sizing the company in order to meet the current
and future demand from the customers (Olhager et al., 2001). The strategy may include
setting up new facilities, new equipment purchases or optimizing the current available
resources in the facility. It may also include machine upgrading and adjusting the
resources to overcome the constraints due to product varieties.

Machine allocation in an advanced manufacturing system such as FMS is
considered dynamic. Machines break down constantly especially when they are aged.
When this occurs, decision needs to be made either to wait for the machine to be
repaired or move to another machine. Typical in a hard down situation, the affected
part type will be moved to another machine to meet to the customer’s requirement
date. Frequent machine breakdowns may result in shop floor nervousness due to
inability and lack of continuity in the current shop floor plan because the allocation
is exposed to frequent and huge amounts of deviation (Wang et al., 2007). In addition,
machine breakdown is one of the major undesirable inputs as it can cause additional
maintenance cost. Therefore, the ability to quickly reallocate the unfinished part types
to another machine without jerking or causing interruption to the shop floor is the most
desirable goal of any companies. At the same time, it can minimize the adverse impact
of the failures on the objective measures of the machine allocation problem, so the
production goals can be achieved (Mandal et al., 2010).

The productivity is crucial especially when costly equipments and materials are
involved in the production because any deviation from the original plan may increase
the production costs. The ’pain’ will be even felt greater in advanced manufacturing
plant where the cost of initial investment is huge, the yearly machines and tools
procurement shoot up to several millions due to high technology equipment base and
fast product turn-over. Therefore, it is important to increase the productivity through
maximizing the overall throughput as well as to balance the works-in-process (WIP)
where the resources are highly utilized. In the meantime, to improve the efficiency,
it aims on minimizing the system unbalance, makespan and machine hours during the
part allocation. System unbalance is a summation of remaining time (idle time) on all
available machines. By minimizing system unbalance, utilization level of machines
can be increased. Meanwhile, makespan can be defined as the maximum value of
working time over cumulative processing time of machines in the given planning
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horizon. This objective will balance the work-load among machines. Machine hours
denotes the number of hours allocated to process the parts for given operations, with
the consideration of the machine technological constraints. This scenario is depicted
in Figure 1.1.

The machine allocation problems have been extensively researched over
the years, and many findings and contributions have been reported. Nevertheless
hitherto, all the studies on machine allocation problem are performed based on the
assumption of deterministic environment, where the theories have been a little used
in real manufacturing environment. In the real world, FMS operates in a dynamic
environment where interruptions such as machine breakdown and reallocation of part
types can adversely affect the utilization level and efficiency of FMS. There are a
lot more to offer from research done on the machine allocation to manufacturing
industries, but more work is needed to address the gap between theories and practice
in machine allocation.

One of the common assumptions on machine allocation theories, which is
unlikely to take place in practice is that the machine allocation environment is static.
Most of the machine allocation or loading researches have been focused on providing
a good loading plan from deterministic requirements. Very few studies are done
on machine allocation problem that deals with machine’s interruption and control
policies; which imitates the real environment of FMS. Recently, Mandal et al. (2010)
proposed to include the machine breakdowns on machine allocation model in an
effort to minimize the effect of the breakdowns so that profitability can be boosted.
Consequently, dynamic machine allocation process is vital in order to improve the
performance of the allocation plan due to the dynamic problem that is inherited by the
aforementioned factors.

In the real industrial practice, dynamic machine allocation problem is handled
manually by human schedulers who observe the potential problems and revise the
allocation based on their knowledge and experiences. However, the combinatorial
complexity of the machine allocation problem tends to overburden them and leads to
poor allocation performances. Mandal et al. (2010) proposed a model that combines
the online monitoring scheme, where the machines are continuously monitored to
measure the failure potential and the actions are determined beforehand to avoid a
potential breakdown. In addition, manual monitoring ensures the action is taken as
soon as possible to minimize the impact due to the sudden breakdown.
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Figure 1.1: A lean manufacturing machine allocation scenario

1.2 Challenges of the Flexible Manufacturing System Dynamic Machine
Allocation Problem

Most of manufacturing industries make a practice of preparing the demand
forecast planning for every five to ten years ahead. This is important to project the
company’s growth, to prepare for any facilities expansion or to procure additional
machines and tools with better capabilities. The plan is constantly reviewed and
adjusted, usually on quarterly or half yearly basis.

In any manufacturing industry, there always is a bottle neck area that the
management would need to review. They have to decide either to expand the capacity
or replace the older machines with newer technology so that the company can continue
to grow. The machines and tools delivery leadtime typically range from 6-12 months.
Hence, machine procurement plan need to be based on at least a year demand forecast
(Cakanyildirim, 2002) which is hardly accurate. It will be more difficult to plan or
to set up capacity requirement for a new product line that involves new machines
portfolio.
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Balancing capital investment against the customer demands in a volatile
environment has always been a challenge for any industry. Machines are purchased
well in advance but the actual production build will start only when orders are
received. With rapidly changing technology, many companies are adopting build-to-
order concept. In other word, there is no product built ahead for inventory, waiting
for the customers’ order. This scenario is very much apparent especially in high-
technology industries.

Resource allocation and capacity adjustment is another obstacle faced by the
manufacturing industries. Most of the time, the orders from customers are different
from the demand forecasted earlier. Some orders are totally in a different product
mix. Product mix changes can have a big impact on capacity. This requires the plant
to adjust the machines allocation, raw materials and manpower in order to meet this
constantly changing customers demand.

On top of it, each product has its own unique requirements and may require
a different set of technological processes. It is common in a big manufacturing plant
to have a mix between the old and new machines, with different capabilities. Newer
machines have better capabilities and are faster as compared to the older machines.
It will be a challenge to a planner to schedule and allocate machines that suit to
the requirements of the products that need to be built. It may in the process, create
bottleneck areas in one process and idling stations in another process, thus hindering
the plant from optimizing the throughput and profit.

Unexpected events may occur while processing or running products.
Customer’s pull-in the orders or machine breakdowns are common occurrence in any
manufacturing plant and this requires the planner to make adjustments on the allocation
of the available resources. These constraints require that the manufacturing plants are
be able to maximize the machine resources when there are machine breakdowns or
machines scheduled for preventive maintenance. The inability to adjust to suit to the
actual demand may put the company into loss of business opportunities and may have
direct impact on the bottom-line performance (profit and loss) of a company. In short,
a company with the ability to allocate resources to meet to the actual demand would
not only survive but also thrive in this competitive market.

The challenges create a dynamic machine allocation scenario that is more
complex and difficult than the conventional machine allocation, as signified in Figure
1.2. The complexities intensify as versatile machine configuration makes the machine
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Figure 1.2: Factors leading to the complex Flexible Manufacturing System (FMS)
machine allocation problem

flexible to perform different operations; hence rendering many allocation options. This
scenario creates a large scale of number of machines with a variety of products that
increase the combinatorial complexity; added with the variability of parameters (batch
size, processing times, unit per hour of the machine (UPH), etc.) and constraints
(machine, resources capabilities).

In addition, widely studied intelligent methods such as genetic algorithm (GA)
can be used to solve the machine allocation problem. GA has been researched for many
years and it is one of the most common methods reported in the literature, mainly due
to its ability to provide good performance solutions. It has the capability of mimic
the whole problem to be solved, and easily adjusts the variability of FMS parameters
and constraints that are faced in the real manufacturing problem. In addition, a new
intelligent method, harmony search (HS), is also among the promising meta-heuristic
algorithms. Although it is not yet performed on machine allocation domain area, the
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results that have been shown in many literatures in other domain areas promise a good
comparative result.

1.3 Problem Statement

In order for the manufacturing industries to response effectively to the
challenges in a volatile manufacturing environment, an effective and practical approach
is needed to address the real FMS machine allocation problem. The approach should
be able to optimize the current available resources in considering change of customers
requirements and machine breakdowns.

Thus, the main research question of this study is:

How to practically and effectively optimize the machine resources due to

the change of customers’ requirements and machine breakdowns in optimizing the

productivity and efficiency of the machine allocation in FMS?

1.4 Research Goal and Objectives

The goal of this research is a practical and effective dynamic machine
allocation approach for FMS. In order to be practical, it has to consider the real
FMS environment as well as the desired manufacturing objectives so as to provide
an acceptable solution with satisfactory performance. Likewise, it also have to provide
high quality solutions not only with respect to the efficiency that improves quality and
reduces the production time and makespan, but also maximize the resource utilization
and throughput.

The general objectives would be to design and evaluate population-based
algorithms to maximise throughput, and minimize the system unbalance and
makespan. More specifically, the objectives of the study are:

(i) To design and evaluate two population-based algorithms, i.e. constraint-
chromosome genetic algorithm (CCGA) and constraint-vector harmony
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search (CVHS) for maximizing throughput and minimizing system
unbalance.

(ii) To design and evaluate a hybrid of the population-based algorithms, ie H-
CCGaHs for further improvement of the system in terms of throughput
(maximized) and system unbalance (minimized).

(iii) To design and evaluate machine allocation model that in incorporating with
and without machine breakdowns in actual manufacturing industry and
evaluate the performance by using population-based algorithms (CCGA,
CVHS and H-CCGaHs).

Figure 1.3 summarizes the scenarios leading to the problem and the goal of this
study. There are three main issues that contribute to the dynamic machine allocation
problem. The first one is the gap between forecasted demand and actual demand of the
customer; second is the change of customer requirement and specification; and third is
the disruption of the machine resources due to machine breakdown.

1.5 Research Scopes and Significance

As the FMS machine allocation involves some level of flexibilities, various
parameters, constraints and uncertainties that further complicate the problem; some
scopes and limitations have been made in order to make it tractable. The scopes and
limitations of this research are as follows:

(i) This study considers only discrete manufacturing system and therefore,
production is referred to as parts production;

(ii) Non-splitting of part type - this implies that a part type undertaken for
processing is to be completed for all its operations before considering a new
part type; Production requirements of part types cannot be split among the
machines. This means, if an operation of a part type is assigned to a machine,
all requirements of that part should be processed on the same machine.

(iii) Unique part type routing - although flexibility exists in the selection of a
machine for optional operation, the operation must be completed on the same
machine once a machine is selected.

(iv) Sharing of tool slots is not considered.
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Figure 1.3: Scenario of the problem and research goal

(v) Parts are readily available. The resources such as pallets, fixtures, etc., used
in the system are sufficient and readily available.

(vi) Material handling time between machines is negligible.

(vii) Machines required for an operation are determined.

(viii) The number of machines slots needed for each type is given.

(ix) Processing times are deterministic and given in advance.

(x) Machine life and the number of available copies for each machine type are
given in advance.

(xi) Dedicated machines for certain part types are determined in advance.

(xii) The real FMS data used in this study are provided by the industrial
collaborator.
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This research is considered significant as it tends to solve (dynamic) machine
allocation problems due to the constraint of the resources (machines) as well as
due to machine breakdown(s) that commonly happens in all lean manufacturing
companies. The proposed algorithms; constraint-based genetic algorithm (CCGA),
harmony search (HS) and a hybrid of these two algorithms will provide an alternative
to the decision makers to achieve near optimal solutions with less computation cost and
time. In addition, the proposed dynamic machine allocation strategy will accommodate
the remaining part types with a minimum number of deviations to the current loading,
thus providing a promising approach to the decision makers to cater to shop floor
nervousness.

The performance measures considered in this research are concerned about the
productivity of the short-term planning and work-in-process (WIP), and the customer
satisfaction. This is in tandem with one of the aims of lean manufacturing to improve
the quality, and reduce the production time and cost. Therefore, the success of this
research will support the betterment of the lean manufacturing performance. The
improvement can be achieved through the maximization of throughput, minimization
of system unbalance, and minimization of machine make span utilized while satisfying
the technological constraints such as machine time availability and tool slots.
Furthermore, this research will also suggest the manufacturing approach on machine
allocation strategy.

1.6 Structure of the Thesis

This thesis is organized into eight chapters. Figure 1.4 shows the structure of
the thesis.

Brief descriptions of the contents of each chapter are given as follows:

(i) The thesis begins with discussions on some problem background, goal,
objectives, scopes and significance of this research as featured in Chapter
1.

(ii) Chapter 2 reviews some related works in the area as well as related domains
that would help in understanding the rest of the thesis.

(iii) Chapter 3 describes the research methodology employed in this research
including the research framework, data sources, instrumentation, problem



11

Figure 1.4: Structure of the thesis

description, performance measures, experiment and analysis used in the
thesis.

(iv) Then, Chapter 4 discusses on how the machine allocation is being handled in
the machine allocation problem using two population algorithms; constraint-
chromosome genetic algorithm (CCGA) and harmony search (HS). It also
compares the performance of proposed algorithms with current literatures as
well as discusses on the strength of these algorithms;

(v) Chapter 5 discusses on the development of hybrid of constraint-chromosome
genetic algorithm and harmony search called H-CCGaHs and evaluated
against the current literatures and the two-algorithms previously developed.
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(vi) Then, Chapter 6 discusses on the applications of the three algorithms (CCGA,
HS and H-CCGaHs) on industry problem datasets, taking into consideration
the product specification and machine resource technological constraints.
The results from three algorithms are compared.

(vii) Further on, Chapter 7 discusses the design of the dynamic machine allocation
framework and approach in real industrial data taking into consideration
the machine breakdowns. The performance of the proposed approach is
evaluated using CCGA, HS and H-CCGaHs.

(viii) Finally, Chapter 8 concludes the findings, contributions and potential future
research to be conducted as derived from this study.
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